JP2002057037A - Composite integrated circuit and its manufacturing method - Google Patents

Composite integrated circuit and its manufacturing method

Info

Publication number
JP2002057037A
JP2002057037A JP2000241632A JP2000241632A JP2002057037A JP 2002057037 A JP2002057037 A JP 2002057037A JP 2000241632 A JP2000241632 A JP 2000241632A JP 2000241632 A JP2000241632 A JP 2000241632A JP 2002057037 A JP2002057037 A JP 2002057037A
Authority
JP
Japan
Prior art keywords
integrated circuit
thin film
main surface
layer
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000241632A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yonezawa
喜幸 米澤
Kenji Okamoto
健次 岡本
Eiichi Yonezawa
栄一 米澤
Takeshi Suzuki
健 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000241632A priority Critical patent/JP2002057037A/en
Publication of JP2002057037A publication Critical patent/JP2002057037A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small composite integrated circuit by integrating a thin film capacitor which is large in capacity and a thin film coil on a semiconductor substrate where an integrated circuit has been provided. SOLUTION: A capacitor and a thin film coil are laminated on the surface of a semiconductor substrate opposite to its other surface on which an integrated circuit has been formed for the formation of a composite integrated circuit, or another semiconductor substrate on which a capacitor and a thin film coil have been formed is pasted on the semiconductor substrate for the formation of a composite integrated circuit. Furthermore, the composite integrated circuit is made a distributed constant circuit, by which a circuit of lower ESR can be realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、DC−DCコンバ
ータなどの電力変換装置に用いられるコンデンサとイン
ダクタンスとを含む複合集積回路に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a composite integrated circuit including a capacitor and an inductance used in a power converter such as a DC-DC converter.

【0002】[0002]

【従来の技術】集積回路の発達にともない電子回路の小
型化はますます進展している。これに伴い、各種回路に
必須の回路素子であるコンデンサの小型化も一段と重要
になっている。現在は小型のチップコンデンサ、チップ
コイルを用いて、たとえば電源IC用LCフィルターが
形成されている。
2. Description of the Related Art With the development of integrated circuits, the miniaturization of electronic circuits has been more and more advanced. Along with this, miniaturization of capacitors, which are essential circuit elements for various circuits, has become even more important. At present, for example, LC filters for power supply ICs are formed using small chip capacitors and chip coils.

【0003】さらに小型化を進めるためにシリコン(以
下Siと記す)基板に形成した集積回路との複合化が考
えられてきている。従来用いられている薄膜コンデンサ
としては、たとえば特開昭63−49385号公報に示
されているように、誘電体として二酸化シリコン(Si
2 )や五酸化タンタル(Ta2 5 )などのような、
比誘電率がせいぜい20以下の材料を用いることが一般
的である。
In order to further reduce the size, a composite with an integrated circuit formed on a silicon (hereinafter referred to as Si) substrate has been considered. As a conventional thin film capacitor, for example, as disclosed in JP-A-63-49385, silicon dioxide (Si) is used as a dielectric.
O 2 ), tantalum pentoxide (Ta 2 O 5 ), etc.
It is common to use a material having a relative dielectric constant of at most 20.

【0004】最近では、コンデンサを大容量化するた
め、比誘電率の大きい材料として、ジルコニウムチタン
酸鉛[Pb(Zr0.5 Ti0.5 )O3 、以下PZTと記
す]、マグネシウムニオブ酸鉛[Pb(Mg0.5 Nb
0.5 )O3 、以下PMNと記す]などの複合ぺロブスカ
イト酸化物が検討されている。このような複合ぺロブス
カイト酸化物を用いて薄膜コンデンサを作成する場合、
下部電極は高温に耐えられること、酸化物の結晶性を高
めるため結晶性が良いこと、鉛の拡散を防止できること
が要求される。現在このような下部電極材料として自己
配向性が強い白金(Pt)が用いられている。PtはS
iウエハとの密着性が弱いために、通常SiウエハとP
t電極との間に、バッファー層としてチタン層を介在さ
せる方法が行われている。
Recently, in order to increase the capacity of capacitors, lead zirconium titanate [Pb (Zr 0.5 Ti 0.5 ) O 3 , hereinafter referred to as PZT] and lead magnesium niobate [Pb ( Mg 0.5 Nb
0.5 ) O 3 , hereinafter referred to as PMN]. When making a thin film capacitor using such a composite perovskite oxide,
The lower electrode is required to withstand high temperatures, to have good crystallinity in order to increase the crystallinity of the oxide, and to be able to prevent the diffusion of lead. Currently, platinum (Pt) having strong self-orientation is used as such a lower electrode material. Pt is S
Since the adhesion to the i-wafer is weak, the Si wafer and P
A method of interposing a titanium layer as a buffer layer between the electrode and the t electrode has been used.

【0005】さらに結晶性と耐酸化性を向上させる目的
として、ルテニウム酸ストロンチウム(SrRuO3
以下SROと記す)等の金属性酸化物を下部電極に用い
る方法も検討されている。一方、電子情報機器、特に携
帯型の各種電子情報機器の普及が著しい。それらの電子
情報機器は、電池を電源とするものが多く、DC−DC
コンバータなどの電力変換装置を内蔵している。通常そ
の電力変換装置は、コイル、トランスなどの磁気誘導部
品を含んでいる。各種電子情報機器の小型軽量化の要望
に伴い、更にコイル、トランス等の磁気誘導部品の集積
化に対する要求も強いが、これらは、集積回路と比べる
と体積が非常に大きいために、電子機器の小形化を図る
上で最大の隘路になっている。
In order to further improve crystallinity and oxidation resistance, strontium ruthenate (SrRuO 3 ,
A method of using a metal oxide such as SRO for the lower electrode has also been studied. On the other hand, electronic information devices, in particular, various types of portable electronic information devices have been remarkably spread. Many of these electronic information devices use a battery as a power source, and DC-DC
It has a built-in power converter such as a converter. Usually, the power conversion device includes magnetic induction components such as a coil and a transformer. With the demand for smaller and lighter electronic information devices, there is also a strong demand for the integration of magnetic induction components such as coils and transformers. However, since these devices are much larger in volume than integrated circuits, It is the biggest bottleneck for miniaturization.

【0006】これら磁気誘導部品の小型化に対する今後
の方向としては、チップ部品として限りなく小さくし、
面実装により電源全体を小さくする方向と、Si基板上
に薄膜で形成する方向の二つが考えられる。近年、磁気
誘導部品の小形化の要求に応えて、半導体技術の適用に
より、半導体基板上に磁気誘導部品を搭載した例も報告
されている。本件出願人は既に、特願平8−14962
6号において、そのような平面型磁気誘導部品を考案し
た。
The future direction for miniaturization of these magnetic induction components is to make them as small as chip components without limit.
There are two directions, that is, a direction in which the entire power supply is reduced by surface mounting and a direction in which a thin film is formed on a Si substrate. In recent years, there has been reported an example in which a magnetic induction component is mounted on a semiconductor substrate by applying semiconductor technology in response to a demand for downsizing of the magnetic induction component. The present applicant has already filed Japanese Patent Application No. 8-14962.
In No. 6, such a planar magnetic induction component was devised.

【0007】図6は薄膜コイルを半導体チップに集積し
た複合集積回路の部分断面図である。スイッチング素子
や制御回路等の集積回路12を作りこんだSi基板1の
表面上に、コイル導体7を磁性体層6で挟んだ形の薄膜
コイル11を薄膜技術により形成した別のSi基板18
を接合したものである。コイル導体7と集積回路12の
電極とは、接続導体21で接続されている。5は磁性体
層6を絶縁するための絶縁層である。
FIG. 6 is a partial sectional view of a composite integrated circuit in which a thin film coil is integrated on a semiconductor chip. Another Si substrate 18 in which a thin film coil 11 in which a coil conductor 7 is sandwiched between magnetic layers 6 is formed on the surface of an Si substrate 1 on which an integrated circuit 12 such as a switching element and a control circuit is fabricated by a thin film technique.
Are joined. The coil conductor 7 and the electrode of the integrated circuit 12 are connected by a connection conductor 21. Reference numeral 5 denotes an insulating layer for insulating the magnetic layer 6.

【0008】[0008]

【発明が解決しようとする課題】しかしながら薄膜プロ
セスを用いたコンデンサに対して、薄膜金属電極を下部
電極を使用すると、コンデンサの等価直列抵抗(以下E
SRと記す)が大きくなってしまう問題点がある。また
前述の鉛系複合ペロブスカイト酸化物は、リサイクルの
観点から使用が制限されることが予想されている。
However, when a thin film metal electrode is used as a lower electrode for a capacitor using a thin film process, the equivalent series resistance (hereinafter referred to as E) of the capacitor is reduced.
SR). The use of the above-mentioned lead-based composite perovskite oxide is expected to be restricted from the viewpoint of recycling.

【0009】そこで、例えばチタン酸バリウムストロン
チウム[(Ba0.5 Sr0.5 )TiO3 、以下BSTと
記す]などの鉛フリーの材料を用いて、比誘電率を高め
ようとすると、非常に結晶性の良い膜を形成せねばなら
ない。結晶性の良い誘電体薄膜を用いたコンデンサを作
成するためには、結晶性の良い基板或いはバッファー
層、及び800℃程度の高基板温度が必要である。しか
し、Si基板上の集積回路との複合集積回路を形成しよ
うとした場合に、現在集積回路上で使用されているアル
ミニウム合金配線はこの温度に耐えることができない。
Therefore, if the relative dielectric constant is increased by using a lead-free material such as barium strontium titanate [(Ba 0.5 Sr 0.5 ) TiO 3 , hereinafter referred to as BST], very high crystallinity is obtained. A film must be formed. In order to produce a capacitor using a dielectric thin film having good crystallinity, a substrate or buffer layer having good crystallinity and a high substrate temperature of about 800 ° C. are required. However, when an attempt is made to form a composite integrated circuit with an integrated circuit on a Si substrate, the aluminum alloy wiring currently used on the integrated circuit cannot withstand this temperature.

【0010】更に、半導体集積回路基板上に薄膜コイル
を集積しようとした場合に、Si基板の利用効率が低下
してしまうという問題もある。このような様々な問題に
鑑み本発明の目的は、集積回路に小型で、容量が大きい
誘電体薄膜コンデンサを集積するとともに、更に薄膜コ
イルをも集積することによって、小型の複合集積回路を
提供することにある。
[0010] Furthermore, there is a problem in that when a thin film coil is to be integrated on a semiconductor integrated circuit substrate, the utilization efficiency of the Si substrate is reduced. In view of such various problems, an object of the present invention is to provide a small-sized composite integrated circuit by integrating a small-diameter, large-capacity dielectric thin-film capacitor and a thin-film coil in an integrated circuit. It is in.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の複合集積回路は、一方の主面側の表面層に集
積回路を形成した半導体基板の他方の主面側に、誘電体
薄膜、電極薄膜を重ねたコンデンサと、更にコイル状の
導体と少なくともその一方の側の磁性薄膜とからなる薄
膜コイルとを重ねて有するものとする。例えば一方の主
面側の表面層に集積回路を形成した半導体基板の他方の
主面に、誘電体薄膜、電極薄膜を重ねて形成し、更にコ
イル状の導体と少なくともその一方の側の磁性薄膜とか
らなる薄膜コイルを重ねて形成するものとする。
In order to solve the above-mentioned problems, a composite integrated circuit according to the present invention comprises a semiconductor substrate having an integrated circuit formed on a surface layer on one principal surface and a dielectric material on the other principal surface of the semiconductor substrate. It is assumed that a capacitor having a thin film and an electrode thin film laminated thereon, and a thin film coil composed of a coil-shaped conductor and a magnetic thin film on at least one side thereof are further laminated. For example, a dielectric thin film and an electrode thin film are stacked on the other main surface of a semiconductor substrate having an integrated circuit formed on a surface layer on one main surface side, and a coil-shaped conductor and a magnetic thin film on at least one side thereof are further formed. And a thin film coil composed of

【0012】そのようにすれば、Si基板の利用効率を
高められると同時にコンデンサのESRを低減できる。
半導体基板の他方の主面に、直接誘電体層をエピタキシ
ャル成長させても良いし、バッファー層を介して誘電体
層をエピタキシャル成長させても良い。バッファー層を
介して誘電体層をエピタキシャル成長させれば、一層結
晶性の良質な誘電体層をエピタキシャル成長させること
ができる。
In this case, the utilization efficiency of the Si substrate can be increased, and at the same time, the ESR of the capacitor can be reduced.
A dielectric layer may be epitaxially grown directly on the other main surface of the semiconductor substrate, or a dielectric layer may be epitaxially grown via a buffer layer. If the dielectric layer is epitaxially grown through the buffer layer, a dielectric layer with better crystal quality can be epitaxially grown.

【0013】特にバッファー層が導電性であれば、Si
基板をコンデンサの一方の電極として利用できる。少な
くとも前記半導体基板の他方の主面側の表面層が、半導
体基板の集積回路が形成された部分より低比抵抗である
ものとする。他方の主面側の表面層を低比抵抗とするこ
とにより、Si基板をコンデンサの一方の電極として利
用でき、更にコンデンサのESRを一層下げることがで
きる。
Particularly, if the buffer layer is conductive, Si
The substrate can be used as one electrode of the capacitor. At least a surface layer on the other main surface side of the semiconductor substrate has a lower resistivity than a portion of the semiconductor substrate on which an integrated circuit is formed. By making the surface layer on the other main surface side have a low specific resistance, the Si substrate can be used as one electrode of the capacitor, and the ESR of the capacitor can be further reduced.

【0014】不純物のイオン注入および熱処理により他
方の主面側の表面層を低比抵抗にすることができる。一
方の主面側の表面層に集積回路を形成した第一の半導体
基板の他方の主面と、一方の主面に誘電体薄膜、電極薄
膜を重ねて形成し、更にコイル導体と少なくともその一
方の側の磁性体層とからなる薄膜コイルとを重ねて形成
した第二の半導体基板の他方の主面とを貼り合わせるこ
とによっても、上記のような複合集積回路を構成するこ
ともできる。またこの貼り合わせる方法は、コイルを形
成しないコンデンサだけの基板にも適用できる。
The surface layer on the other main surface side can be made low in resistivity by ion implantation of impurities and heat treatment. The other main surface of the first semiconductor substrate on which the integrated circuit is formed on the surface layer on one main surface side, a dielectric thin film and an electrode thin film are formed on one main surface in a superposed manner, and a coil conductor and at least one of them are further formed. The above-described composite integrated circuit can also be formed by laminating the other main surface of the second semiconductor substrate formed by laminating a thin film coil composed of the magnetic layer on the side of the second semiconductor substrate. Also, this bonding method can be applied to a substrate having only a capacitor without a coil.

【0015】薄膜コイルのコイル導体と強誘電体層間
に、導電性磁性体層を介していてもよいし、薄膜コイル
のコイル導体が、誘電体層に直接接して成膜されていて
もよい。薄膜コイルのコイル導体と誘電体層との間に導
電性高磁化率の磁性層を介しているものでは、それによ
り磁束集中がなされる。一方、コイル導体が、強誘電体
層に直接接して成膜される場合には、金属電極層や絶縁
層が省けるだけでなく、分布定数回路型として、ESR
を下げることができる。
A conductive magnetic layer may be interposed between the coil conductor of the thin-film coil and the ferroelectric layer, or the coil conductor of the thin-film coil may be formed in direct contact with the dielectric layer. In the case where a conductive magnetic layer having a high magnetic susceptibility is interposed between the coil conductor of the thin film coil and the dielectric layer, the magnetic flux is concentrated. On the other hand, when the coil conductor is formed directly in contact with the ferroelectric layer, not only the metal electrode layer and the insulating layer can be omitted, but also a distributed constant circuit type ESR
Can be lowered.

【0016】薄膜コイルのコイル導体間に、絶縁性磁性
体が満たされているものとすれば、磁化率を大きくする
ことができる。薄膜コイルのコイル導体の一端に設けら
れた電極と集積回路の一電極とが、シリコン基板を貫通
して設けられた埋め込み電極によって接続されているも
のとすれば、実装の小型化を図ることができる。
If the insulating magnetic material is filled between the coil conductors of the thin film coil, the magnetic susceptibility can be increased. If the electrode provided at one end of the coil conductor of the thin-film coil and one electrode of the integrated circuit are connected by an embedded electrode provided through the silicon substrate, the size of the mounting can be reduced. it can.

【0017】上記のような複合集積回路の製造方法とし
ては、一方の主面側の表面層の集積回路の接合構造と半
導体基板を貫通する埋め込み電極とを形成した半導体基
板の、他方の主面側に誘電体薄膜、電極薄膜を形成した
後、集積回路の金属配線を形成し、薄膜コイルを形成し
た後、埋め込み電極と集積回路の金属配線、薄膜コイル
の電極とを接続するのがよい。
As a method of manufacturing a composite integrated circuit as described above, a method of manufacturing a composite integrated circuit includes a method of manufacturing a semiconductor substrate in which a junction structure of an integrated circuit on a surface layer on one main surface and an embedded electrode penetrating the semiconductor substrate are formed. After forming the dielectric thin film and the electrode thin film on the side, forming the metal wiring of the integrated circuit, forming the thin film coil, it is preferable to connect the embedded electrode to the metal wiring of the integrated circuit and the electrode of the thin film coil.

【0018】エピタキシャル成長法により比誘電率の大
きい良質な誘電体薄膜を得るには、製膜温度として80
0℃以上の高温が必要である。一方、集積回路の代表的
な金属配線はアルミニウム合金であり、その融点は70
0℃以下である。従って、集積回路の接合構造を形成し
た後に、エピタキシャル成長法により良質な誘電体薄膜
を形成し、その後集積回路の金属配線を形成するのが望
ましい。
In order to obtain a high quality dielectric thin film having a large relative dielectric constant by the epitaxial growth method, a film forming temperature of 80
A high temperature of 0 ° C. or higher is required. On the other hand, a typical metal wiring of an integrated circuit is an aluminum alloy having a melting point of 70%.
0 ° C. or less. Therefore, after forming the junction structure of the integrated circuit, it is desirable to form a high-quality dielectric thin film by the epitaxial growth method, and then to form the metal wiring of the integrated circuit.

【0019】[0019]

【発明の実施の形態】以下実施例に基づき、図面を参照
しながら本発明の実施の形態を説明する。 [実施例1]図1は、本発明に係る実施例1の複合集積
回路の断面図である。Si基板1の一方の側に、MOS
集積回路12が形成されている(図では単一のMOSF
ETで示す)。通常MOS集積回路用のSi基板1とし
ては、低比抵抗のサブストレート上に高比抵抗層を成長
したエピタキシャルウェハが用いられる。Si基板1の
低比抵抗の裏面に、例えば厚さ100nmの窒化ガリウム
(GaN)のバッファー層2を介して強誘電体層3がエ
ピタキシャル成長法で形成されており、その上に金属電
極層4が設けられて薄膜コンデンサ10が構成されてい
る。強誘電体層3は例えば厚さ200nmのBa0.5 Sr
0.5 TiO3 (BST)であり、金属電極層4は例えば
厚さ200nmの白金(Pt)である。更にその上に、絶
縁層5を介して金属磁性体層6、コイル導体7、絶縁性
磁性体層9からなる薄膜コイル11が形成されている。
絶縁層5、金属磁性体層6、コイル導体7、絶縁性磁性
体層9はそれぞれ例えば、厚さ5μm のポリイミド膜、
厚さ200nmのコバルトタンタンルハフニウムパラジウ
ム(CoTaHfPd)、厚さ30μm の銅(Cu)、
厚さ40μm のパーマロイ粉末を含む磁性体ゲルであ
る。8b、8cは、コイル導体7の取り出し電極であ
り、その一方は、Si基板1を貫通する埋め込み配線1
3により、MOS集積回路12の電極の一つと接続され
ている。14は埋め込み電極10を絶縁する絶縁層であ
る。15はエポキシ樹脂のモールド樹脂である。MOS
集積回路12、コンデンサ10、薄膜コイル11を合わ
せた複合集積回路の厚さは、350μm 程度である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples with reference to the drawings. [First Embodiment] FIG. 1 is a sectional view of a composite integrated circuit according to a first embodiment of the present invention. On one side of the Si substrate 1, a MOS
An integrated circuit 12 is formed (in the figure, a single MOSF
ET). As the Si substrate 1 for a MOS integrated circuit, an epitaxial wafer having a high specific resistance layer grown on a low specific resistance substrate is used. A ferroelectric layer 3 is formed on the back surface of the low specific resistance of the Si substrate 1 by a gallium nitride (GaN) buffer layer 2 having a thickness of, for example, 100 nm by an epitaxial growth method, and a metal electrode layer 4 is formed thereon. The thin film capacitor 10 is provided. The ferroelectric layer 3 is made of, for example, Ba 0.5 Sr having a thickness of 200 nm.
0.5 TiO 3 (BST), and the metal electrode layer 4 is, for example, platinum (Pt) having a thickness of 200 nm. Further, a thin-film coil 11 composed of a metal magnetic layer 6, a coil conductor 7, and an insulating magnetic layer 9 is formed thereon with an insulating layer 5 interposed therebetween.
Each of the insulating layer 5, the metal magnetic layer 6, the coil conductor 7, and the insulating magnetic layer 9 is, for example, a polyimide film having a thickness of 5 μm,
200 nm thick cobalt tantalum ruhafnium palladium (CoTaHfPd), 30 μm thick copper (Cu),
This is a magnetic gel containing permalloy powder having a thickness of 40 μm. 8 b and 8 c are extraction electrodes of the coil conductor 7, one of which is an embedded wiring 1 penetrating the Si substrate 1.
3 is connected to one of the electrodes of the MOS integrated circuit 12. Reference numeral 14 denotes an insulating layer for insulating the embedded electrode 10. Reference numeral 15 denotes a mold resin of an epoxy resin. MOS
The thickness of the composite integrated circuit including the integrated circuit 12, the capacitor 10, and the thin film coil 11 is about 350 μm.

【0020】以下に図1の複合集積回路の製造方法を述
べる。Si基板1の表面層に、酸化膜形成、フォトリソ
グラフィによるパターニング、イオン注入による不純物
のドープ、熱処理処理等をおこないMOS集積回路12
の接合構造を形成する。更に、Si基板1に貫通穴を設
け、その内に絶縁層14を介して多結晶Si層の埋め込
み配線13を埋め、またMOS集積回路12の表面に多
結晶Si層を形成して保護する。
Hereinafter, a method of manufacturing the composite integrated circuit of FIG. 1 will be described. A MOS integrated circuit 12 is formed on the surface layer of the Si substrate 1 by forming an oxide film, patterning by photolithography, doping impurities by ion implantation, heat treatment, and the like.
Is formed. Further, a through hole is provided in the Si substrate 1, a buried wiring 13 of a polycrystalline Si layer is buried in the through hole via an insulating layer 14, and a polycrystalline Si layer is formed on the surface of the MOS integrated circuit 12 for protection.

【0021】次に、バッファー弗酸溶液(BHF)洗浄
工程を経て、Si基板1の裏面を水素終端された清浄表
面とし、速やかにSi基板1を成膜装置中に搬入する。
基板温度を800℃以上に加熱し、真空度として10-6
Paより高真空にすると、表面の水素と薄く形成された自
然酸化(SiO2 )膜はSi基板1から解離し、さらに
Si基板1表面の再構築が起こり、2×1等の構造が形
成される。
Next, through a buffer hydrofluoric acid solution (BHF) cleaning step, the back surface of the Si substrate 1 is set as a hydrogen-terminated clean surface, and the Si substrate 1 is immediately carried into the film forming apparatus.
The substrate temperature is heated to 800 ° C. or more, and the degree of vacuum is set to 10 −6.
When the pressure is higher than Pa, the hydrogen on the surface and the thin native oxide (SiO 2 ) film are dissociated from the Si substrate 1 and the surface of the Si substrate 1 is reconstructed to form a 2 × 1 structure. You.

【0022】更に、電子ビーム蒸着等によって表面にS
i原子を供給することによって、さらにSi基板1の最
表面の平坦性を改善することができる。清浄な平坦表面
を得た後に、バッファー層2を形成する。このバッファ
ー層2は、強誘電体層3をSi基板1上にエピタキシャ
ル成長させるために、Si基板1との格子マッチングが
良いこと、酸素バリア層となること、導電性であること
等が必要である。ここではGaNを用い、パルスレーザ
ー照射デポジション(PLD)法で成膜した。バッファ
ー層2には他に酸化セリウム(CeO2 )、窒化チタン
(TiN)、イットリウム飽和ジルコニア(YSZ)等
が用いられ、分子線エピタキー(MBE)法、スパッタ
法等で成膜することができる。
Further, S is deposited on the surface by electron beam evaporation or the like.
By supplying i atoms, the flatness of the outermost surface of the Si substrate 1 can be further improved. After obtaining a clean flat surface, the buffer layer 2 is formed. In order to epitaxially grow the ferroelectric layer 3 on the Si substrate 1, the buffer layer 2 must have good lattice matching with the Si substrate 1, be an oxygen barrier layer, be conductive, and the like. . Here, a film was formed by pulsed laser irradiation deposition (PLD) using GaN. Cerium oxide (CeO 2 ), titanium nitride (TiN), yttrium saturated zirconia (YSZ), or the like is used for the buffer layer 2, and the buffer layer 2 can be formed by a molecular beam epitaxy (MBE) method, a sputtering method, or the like.

【0023】このバッファー層は、Si基板1上に直接
強誘電体層3を形成する場合には必ずしも必要ではな
い。その場合、Si清浄表面の活性を抑えるため、スト
ロンチウム(Sr)、砒素(As)等で終端する処理が
必要となる。強誘電体層3としてBSTをPLD法で成
膜した。MBE法、スパッタ法等で成膜することもでき
る。格子整合によって、強誘電体層3はエピタキシャル
に成長し、BSTの場合、比誘電率が400以上の薄膜
を得ることができる。
This buffer layer is not always necessary when the ferroelectric layer 3 is formed directly on the Si substrate 1. In that case, in order to suppress the activity of the clean Si surface, a process of terminating with strontium (Sr), arsenic (As), or the like is required. BST was formed as the ferroelectric layer 3 by the PLD method. The film can also be formed by an MBE method, a sputtering method, or the like. By the lattice matching, the ferroelectric layer 3 grows epitaxially, and in the case of BST, a thin film having a relative dielectric constant of 400 or more can be obtained.

【0024】強誘電体層3の形成後、金属電極層4を形
成する。強誘電体層3と金属電極層4は密着性の高いこ
とが望まれ、ここではPt膜をスパッタ法にて成膜し
た。この後Si基板1は成膜室から搬送され、Si基板
1の表面側のMOS集積回路12のAl配線等を施す。
また上部電極層の抵抗をさらに下げるために裏面にもA
l蒸着することもある、あるいはCu等のめっきを施し
ても良い。
After the formation of the ferroelectric layer 3, the metal electrode layer 4 is formed. It is desired that the ferroelectric layer 3 and the metal electrode layer 4 have high adhesion. Here, a Pt film is formed by a sputtering method. Thereafter, the Si substrate 1 is transported from the film forming chamber, and Al wiring and the like of the MOS integrated circuit 12 on the front surface side of the Si substrate 1 are applied.
In order to further reduce the resistance of the upper electrode layer, A
1 may be deposited, or may be plated with Cu or the like.

【0025】しかる後、以下に示すように薄膜コイル1
1を金属電極層4上に形成する。まず金属電極層4上に
ポリイミドを塗布し、絶縁層5を形成、パターニングし
た後、Al蒸着、あるいはCu等のめっきによりコイル
電極8aを形成する。次にCoTaHfPdの金属磁性
体層6を、スパッタで成膜し、パターニングする。次い
で感光性ポリイミドを例えば30μmの厚さに塗って、
ここにコイル形状の凹部を形成する。このポリイミド層
を型として、電界メッキ法にてCuをメッキしコイル導
体7を形成する。
Thereafter, as shown below, the thin film coil 1
1 is formed on the metal electrode layer 4. First, a polyimide is applied on the metal electrode layer 4, the insulating layer 5 is formed and patterned, and then the coil electrode 8a is formed by Al evaporation or plating of Cu or the like. Next, a metal magnetic layer 6 of CoTaHfPd is formed by sputtering and patterned. Then apply a photosensitive polyimide to a thickness of, for example, 30 μm,
Here, a coil-shaped recess is formed. Using this polyimide layer as a mold, Cu is plated by electroplating to form a coil conductor 7.

【0026】プラズマエッチング等でポリイミド層を除
去した後に、コイル導体7間及びその上部をパーマロイ
等を含む絶縁性磁性体ゲルで満たし硬化させて、絶縁性
磁性体層9とする。更にエポキシ樹脂のモールド樹脂1
5でモールドした後、電極形成用の窓を開け、コイル電
極8b、8cを設ける。
After the polyimide layer is removed by plasma etching or the like, the space between the coil conductors 7 and the upper portion thereof are filled with an insulating magnetic material gel containing permalloy or the like and cured to form an insulating magnetic material layer 9. In addition, epoxy resin mold resin 1
After molding with 5, a window for forming an electrode is opened, and coil electrodes 8b and 8c are provided.

【0027】最後に埋め込み配線13とコイル中心のコ
イル電極8c、MOS集積回路12の一電極とを結線
し、複合集積回路の製造工程が終了する。この様な構造
とすることによって半導体基板表面の利用効率が3倍に
高められる。集積回路を形成した半導体基板の裏面側に
コンデンサを設けた例は特開昭56−56664号公報
に記載されている。しかしその例では、半導体基板とは
絶縁膜で隔てられており、本発明のように基板を電極と
して利用していない。
Finally, the embedded wiring 13, the coil electrode 8c at the center of the coil, and one electrode of the MOS integrated circuit 12 are connected, and the manufacturing process of the composite integrated circuit is completed. With such a structure, the utilization efficiency of the semiconductor substrate surface can be tripled. An example in which a capacitor is provided on the back side of a semiconductor substrate on which an integrated circuit is formed is described in JP-A-56-56664. However, in this example, the semiconductor substrate is separated from the semiconductor substrate by an insulating film, and the substrate is not used as an electrode as in the present invention.

【0028】実施例1の複合集積回路の性能に関してい
えば、コンデンサ部では強誘電体層3がエピタキシャル
に成長しているために高い誘電率が得られ、一辺5mmの
素子とした場合に1μF以上の容量が得られる。しかも
低抵抗のSi基板1を直接下部電極として用いているた
めに、等価直列抵抗(ESR)は約150m Ωと従来の
約半分の低い値が得られる。薄膜コイル11について
は、磁性体ゲルを用いて絶縁性磁性体層9とすることに
よって、製造工程が簡単となり、さらにインダクタンス
1H以上のものを得ることができる。
In terms of the performance of the composite integrated circuit of the first embodiment, a high dielectric constant is obtained in the capacitor portion because the ferroelectric layer 3 is grown epitaxially, and is 1 μF or more in the case of an element having a side of 5 mm. Is obtained. Moreover, since the low-resistance Si substrate 1 is directly used as the lower electrode, the equivalent series resistance (ESR) is about 150 mΩ, which is about half as low as the conventional value. For the thin-film coil 11, the manufacturing process is simplified by using the magnetic gel to form the insulating magnetic layer 9, and a coil having an inductance of 1H or more can be obtained.

【0029】磁性体ゲルを用いずに、従来の薄膜コイル
と同様にコイル上に強磁性体薄膜を成膜した後に、磁界
中熱処理を行い、磁化率を上げる方法で構造を構成して
も良い。 [実施例2]図2は、実施例2に係る複合集積回路の断
面図である。
Instead of using a magnetic gel, the structure may be formed by forming a ferromagnetic thin film on a coil in the same manner as a conventional thin film coil, and then performing a heat treatment in a magnetic field to increase the magnetic susceptibility. . Second Embodiment FIG. 2 is a sectional view of a composite integrated circuit according to a second embodiment.

【0030】実施例1との相違点は、Si基板1の裏面
に高濃度ドープ層18が形成されている点である。Si
基板1の裏面に不純物のイオン注入および熱処理によ
り、低抵抗率の高濃度ドープ層18を形成し、これを強
誘電体層3の下部電極として用いている。他の部分の製
造法は実施例1と同様である。
The difference from the first embodiment is that a heavily doped layer 18 is formed on the back surface of the Si substrate 1. Si
A high-concentration doped layer 18 having a low resistivity is formed on the rear surface of the substrate 1 by ion implantation of impurities and heat treatment, and is used as a lower electrode of the ferroelectric layer 3. The other parts are manufactured in the same manner as in the first embodiment.

【0031】高濃度ドープ層18を設けることにより、
Si基板1の電位をより確実にアースすることができ、
また、筐体側アースと結線することによって、信号ライ
ンにノイズが乗るのを防ぐことができる。若しくは表面
のMOS集積回路12や、埋め込み電極10と結ぶこと
もできる。 [実施例3]図3は実施例3に係る複合集積回路の断面
図である。
By providing the highly doped layer 18,
The potential of the Si substrate 1 can be more reliably grounded,
Further, by connecting to the housing-side ground, it is possible to prevent noise from getting on the signal line. Alternatively, it can be connected to the MOS integrated circuit 12 on the surface or the embedded electrode 10. Third Embodiment FIG. 3 is a sectional view of a composite integrated circuit according to a third embodiment.

【0032】この例は、MOS集積回路12と、コンデ
ンサ10、薄膜コイル11とがそれぞれ独立に別のSi
基板1、18に形成され、後にそれらがエポキシ樹脂1
5で貼り合わされたものである。その他の各部の製造方
法は実施例1に準ずる。多結晶Si等の埋め込み配線1
3がMOS集積回路12の電極と薄膜コイル11の電極
を結んでいることは先の二例と同じである。両基板は化
学機械的研磨(CMP)法を用いて薄くしても良い。ま
た、コンデンサ側基板には、低抵抗Siを用いている
が、Si基板に限られるものではない。
In this example, the MOS integrated circuit 12, the capacitor 10, and the thin-film coil 11 are each independently formed of a different Si.
Substrates 1, 18 are formed and later they are
It is the one that was bonded at 5. The other parts are manufactured in the same manner as in the first embodiment. Embedded wiring 1 of polycrystalline Si, etc.
3 connects the electrode of the MOS integrated circuit 12 and the electrode of the thin film coil 11 as in the above two examples. Both substrates may be thinned using a chemical mechanical polishing (CMP) method. Further, although low-resistance Si is used for the capacitor-side substrate, it is not limited to the Si substrate.

【0033】MOS集積回路12と、コンデンサ10、
薄膜コイル11とがそれぞれ独立に別のSi基板1、1
9に形成されるので、製膜温度等のプロセス条件を、互
いに気にすること無く、それぞれ最適に選べるという利
点がある。更に、工程を平行して進められるので、製造
に要する期間を短縮できる利点がある。実施例3の性能
は、コンデンサ部では強誘電体層がエピタキシャルに成
長しているために高い誘電率が得られ、一辺5mmの素子
とした場合に1μF以上の誘電率が得られる。しかもM
OSプロセスを気にすることなく、低抵抗の基板を直接
下部電極として用いているために、等価直列抵抗(ES
R)は約120m Ωと一層低い値が得られる。
The MOS integrated circuit 12, the capacitor 10,
The thin-film coil 11 and the other Si substrates 1, 1
9, the process conditions such as the film forming temperature can be optimally selected without concern for each other. Furthermore, since the steps can be performed in parallel, there is an advantage that the period required for manufacturing can be shortened. The performance of the third embodiment is such that a high dielectric constant is obtained in the capacitor portion because the ferroelectric layer is grown epitaxially, and a dielectric constant of 1 μF or more is obtained when the device has a side of 5 mm. And M
Since the low-resistance substrate is used directly as the lower electrode without worrying about the OS process, the equivalent series resistance (ES
R) is as low as about 120 mΩ.

【0034】コイル側については、磁性体ゲルを用いて
いることによって、製造工程が簡単となり、さらにイン
ダクタンス1H以上のものを得ることができる。この性
能は例えば、入力電圧5V 、出力電圧3V 程度のDC−
DCコンバーターの出力フィィルターとして十分なもの
となる。さらにコンデンサ、薄膜コイルMOSを合わせた
複合回路の厚さは、実施例3においてもCMP等を用い
れば、実施例1、2の場合と同等の300μm 程度の厚
さを達成でき、電源回路の大幅な小型化を図ることがで
きる。
On the coil side, the use of a magnetic material gel simplifies the manufacturing process, and allows obtaining a coil having an inductance of 1H or more. This performance is, for example, a DC-voltage of about 5 V for the input voltage and about 3 V for the output voltage.
This is sufficient as an output filter of the DC converter. In addition, the thickness of the composite circuit including the capacitor and the thin-film coil MOS can be as large as that of the first and second embodiments, about 300 μm, by using the CMP in the third embodiment. The miniaturization can be achieved.

【0035】[実施例4]図4は、実施例4に係る複合
集積回路の断面図である。これまでの実施例と異なる点
は、金属電極層4と絶縁層5とを廃し、強誘電体層3上
に直接金属磁性体層6を形成し、その直上にコイル導体
7を形成している点である。
[Fourth Embodiment] FIG. 4 is a sectional view of a composite integrated circuit according to a fourth embodiment. The difference from the previous embodiments is that the metal electrode layer 4 and the insulating layer 5 are eliminated, the metal magnetic layer 6 is formed directly on the ferroelectric layer 3, and the coil conductor 7 is formed directly above the metal magnetic layer 6. Is a point.

【0036】図1〜3のLCフィルター回路の等価回路
は、図5(a)に示すような集中定数型の回路となる。
これに対して本実施例4の等価回路は、図5(b)のよ
うに分布定数型となる。このように分布定数型とするこ
とによって、約100m Ωと実施例1〜3よりも低ES
R化が実現できる。のみならず製造プロセスも簡略化さ
れ、コストも抑えられる利点がある。
The equivalent circuit of the LC filter circuit shown in FIGS. 1 to 3 is a lumped constant type circuit as shown in FIG.
On the other hand, the equivalent circuit of the fourth embodiment is of a distributed constant type as shown in FIG. By employing the distributed constant type in this way, the low ES of about 100 mΩ compared to the first to third embodiments.
R conversion can be realized. In addition, there is an advantage that the manufacturing process is simplified and the cost is reduced.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、集
積回路を形成した半導体基板の他方の側に、コンデンサ
と薄膜コイルとを重ねて形成し、あるいはコンデンサと
薄膜コイルとを重ねて形成した別の基板を張り合わせた
複合集積回路とすることによって、半導体基板の利用効
率を高めるとともにまた従来の薄膜コンデンサの欠点で
あった、等価直列抵抗を低減できる。
As described above, according to the present invention, a capacitor and a thin-film coil are formed on the other side of a semiconductor substrate on which an integrated circuit is formed, or a capacitor and a thin-film coil are formed on the other side. By using a composite integrated circuit in which another substrate is bonded, the utilization efficiency of the semiconductor substrate can be increased and the equivalent series resistance, which is a drawback of the conventional thin film capacitor, can be reduced.

【0038】さらに分布定数回路とすることによって、
より低ESRの回路を構成することが可能となった。ま
た高基板温度で誘電体層を形成した後集積回路の金属配
線を形成することによって集積回路プロセスと融合しつ
つ大容量のコンデンサを実現した。これらにより、例え
ばDC−DCコンバータに必要な機能を1チップで構成
することができ、それを備えた携帯機器等の大幅な小型
化を図ることができる。
Further, by using a distributed constant circuit,
A circuit with a lower ESR can be configured. Further, by forming a dielectric layer at a high substrate temperature and then forming a metal wiring of an integrated circuit, a large-capacity capacitor is realized while being integrated with an integrated circuit process. Thus, for example, the functions required for the DC-DC converter can be constituted by one chip, and the size of a portable device or the like provided with the functions can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例1の複合集積回路の断面図FIG. 1 is a cross-sectional view of a composite integrated circuit according to a first embodiment of the present invention.

【図2】本発明実施例2の複合集積回路の断面図FIG. 2 is a sectional view of a composite integrated circuit according to a second embodiment of the present invention.

【図3】本発明実施例3の複合集積回路の断面図FIG. 3 is a sectional view of a composite integrated circuit according to a third embodiment of the present invention.

【図4】本発明実施例4の複合集積回路の断面図FIG. 4 is a sectional view of a composite integrated circuit according to a fourth embodiment of the present invention.

【図5】(a)は実施例1、2、3の複合集積回路の等
価回路、(b)は実施例4の複合集積回路の等価回路
5A is an equivalent circuit of the composite integrated circuit according to the first, second, and third embodiments; FIG. 5B is an equivalent circuit of the composite integrated circuit according to the fourth embodiment;

【図6】従来の複合集積回路の断面図FIG. 6 is a cross-sectional view of a conventional composite integrated circuit.

【符号の説明】[Explanation of symbols]

1 Si基板 2 バッファー層 3 強誘電体層 4 金属電極層 5 絶縁層 6 金属磁性体層 7 コイル導体 8a、8b、8c コイル電極 9 絶縁性磁性体層 10 コンデンサ 11 薄膜コイル 12 MOS集積回路 13 埋め込み配線 14 絶縁層 15 モールド樹脂 16 保護膜 17 接続配線 18 高濃度ドープ層 19 Si基板 20 接合部 REFERENCE SIGNS LIST 1 Si substrate 2 buffer layer 3 ferroelectric layer 4 metal electrode layer 5 insulating layer 6 metal magnetic layer 7 coil conductor 8 a, 8 b, 8 c coil electrode 9 insulating magnetic layer 10 capacitor 11 thin film coil 12 MOS integrated circuit 13 embedded Wiring 14 Insulating layer 15 Mold resin 16 Protective film 17 Connection wiring 18 Highly doped layer 19 Si substrate 20 Joint

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米澤 栄一 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 鈴木 健 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 5E070 AA05 AB01 AB10 BA12 BB03 CB12 EA01 5E082 AA01 AB03 BB03 BC40 DD11 5F038 AC05 AC07 AC14 AC15 AC18 AZ04 BH10 BH19 EZ14 EZ20 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Eiichi Yonezawa 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Ken Suzuki 1st Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture No. 1 F term in Fuji Electric Co., Ltd. (reference) 5E070 AA05 AB01 AB10 BA12 BB03 CB12 EA01 5E082 AA01 AB03 BB03 BC40 DD11 5F038 AC05 AC07 AC14 AC15 AC18 AZ04 BH10 BH19 EZ14 EZ20

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】一方の主面側の表面層に集積回路を形成し
た半導体基板の他方の主面側に、誘電体薄膜と電極薄膜
を備えたコンデンサと、更にコイル導体と少なくともそ
の一方の側の磁性体層とを備える薄膜コイルとを重ねて
有することを特徴とする複合集積回路。
1. A capacitor provided with a dielectric thin film and an electrode thin film on the other main surface side of a semiconductor substrate having an integrated circuit formed on a surface layer on one main surface side, a coil conductor and at least one side thereof. And a thin film coil having a magnetic layer of the above.
【請求項2】一方の主面側の表面層に集積回路を形成し
た半導体基板の他方の主面に、誘電体薄膜と電極薄膜を
備えたコンデンサを形成し、更にコイル導体と少なくと
もその一方の側の磁性体層とからなる薄膜コイルを重ね
て形成していることを特徴とする請求項1記載の複合集
積回路。
2. A capacitor provided with a dielectric thin film and an electrode thin film is formed on the other main surface of a semiconductor substrate having an integrated circuit formed on a surface layer on one main surface side, and a coil conductor and at least one of the coil conductor are provided. 2. The composite integrated circuit according to claim 1, wherein a thin-film coil composed of the magnetic layer on the side is superposed.
【請求項3】前記半導体基板の他方の主面に、直接誘電
体層をエピタキシャル成長させたことを特徴とする請求
項2記載の複合集積回路。
3. The composite integrated circuit according to claim 2, wherein a dielectric layer is directly epitaxially grown on the other main surface of said semiconductor substrate.
【請求項4】前記半導体基板の他方の主面に、バッファ
ー層を介して誘電体層をエピタキシャル成長させたこと
を特徴とする請求項2記載の複合集積回路。
4. The composite integrated circuit according to claim 2, wherein a dielectric layer is epitaxially grown on the other main surface of said semiconductor substrate via a buffer layer.
【請求項5】バッファー層が導電性であることを特徴と
する請求項4に記載の複合集積回路。
5. The composite integrated circuit according to claim 4, wherein the buffer layer is conductive.
【請求項6】少なくとも前記半導体基板の他方の主面側
の表面層が、集積回路が形成された部分の半導体基板よ
り低比抵抗であることを特徴とする請求項2ないし5の
いずれかに記載の複合集積回路。
6. The semiconductor device according to claim 2, wherein at least a surface layer on the other main surface side of the semiconductor substrate has a lower specific resistance than a semiconductor substrate in a portion where an integrated circuit is formed. A composite integrated circuit as described.
【請求項7】前記半導体基板の他方の主面側の表面層
が、イオン注入および熱処理で形成された不純物分布を
有することを特徴とする請求項6に記載の複合集積回
路。
7. The composite integrated circuit according to claim 6, wherein the surface layer on the other main surface side of the semiconductor substrate has an impurity distribution formed by ion implantation and heat treatment.
【請求項8】一方の主面側の表面層に集積回路を形成し
た第一の半導体基板の他方の主面と、一方の主面に誘電
体薄膜と電極薄膜を備えたコンデンサを形成した第二の
半導体基板の他方の主面とを貼り合わせたことを特徴と
する複合集積回路。
8. A first semiconductor substrate having an integrated circuit formed on a surface layer on one main surface side and a capacitor having a dielectric thin film and an electrode thin film formed on one main surface. A composite integrated circuit, wherein the other main surface of the two semiconductor substrates is bonded together.
【請求項9】第二の半導体基板の一方の主面に、直接誘
電体層をエピタキシャル成長させたことを特徴とする請
求項8記載の複合集積回路。
9. The composite integrated circuit according to claim 8, wherein a dielectric layer is directly epitaxially grown on one main surface of the second semiconductor substrate.
【請求項10】第二の半導体基板の一方の主面に、バッ
ファー層を介して誘電体層をエピタキシャル成長させた
ことを特徴とする請求項8記載の複合集積回路。
10. The composite integrated circuit according to claim 8, wherein a dielectric layer is epitaxially grown on one main surface of the second semiconductor substrate via a buffer layer.
【請求項11】バッファー層が導電性であることを特徴
とする請求項10に記載の複合集積回路。
11. The composite integrated circuit according to claim 10, wherein the buffer layer is conductive.
【請求項12】少なくとも前記第二の半導体基板の一方
の主面側の表面層が、集積回路が形成された部分の半導
体基板より低比抵抗であることを特徴とする請求項8な
いし11のいずれかに記載の複合集積回路。
12. A semiconductor device according to claim 8, wherein at least a surface layer on one main surface side of said second semiconductor substrate has a lower specific resistance than a semiconductor substrate in a portion where an integrated circuit is formed. The composite integrated circuit according to any one of the above.
【請求項13】第二の半導体基板の一方の主面側の表面
層が、イオン注入および熱処理で形成された不純物分布
を有することを特徴とする請求項12に記載の複合集積
回路。
13. The composite integrated circuit according to claim 12, wherein the surface layer on one main surface side of the second semiconductor substrate has an impurity distribution formed by ion implantation and heat treatment.
【請求項14】第二の半導体基板の一方の主面に誘電体
薄膜と電極薄膜を備えたコンデンサを形成し、その上に
コイル導体と少なくともその一方の側の磁性体層とから
なる薄膜コイルとを重ねて形成し、その第二の半導体基
板の他方の主面と、第一の半導体基板の他方の主面とを
貼り合わせたことを特徴とする請求項8ないし13のい
すれかに記載の複合集積回路。
14. A thin film coil comprising: a capacitor provided with a dielectric thin film and an electrode thin film on one main surface of a second semiconductor substrate; and a coil conductor and a magnetic layer on at least one side thereof formed thereon. And the other main surface of the second semiconductor substrate is bonded to the other main surface of the first semiconductor substrate. A composite integrated circuit as described.
【請求項15】薄膜コイルのコイル導体と誘電体層間に
導電性磁性体層を介していることを特徴とする請求項1
ないし8、14のいずれかに記載の複合集積回路。
15. A thin film coil comprising a conductive magnetic layer interposed between a coil conductor and a dielectric layer.
15. The composite integrated circuit according to any one of claims 8 to 14.
【請求項16】薄膜コイルのコイル導体が、誘電体層に
直接接して成膜されていることを特徴とする請求項1な
いし8、14のいずれかに記載の複合集積回路。
16. The composite integrated circuit according to claim 1, wherein the coil conductor of the thin film coil is formed in direct contact with the dielectric layer.
【請求項17】薄膜コイルのコイル導体が、絶縁性磁性
体によって覆われていることを特徴とする請求項15ま
たは16に記載の複合集積回路。
17. The composite integrated circuit according to claim 15, wherein the coil conductor of the thin-film coil is covered with an insulating magnetic material.
【請求項18】薄膜コイルの一端に設けられた電極と集
積回路の一電極とが、シリコン基板を貫通して設けられ
た埋め込み電極によって接続されていることを特徴とす
る請求項17に記載の複合集積回路。
18. An electrode according to claim 17, wherein an electrode provided at one end of the thin film coil and one electrode of the integrated circuit are connected by an embedded electrode provided through the silicon substrate. Composite integrated circuit.
【請求項19】誘電体薄膜が、鉛を含まないペロブスカ
イト型結晶構造の酸化物であることする請求項1ないし
18のいずれかに記載の複合集積回路。
19. The composite integrated circuit according to claim 1, wherein the dielectric thin film is a lead-free oxide having a perovskite crystal structure.
【請求項20】一方の主面側の表面層に集積回路を形成
した半導体基板の他方の主面に、誘電体薄膜、電極薄膜
を重ねて形成し、更にコイル導体と少なくともその一方
の側の磁性体層とからなる薄膜コイルを重ねて形成して
いる複合集積回路の製造方法において、一方の主面側の
表面層の集積回路の接合構造と半導体基板を貫通する埋
め込み電極とを形成した半導体基板の、他方の主面側に
誘電体薄膜、電極薄膜を形成した後、集積回路の金属配
線を形成し、薄膜コイルを形成し、埋め込み電極と集積
回路の金属配線、薄膜コイルの電極とを接続する接続配
線を形成することを特徴とする複合集積回路の製造方
法。
20. A dielectric thin film and an electrode thin film are formed on the other main surface of a semiconductor substrate having an integrated circuit formed on a surface layer on one main surface side, and a coil conductor and at least one side thereof are formed. A method of manufacturing a composite integrated circuit in which thin-film coils each comprising a magnetic layer are superposed, wherein a semiconductor having a junction structure of an integrated circuit on a surface layer on one main surface side and an embedded electrode penetrating a semiconductor substrate is formed. After forming a dielectric thin film and an electrode thin film on the other main surface side of the substrate, a metal wiring of the integrated circuit is formed, a thin film coil is formed, and the embedded electrode, the metal wiring of the integrated circuit, and the electrode of the thin film coil are formed. A method of manufacturing a composite integrated circuit, comprising forming a connection wiring to be connected.
JP2000241632A 2000-08-09 2000-08-09 Composite integrated circuit and its manufacturing method Withdrawn JP2002057037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000241632A JP2002057037A (en) 2000-08-09 2000-08-09 Composite integrated circuit and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000241632A JP2002057037A (en) 2000-08-09 2000-08-09 Composite integrated circuit and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002057037A true JP2002057037A (en) 2002-02-22

Family

ID=18732793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000241632A Withdrawn JP2002057037A (en) 2000-08-09 2000-08-09 Composite integrated circuit and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002057037A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090982A1 (en) * 2003-04-04 2004-10-21 Matsushita Electric Industrial Co., Ltd. Battery-mounted integrated circuit device
JP2005197638A (en) * 2003-12-30 2005-07-21 Hynix Semiconductor Inc High frequency semiconductor device and its manufacturing method
JP2007048347A (en) * 2005-08-08 2007-02-22 Toshiba Corp Information recording apparatus
JP2007288104A (en) * 2006-04-20 2007-11-01 Denso Corp Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit
JP2008010823A (en) * 2006-06-29 2008-01-17 Hynix Semiconductor Inc Semiconductor package, and manufacturing method thereof
JP2008166705A (en) * 2006-12-06 2008-07-17 Denso Corp Semiconductor device and manufacturing method thereof
JP2008251901A (en) * 2007-03-30 2008-10-16 Fuji Electric Device Technology Co Ltd Composite semiconductor device
JP2008270490A (en) * 2007-04-19 2008-11-06 Fuji Electric Device Technology Co Ltd Insulating transformer and power conversion device
JP2012256862A (en) * 2011-04-28 2012-12-27 Internatl Rectifier Corp Integrated electric power stage
JP2018515909A (en) * 2015-03-25 2018-06-14 日本テキサス・インスツルメンツ株式会社 Conductive through-polymer vias for capacitive structures
JP2019004104A (en) * 2017-06-19 2019-01-10 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same
JP2019004014A (en) * 2017-06-14 2019-01-10 株式会社豊田中央研究所 Semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253494B2 (en) 2003-04-04 2007-08-07 Matsushita Electric Industrial Co., Ltd. Battery mounted integrated circuit device having diffusion layers that prevent cations serving to charge and discharge battery from diffusing into the integrated circuit region
WO2004090982A1 (en) * 2003-04-04 2004-10-21 Matsushita Electric Industrial Co., Ltd. Battery-mounted integrated circuit device
CN100358144C (en) * 2003-04-04 2007-12-26 松下电器产业株式会社 Battery-mounted integrated circuit device
JP2005197638A (en) * 2003-12-30 2005-07-21 Hynix Semiconductor Inc High frequency semiconductor device and its manufacturing method
JP4664013B2 (en) * 2003-12-30 2011-04-06 マグナチップセミコンダクター有限会社 Manufacturing method of high-frequency semiconductor device
JP4537909B2 (en) * 2005-08-08 2010-09-08 株式会社東芝 Information recording device
JP2007048347A (en) * 2005-08-08 2007-02-22 Toshiba Corp Information recording apparatus
JP2007288104A (en) * 2006-04-20 2007-11-01 Denso Corp Semiconductor integrated circuit and method for manufacturing semiconductor integrated circuit
JP2008010823A (en) * 2006-06-29 2008-01-17 Hynix Semiconductor Inc Semiconductor package, and manufacturing method thereof
JP2008166705A (en) * 2006-12-06 2008-07-17 Denso Corp Semiconductor device and manufacturing method thereof
JP2008251901A (en) * 2007-03-30 2008-10-16 Fuji Electric Device Technology Co Ltd Composite semiconductor device
US7629668B2 (en) 2007-03-30 2009-12-08 Fuji Electric Technology Co., Ltd. Composite semiconductor device
JP2008270490A (en) * 2007-04-19 2008-11-06 Fuji Electric Device Technology Co Ltd Insulating transformer and power conversion device
US8269594B2 (en) 2007-04-19 2012-09-18 Fuji Electric Co., Ltd. Insulated transformers, and power converting device
JP2012256862A (en) * 2011-04-28 2012-12-27 Internatl Rectifier Corp Integrated electric power stage
EP2518880A3 (en) * 2011-04-28 2018-01-31 International Rectifier Corporation Integrated power stage
JP2018515909A (en) * 2015-03-25 2018-06-14 日本テキサス・インスツルメンツ株式会社 Conductive through-polymer vias for capacitive structures
JP2019004014A (en) * 2017-06-14 2019-01-10 株式会社豊田中央研究所 Semiconductor device
JP2019004104A (en) * 2017-06-19 2019-01-10 大日本印刷株式会社 Through electrode substrate and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6781185B2 (en) Semiconductor high dielectric constant decoupling capacitor structures and process for fabrication
TWI358817B (en) Semiconductor devices and fabrication method there
JP2000106366A (en) Thin film cell integrated element and fabrication thereof
JP2002057037A (en) Composite integrated circuit and its manufacturing method
JPH07307440A (en) Stabilizing power supply apparatus and its manufacture
US20060170024A1 (en) Method of forming a mim capacitor for cu beol application
US20100182730A1 (en) Ferroelectric varactor with improved tuning range
JP4475919B2 (en) Decoupling capacitor and manufacturing method thereof
CN103081339A (en) Vibration power generation element and vibration power generation device provided with same
US7176052B2 (en) Capacitor, circuit board, method of formation of capacitor, and method of production of circuit board
US20130320481A1 (en) High Density Pyroelectric Thin Film Infrared Sensor Array and Method of Manufacture Thereof
JPH08227980A (en) Semiconductor device and fabrication of the same
WO2004036607A1 (en) Thin film capacitor and method for manufacturing same
US7732991B2 (en) Self-poling piezoelectric MEMs device
JP2001210789A (en) Electronic circuit with built-in thin-film capacitor and manufacturing method therefor
JP4738228B2 (en) Semiconductor device and manufacturing method of semiconductor device
US5652173A (en) Monolithic microwave circuit with thick conductors
US6674632B2 (en) Mobile telephone device with passive integrated module
US6855972B2 (en) Composite integrated circuit and its fabrication method
TW201334000A (en) Thin-film capacitor device
US20100067167A1 (en) Parallel-plate structure fabrication method and parallel-plate structure arrangement
JPH0722578A (en) Laminated integrated semiconductor device and its manufacture
JPH05299584A (en) Thin film capacitor element and semiconductor memory device
JP2891242B2 (en) Method for manufacturing semiconductor device
JPH11220103A (en) Semiconductor storage device and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081224