JP2002053928A - High tensile strength steel for superlarge heat input welding - Google Patents
High tensile strength steel for superlarge heat input weldingInfo
- Publication number
- JP2002053928A JP2002053928A JP2000233338A JP2000233338A JP2002053928A JP 2002053928 A JP2002053928 A JP 2002053928A JP 2000233338 A JP2000233338 A JP 2000233338A JP 2000233338 A JP2000233338 A JP 2000233338A JP 2002053928 A JP2002053928 A JP 2002053928A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- heat input
- haz
- copper sulfide
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は高層建築等のボック
ス柱の組み立てで適用されるエレクトロスラグ溶接、あ
るいは、造船・橋梁等で適用されるエレクトロガス溶接
などの超大入熱溶接における熱影響部(以下、HAZと
称する)靭性に優れた超大入熱溶接用高張力鋼に関する
もので、特に、入熱が200kJ/cm以上で、例えば
750〜1500kJ/cm程度でも優れたHAZ靭性
を有するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-affected zone in ultra-high heat input welding such as electroslag welding applied in assembling box columns of high-rise buildings or electrogas welding applied in ships and bridges. The present invention relates to a high-strength steel for ultra-high heat input welding having excellent toughness, particularly having excellent HAZ toughness even when the heat input is 200 kJ / cm or more, for example, about 750 to 1500 kJ / cm. .
【0002】[0002]
【従来の技術】最近の建築構造物の高層化に伴い、鋼製
柱が大型化し、これに使用される鋼材の板厚も増してき
た。このような大型の鋼製柱を溶接で組み立てる際に、
高能率で溶接することが必要であり、極厚鋼板を1パス
で溶接できるエレクトロスラグ溶接が広く適用されるよ
うになってきている。また、造船・橋梁分野においても
板厚が25mm程度以上の鋼板を1パスで溶接するエレ
クトロガス溶接が広く適用されるようになってきた。典
型的な入熱の範囲は200〜1500kJ/cmであ
り、このような超大入熱溶接ではサブマージアーク溶接
などの大入熱溶接(入熱は200kJ/cm未満)とは
異なり、溶接融合線(FL)付近やHAZが受ける熱履
歴において1350℃以上の高温滞留時間が極めて長く
なり(超大入熱溶接では大入熱溶接の数倍〜数十倍長時
間滞留する)、オーステナイト粒の粗大化が極めて顕著
であり、HAZの靭性を確保することが困難であった。
最近の大地震を契機として建築構造物の信頼性確保が急
務の課題であり、このような超大入熱溶接HAZ部の靭
性向上を達成することは極めて重要な課題である。2. Description of the Related Art With the recent increase in the height of building structures, steel columns have become larger and the thickness of steel materials used for the columns has also increased. When assembling such large steel columns by welding,
It is necessary to perform welding with high efficiency, and electroslag welding, which can weld extremely thick steel plates in one pass, has been widely applied. Also, in the field of shipbuilding and bridges, electrogas welding in which a steel plate having a thickness of about 25 mm or more is welded in one pass has been widely applied. A typical heat input range is 200 to 1500 kJ / cm, and such a super large heat input welding differs from a large heat input welding such as a submerged arc welding (heat input is less than 200 kJ / cm) and a welding fusion wire (the heat input is less than 200 kJ / cm). In the thermal history near FL or HAZ, the high-temperature residence time of 1350 ° C. or more becomes extremely long (remains several to several tens of times longer in large heat input welding than in large heat input welding), and austenite grains become coarse. It was extremely remarkable, and it was difficult to secure the toughness of HAZ.
It is an urgent task to secure the reliability of building structures in the wake of the recent large earthquake, and it is extremely important to achieve such improvement in the toughness of the HAZ portion having a very large heat input weld.
【0003】従来から大入熱溶接HAZ部の靭性向上に
関しては以下に示すように多くの知見・技術があるが、
上記の通り、超大入熱溶接と大入熱溶接とではHAZが
受ける熱履歴、特に、1350℃以上における滞留時間
が大きく異なるために、大入熱溶接HAZ靭性向上技術
を単純に本発明の対象分野に適用することはできない。[0003] Conventionally, there are many knowledge and techniques for improving the toughness of a high heat input welding HAZ as shown below.
As described above, since the heat history applied to the HAZ between the very large heat input welding and the large heat input welding, especially the residence time at 1350 ° C. or more, is greatly different, the technique for improving the large heat input welding HAZ toughness is simply applied to the present invention. It cannot be applied to the field.
【0004】従来の大入熱溶接HAZ靭性向上は大きく
分類すると主に二つの基本技術に基づいたものであっ
た。その一つは鋼中粒子によるピン止め効果を利用した
オーステナイト粒粗大化防止技術であり、他の一つはオ
ーステナイト粒内フェライト変態利用による有効結晶粒
微細化技術である。[0004] The conventional high heat input welding HAZ toughness improvement is largely based on two basic technologies. One is a technique for preventing austenite grain coarsening using the pinning effect of particles in steel, and the other is an effective grain refinement technique using ferrite transformation in austenite grains.
【0005】「鉄と鋼」、第61年(1975)第11
号には、各種の鋼中窒化物・炭化物についてオーステナ
イト粒成長抑制効果を検討し、Tiを添加した鋼ではT
iNの微細粒子が鋼中に生成し、大入熱溶接HAZにお
けるオーステナイト粒成長を効果的に抑制する技術が開
示されている。"Iron and Steel", 61th year (1975), eleventh
No. 3 examines the effect of suppressing austenite grain growth on various types of nitrides and carbides in steel.
There is disclosed a technique in which fine particles of iN are generated in steel to effectively suppress austenite grain growth in a large heat input welding HAZ.
【0006】特開昭60−184663号公報には、A
lを0.04〜0.10%、Tiを0.002〜0.0
2%、さらに、希土類元素(REM)を0.003〜
0.05%含有する鋼において、入熱が150kJ/c
mの大入熱溶接HAZ靭性を向上させる技術が開示され
ている。これは、REMが硫・酸化物を形成して大入熱
溶接時にHAZ部の粗粒化を防止する作用を有するため
である。[0006] Japanese Patent Application Laid-Open No. 60-184663 discloses A
1 to 0.04 to 0.10%, Ti to 0.002 to 0.0
2%, rare earth element (REM) 0.003 to
Heat input of 150 kJ / c in steel containing 0.05%
A technique for improving the high heat input welding HAZ toughness of m is disclosed. This is because the REM has an action of forming sulfur / oxide and preventing the HAZ portion from coarsening during large heat input welding.
【0007】特開昭60−245768号公報には、粒
子径が0.1〜3.0μm、粒子数が5×103 〜1×
107 個/mm3 のTi酸化物、あるいはTi酸化物と
Ti窒化物との複合体のいずれかを含有する鋼では、入
熱が100kJ/cmの大入熱溶接HAZ内でこれら粒
子がフェライト変態核として作用することによりHAZ
組織が微細化してHAZ靭性を向上できる技術が開示さ
れている。Japanese Patent Application Laid-Open No. 60-245768 discloses that the particle size is 0.1 to 3.0 μm and the number of particles is 5 × 10 3 to 1 ×.
In steels containing either 10 7 / mm 3 Ti oxide or a composite of Ti oxide and Ti nitride, these particles become ferrite in a large heat input welding HAZ with a heat input of 100 kJ / cm. HAZ by acting as a transformation nucleus
A technique capable of improving the HAZ toughness by refining the structure is disclosed.
【0008】特開平2−254118号公報には、Ti
とSを適量含有する鋼において大入熱溶接HAZ組織中
にTiNとMnSの複合析出物を核として粒内フェライ
トが生成し、HAZ組織を微細化することによりHAZ
靭性の向上が図れる技術が開示されている。[0008] JP-A-2-254118 discloses that Ti
In a steel containing a proper amount of S and S, intragranular ferrite is formed in the large heat input welding HAZ structure by using a composite precipitate of TiN and MnS as a nucleus, and the HAZ structure is refined.
A technique capable of improving toughness is disclosed.
【0009】特開昭61−253344号公報には、A
lを0.005〜0.08%、Bを0.0003〜0.
0050%含み、さらに、Ti、Ca、REMのうち少
なくとも1種以上を0.03%以下含む鋼は大入熱溶接
HAZで未溶解のREM・Caの酸化・硫化物あるいは
TiNを起点として冷却過程でBNを形成し、これから
フェライトが生成することにより大入熱HAZ靭性が向
上する技術が開示されている。Japanese Patent Application Laid-Open No. 61-253344 discloses A
1 is 0.005 to 0.08%, and B is 0.0003 to 0.
Steel containing at least 0050% and at least 0.03% of at least one of Ti, Ca and REM is subjected to a cooling process starting from unmelted REM / Ca oxide / sulfide or TiN in the large heat input welding HAZ. A technique is disclosed in which a high heat input HAZ toughness is improved by forming BN and forming ferrite from the BN.
【0010】特開平9−157787号公報には、Mg
含有酸化物を1平方mmあたり40,000〜100,
000個含み、且つ、粒子径が0.20〜5.0μmの
Ti含有酸化物とMnSからなる複合体を1平方mmあ
たり20〜400個含む鋼では、オーステナイト粒成長
抑制と粒内フェライト変態促進により超大入熱溶接HA
Z靭性を向上できる技術が開示されている。Japanese Patent Application Laid-Open No. 9-157787 discloses that Mg
The content of oxides is 40,000 to 100,
Steel containing 20 to 400 per square mm of a composite comprising Ti-containing oxide and MnS having a particle diameter of 0.20 to 5.0 μm and suppressing austenite grain growth and promoting intragranular ferrite transformation is included. High heat input welding HA
A technique capable of improving the Z toughness is disclosed.
【0011】特開平11−286743号公報には、粒
子径が0.005〜0.5μmのMgO、MgS、Mg
(O、S)の2種以上を含む鋼では、これらの微細粒子
によるオーステナイト粒成長抑制により超大入熱溶接H
AZ靭性を向上できる技術が開示されている。JP-A-11-286743 discloses that MgO, MgS, Mg having a particle size of 0.005 to 0.5 μm is used.
In steels containing two or more types of (O, S), ultra-high heat input welding H
A technique capable of improving AZ toughness is disclosed.
【0012】[0012]
【発明が解決しようとする課題】「鉄と鋼」、第61年
(1975)第11号に開示されている技術は、TiN
をはじめとする窒化物を利用してオーステナイト粒成長
抑制を図るものであり、大入熱溶接では効果が発揮され
るが、本発明が対象とする超大入熱溶接では1350℃
以上の滞留時間が極めて長いために、ほとんどのTiN
は固溶し、粒成長抑制の効果を失う。従って、この技術
を本発明が目的とする超大入熱溶接HAZの靭性には適
用できない。The technology disclosed in "Iron and Steel", No. 11 of the 61st year (1975) is based on TiN.
In order to suppress the growth of austenite grains by utilizing nitrides, the effect is exhibited in large heat input welding, but 1350 ° C. in super large heat input welding targeted by the present invention.
Due to the extremely long residence time, most TiN
Dissolves and loses the effect of suppressing grain growth. Therefore, this technique cannot be applied to the toughness of the ultra-high heat input welding HAZ which is the object of the present invention.
【0013】特開昭60−184663号公報に開示さ
れた技術は、REMの硫化・ 酸化物を利用して大入熱溶
接時にHAZ部の粗粒化を防止するものである。硫化・
酸化物は窒化物に比べて1350℃以上の高温における
安定性は高いので、粒成長抑制効果は維持される。しか
しながら、硫・酸化物を微細に分散させることは困難で
ある。硫・酸化物の個数密度が低いために、個々の粒子
のピン止め効果は維持されるとしても超大入熱溶接HA
Zのオーステナイト粒径を小さくすることには限度があ
り、これだけで靭性向上をはかることはできない。[0013] The technique disclosed in Japanese Patent Application Laid-Open No. 60-184663 is to prevent coarsening of the HAZ during large heat input welding by using sulfides and oxides of REM. Sulfurization
Oxides have higher stability at high temperatures of 1350 ° C. or higher than nitrides, so that the effect of suppressing grain growth is maintained. However, it is difficult to finely disperse sulfur oxides. Due to the low number density of sulfur and oxides, even though the pinning effect of individual particles is maintained, high heat input welding HA
There is a limit to reducing the austenite grain size of Z, and this alone cannot improve toughness.
【0014】特開昭60−245768号公報に記載さ
れた技術は、Ti酸化物、あるいはTi酸化物とTi窒
化物との複合体のいずれかの粒子がフェライト変態核と
して作用することによりHAZ組織を微細化させてHA
Z靭性を向上させるものであり、Ti酸化物の高温安定
性を考慮すると超大入熱溶接においてもその効果は維持
される。しかしながら、粒内変態核から生成するフェラ
イトの結晶方位は全くランダムというわけではなく、母
相オーステナイトの結晶方位の影響を受ける。従って、
超大入熱溶接でオーステナイト粒が粗大化する場合には
粒内変態だけでHAZ組織を微細化することには限度が
ある。The technique described in Japanese Patent Application Laid-Open No. 60-245768 discloses a HAZ structure in which particles of either Ti oxide or a composite of Ti oxide and Ti nitride act as ferrite transformation nuclei. HA
It improves Z toughness, and its effect is maintained even in ultra-high heat input welding in consideration of the high temperature stability of Ti oxide. However, the crystal orientation of ferrite generated from the intragranular transformation nucleus is not completely random, and is affected by the crystal orientation of the parent phase austenite. Therefore,
When austenite grains are coarsened by ultra-high heat input welding, there is a limit to reducing the HAZ structure only by intragranular transformation.
【0015】特開平2−254118号公報に開示され
た技術は、TiN−MnS複合析出物からフェライトを
変態させるものであり、大入熱溶接のように1350℃
以上の滞留時間が比較的短い場合には効果を発揮する
が、エレクトロスラグあるいはエレクトロガス溶接のよ
うな超大入熱溶接においては1350℃以上の滞留時間
が長く、この間に多くのTiNは固溶してしまうために
フェライト変態核が消失し、その効果が十分には発揮で
きない。The technique disclosed in Japanese Patent Application Laid-Open No. 2-254118 is for transforming ferrite from a TiN—MnS composite precipitate, and is similar to large heat input welding at 1350 ° C.
The effect is exhibited when the above residence time is relatively short. However, in ultra-high heat input welding such as electroslag or electrogas welding, the residence time of 1350 ° C. or more is long, and during this time, a large amount of TiN forms a solid solution. As a result, the ferrite transformation nuclei disappear and the effect cannot be sufficiently exhibited.
【0016】特開昭61−253344号公報に開示さ
れた技術は、REM・Caの酸化・硫化物あるいはTi
N上にBNを形成し、これからフェライトを生成させる
ことによりHAZ組織を微細化するものであり、超大入
熱溶接においても同様な効果は期待できる。しかしなが
ら、REM・Caの酸化・硫化物の個数を増加させるこ
とは困難であり、しかもTiNは固溶してフェライト変
態だけでは超大入熱溶接HAZの靭性向上には限度があ
る。The technique disclosed in Japanese Patent Application Laid-Open No. 61-253344 discloses an oxidation / sulfide of REM / Ca or Ti
BN is formed on N and ferrite is formed from the BN to refine the HAZ structure. Similar effects can be expected in ultra-high heat input welding. However, it is difficult to increase the number of oxides and sulfides of REM / Ca, and TiN forms a solid solution, and there is a limit in improving the toughness of ultra-high heat input welding HAZ only by ferrite transformation.
【0017】特開平9−157787号公報に開示され
た技術は、本発明者らによるものであり、0.01〜
0.20μmの微細なMg含有酸化物によるオーステナ
イト粒成長抑制と0.20〜5.0μmのTi含有酸化
物とMnSからなる複合体による粒内フェライト変態促
進により超大入熱溶接HAZ靭性を向上できる。しかし
ながら、Ti含有酸化物の生成にはAl量を0.005
%以下に抑制する必要があり、従来のAl添加鋼の利点
を損なう。すなわち、従来のAl量が0.010〜0.
5%程度のAl脱酸鋼においては、鋼中のAlによる酸
化発熱を利用することで溶鋼温度を容易に制御すること
ができ、安価かつ安定な鋼の量産を可能にしてきた。A
l添加量を0.005%程度以下に制限すると、溶鋼加
熱装置による加熱等の、Alの酸化発熱による溶鋼温度
制御を代替する手段が必要となる。溶鋼中のAlは大気
中の酸素による溶鋼汚染防止の役割も有し、また、Al
は窒化物を形成することで材質確保に有効であることも
広く知られており、Al量の0.005%以下への低減
はこれらのAl添加の利点を損なうことが課題として残
る。The technique disclosed in Japanese Patent Application Laid-Open No. 9-157787 is based on the present inventors, and is disclosed in Japanese Patent Application Laid-Open (JP-A) No. 9-157787.
Ultra-high heat input welding HAZ toughness can be improved by suppressing austenite grain growth by a 0.20 μm fine Mg-containing oxide and promoting intragranular ferrite transformation by a composite of 0.20-5.0 μm Ti-containing oxide and MnS. . However, in order to form a Ti-containing oxide, the amount of Al is set to 0.005.
%, Which impairs the advantages of conventional Al-added steel. That is, when the conventional Al amount is 0.010-0.
In the case of Al deoxidized steel of about 5%, the temperature of molten steel can be easily controlled by utilizing the heat generated by oxidation due to Al in the steel, thereby enabling mass production of inexpensive and stable steel. A
If the amount of l is limited to about 0.005% or less, a means for controlling the temperature of molten steel by heat generated by oxidation of Al, such as heating by a molten steel heating device, is required. Al in molten steel also has a role of preventing molten steel contamination by oxygen in the atmosphere.
It is also widely known that the formation of nitrides is effective in securing the material, and reduction of the Al content to 0.005% or less impairs the advantages of the addition of Al.
【0018】特開平11−286743号公報に開示さ
れた技術も本発明者らによるものであり、0.005〜
0.5μmのMgO、MgS、Mg(O、S)の2種以
上を含む鋼では、これらの微細粒子によるオーステナイ
ト粒成長抑制により超大入熱溶接HAZ靭性を向上でき
る。しかしながら、微細なMgOの生成にはAl量を
0.01%以下に抑制する必要があり、やはり、上述し
たAl添加の利点を損なうことが課題として残る。The technique disclosed in Japanese Patent Application Laid-Open No. H11-286743 is also based on the present inventors, and is disclosed in US Pat.
In steel containing two or more of 0.5 μm of MgO, MgS, and Mg (O, S), the super large heat input welding HAZ toughness can be improved by suppressing austenite grain growth by these fine particles. However, in order to generate fine MgO, it is necessary to suppress the amount of Al to 0.01% or less, and the problem remains that the advantage of the above-described addition of Al is lost.
【0019】本発明は高層建築物のボックス柱の組み立
てで適用されるエレクトロスラグ溶接、造船・橋梁等で
適用されるエレクトロガス溶接などの入熱が200kJ
/cm以上の超大入熱溶接におけるHAZ靭性に優れた
超大入熱溶接用高張力鋼をAl添加鋼を前提に提供する
ことにある。The present invention has a heat input of 200 kJ such as electroslag welding applied in assembling box columns of a high-rise building and electrogas welding applied in shipbuilding and bridges.
Another object of the present invention is to provide a high-strength steel for ultra-high heat input welding excellent in HAZ toughness in ultra-high heat input welding of not less than Al / cm on the premise of Al-added steel.
【0020】[0020]
【課題を解決するための手段】本発明者らは、超大入熱
溶接HAZの靭性向上にはHAZ組織の微細化が必須で
あり、これはHAZのオーステナイト粒成長を著しく抑
制することにより可能であること、さらに、Al添加鋼
を前提として、Mgを特定量以上含有する鋼においては
微細な硫化銅粒子が1350℃以上の高温で極めて安定
であり、かつ微細分散が可能であることを新規に知見し
た。この新規知見によりHAZのオーステナイト粒成長
を著しく抑制し得ること、その結果、超大入熱HAZ靭
性を大きく向上できることを知見して本発明を成した。Means for Solving the Problems The inventors of the present invention have found that miniaturization of the HAZ structure is indispensable for improving the toughness of the ultra-high heat input welding HAZ, and this can be achieved by remarkably suppressing the austenite grain growth of the HAZ. In addition, on the premise of Al-added steel, it has been newly demonstrated that fine copper sulfide particles are extremely stable at a high temperature of 1350 ° C. or higher and can be finely dispersed in steel containing a specific amount of Mg or more. I learned. The present invention has been made based on the finding that the austenite grain growth of the HAZ can be remarkably suppressed by this new finding, and as a result, the ultra-high heat input HAZ toughness can be greatly improved.
【0021】本発明の要旨は次の通りである。 (1)重量%で、 0.04≦C≦0.25、 0.02≦Si≦0.5、 0.02≦Mn≦2.0、 P≦0.02、 0.002≦S≦0.02、 0.03≦Cu≦2.0、 0.015≦Al≦0.5、 0.001≦Mg≦0.005、 を含有し、粒子径が0.005〜0.5μmの硫化銅粒
子を1平方mmあたり1.0×105 〜1.0×107
個含み、残部Feおよび不可避的不純物よりなる鋼であ
ることを特徴とする超大入熱溶接用高張力鋼、(2)更
に母材強度上昇元素群を、重量%で、 0.05≦Ni≦4.0、 0.02≦Cr≦1.0、 0.02≦Mo≦1.0、 0.005≦Nb≦0.05、 0.005≦V≦0.1、 0.005≦Ti≦0.025、 0.0004≦B≦0.004、 の1種または2種以上を含有することを特徴とする
(1)記載の超大入熱溶接用高張力鋼にある。The gist of the present invention is as follows. (1) By weight%, 0.04 ≦ C ≦ 0.25, 0.02 ≦ Si ≦ 0.5, 0.02 ≦ Mn ≦ 2.0, P ≦ 0.02, 0.002 ≦ S ≦ 0 .02, 0.03 ≦ Cu ≦ 2.0, 0.015 ≦ Al ≦ 0.5, 0.001 ≦ Mg ≦ 0.005, and having a particle diameter of 0.005 to 0.5 μm The particle size is 1.0 × 10 5 to 1.0 × 10 7 per square mm.
A high-strength steel for ultra-high heat input welding, characterized in that the steel consists of Fe and the balance of Fe and unavoidable impurities. 4.0, 0.02 ≦ Cr ≦ 1.0, 0.02 ≦ Mo ≦ 1.0, 0.005 ≦ Nb ≦ 0.05, 0.005 ≦ V ≦ 0.1, 0.005 ≦ Ti ≦ The high tensile strength steel for ultra-high heat input welding according to (1), characterized by containing one or more of 0.025 and 0.0004 ≦ B ≦ 0.004.
【0022】また、本発明で言うところの「溶接用高張
力鋼」とは、例えば、JIS G3106「溶接構造用
圧延鋼材」、JIS G3136「建築構造用圧延鋼
材」、JIS G3115「圧力容器用鋼板」、JIS
G3118「中・常温圧力容器用炭素鋼鋼板」、JI
S G3124「中・常温圧力容器用高強度鋼板」、J
IS G3126「低温圧力容器用炭素鋼鋼板」、及
び、JIS G3128「溶接構造用高降伏点鋼板」に
相当するものである。The "high-strength steel for welding" referred to in the present invention includes, for example, JIS G3106 "rolled steel material for welded structure", JIS G3136 "rolled steel material for building structure", and JIS G3115 "steel plate for pressure vessel". ”, JIS
G3118 “Carbon steel plate for medium / normal temperature pressure vessel”, JI
SG3124 "High-strength steel plate for medium / normal temperature pressure vessel", J
It corresponds to IS G3126 “Carbon steel plate for low temperature pressure vessel” and JIS G3128 “High yield point steel plate for welded structure”.
【0023】[0023]
【発明の実施の形態】このような超大入熱溶接用高張力
鋼を、大量の製造実績があり優れた量産プロセスである
Al脱酸を前提に製造する。本発明者らは、超大入熱溶
接HAZの組織と靭性の関係に関する詳細な調査・研究
を実施した結果、従来の大入熱溶接HAZの組織制御ま
たは靭性向上法をそのまま適用しても、超大入熱溶接H
AZ靭性は限られたものであり、靭性向上にはHAZの
オーステナイト粒を著しく微細化する必要があるとの結
論に達した。DESCRIPTION OF THE PREFERRED EMBODIMENTS Such a high-tensile steel for ultra-high heat input welding is manufactured on the premise of Al deoxidation, which is an excellent mass production process with a large production track record. The present inventors have conducted detailed investigations and studies on the relationship between the structure and toughness of the ultra-high heat input welding HAZ. Heat input welding H
AZ toughness was limited, and it was concluded that austenitic grains of HAZ had to be remarkably refined to improve toughness.
【0024】まず、オーステナイト粒の微細化には鋼中
粒子によるピン止め効果を利用することが有効である
が、窒化物の中で最も熱的に安定であるとされるTiN
でも1350℃以上に長時間加熱されるとほとんどが溶
解し、ピン止め効果を失うために、超大入熱溶接への適
用には限度がある。従って、高温で安定である粒子の利
用が必須となる。しかしながら、従来技術のREMある
いはCa酸化物(酸化・硫化物も含む)では、超大入熱
溶接HAZのオーステナイト粒粗大化抑制に十分な程度
にこれら酸化物を鋼中に微細分散させることは極めて困
難である。First, it is effective to use the pinning effect of the particles in the steel to refine the austenite grains, but TiN is considered to be the most thermally stable among nitrides.
However, if it is heated to 1350 ° C. or more for a long time, most of it melts and loses the pinning effect, so that there is a limit to its application to ultra-high heat input welding. Therefore, the use of particles that are stable at high temperatures is essential. However, with conventional REM or Ca oxides (including oxides and sulfides), it is extremely difficult to finely disperse these oxides in steel to an extent sufficient to suppress austenite grain coarsening in ultra-high heat input welding HAZs. It is.
【0025】本発明者らは、これまでに各種の粒子につ
いて比較検討した結果、微細なMg含有酸化物が有効で
あることをすでに知見している。しかしながら、これら
の微細酸化物を鋼中に多量に生成させるには、鋼中のA
l量を例えば0.005%程度以下に抑制する必要があ
り、先に述べたようにAl添加の利点を損なう。The inventors of the present invention have already found that fine Mg-containing oxides are effective as a result of comparative studies on various particles. However, in order to generate a large amount of these fine oxides in steel, A
It is necessary to suppress the l content to, for example, about 0.005% or less, which impairs the advantage of Al addition as described above.
【0026】本発明者らはAl脱酸鋼を前提に各種の粒
子について比較検討した結果、Mgを含有する鋼におい
ては硫化銅粒子が高温で安定で、しかも微細分散に適し
た粒子であることを新規に知見した。HAZのオーステ
ナイト粒成長抑制に効果を発揮する粒子は主に0.1μ
m以下のものであるが、Cu、S、Mg、Al添加量な
どを制御することにより、微細な硫化銅粒子を鋼中に多
量に微細分散させることが可能である。The present inventors have conducted comparative studies on various particles based on the assumption that Al deoxidized steel is used. As a result, in steel containing Mg, copper sulfide particles are stable at high temperatures and suitable for fine dispersion. Was newly found. Particles that exhibit an effect of suppressing austenite grain growth of HAZ are mainly 0.1 μm.
m or less, but by controlling the amounts of Cu, S, Mg, and Al added, fine copper sulfide particles can be finely dispersed in a large amount in steel.
【0027】従来よりAl脱酸鋼において0.03〜2
%程度のCuおよび0.002〜0.02%程度のSが
添加されているものは多くあるが、HAZのオーステナ
イト粒成長抑制はみられなかった。これらの鋼中ではS
の多くは硫化銅を形成するよりもむしろMnSを形成す
ることが広く知られている。このMnSは高温で不安定
であり溶解してしまうため、オーステナイト粒微細化粒
子にはなり得なかった。しかしながら、Mgを特定量以
上含有する鋼においては硫化物生成挙動が従来鋼とは全
く異なり、硫化銅の生成が著しく促進される結果、Sは
MnSを形成するよりもむしろ硫化銅を形成し、さらに
この硫化銅粒子は高温で安定、かつ微細に分散するため
著しいHAZのオーステナイト粒成長抑制効果を有する
ことがわかった。Mgを含有する鋼において硫化銅粒子
の生成が著しく促進される理由は現在の所不明である
が、鋼中に固溶したMgが硫化銅の溶解度積を著しく低
下させる効果を持つと考えられる。Conventionally, 0.03 to 2 in Al deoxidized steel
% Of Cu and 0.002 to 0.02% of S are added in many cases, but no suppression of austenite grain growth of HAZ was observed. S in these steels
Is widely known to form MnS rather than copper sulfide. This MnS was unstable at a high temperature and was dissolved, and thus could not become austenite fine particles. However, in steel containing a specific amount of Mg or more, sulfide formation behavior is completely different from conventional steel, and the formation of copper sulfide is remarkably promoted.As a result, S forms copper sulfide rather than MnS, Further, it was found that the copper sulfide particles are stable at a high temperature and are finely dispersed, so that they have a remarkable effect of suppressing austenite grain growth of HAZ. The reason why the formation of copper sulfide particles is remarkably promoted in steel containing Mg is unknown at present, but it is considered that Mg dissolved in steel has an effect of remarkably reducing the solubility product of copper sulfide.
【0028】上述したように鋼中のMgにより硫化銅粒
子の生成が著しく促進されるが、単に鋼中にMgを添加
しただけでは高温で安定な硫化銅粒子はあまり生成しな
い。その理由につき詳しく検討した結果、Mgが強脱酸
元素であるため酸化物となってしまうことにあることが
わかった。Mgは蒸気圧が高く、多量に添加しても溶鋼
中に歩留りにくい元素である。このため、0.0005
〜0.005%程度の微量のMgが酸化物として消費さ
れてしまうのを防ぎ、硫化銅の生成促進に有効な固溶M
gとして存在させることが極めて重要となる。図1にC
u、Mg、S添加量が本発明範囲内の鋼における、0.
005〜0.5μmの大きさの硫化銅粒子の個数に及ぼ
すAl添加量の影響を示す。Al添加量が0.015%
未満では硫化銅粒子の個数は少ない。この時のMgは主
にMgAl2 O4 あるいはMgOとして酸化物として存
在するため固溶Mg量は少ない。一方、Al添加量が
0.015%以上では、硫化銅粒子の個数が顕著に増加
する。酸化物はAl2 O3 主体であることからMgの多
くは固溶Mgとして存在する。すなわち、0.015%
以上のAl添加により微細な硫化銅粒子を多数生成させ
ることができる。As described above, the formation of copper sulfide particles is remarkably promoted by Mg in the steel, but copper sulfide particles that are stable at high temperatures are not often formed only by adding Mg to the steel. As a result of a detailed study of the reason, it was found that Mg is an oxide because it is a strongly deoxidized element. Mg is an element that has a high vapor pressure and is difficult to yield in molten steel even when added in a large amount. Therefore, 0.0005
-0.005% of a small amount of Mg is prevented from being consumed as an oxide, and a solid solution M effective for promoting the formation of copper sulfide.
It is extremely important that the compound be present as g. FIG. 1 shows C
In steels in which the addition amounts of u, Mg, and S are within the range of the present invention, the contents of 0.1, 0.2, and 0.1 are preferable.
The effect of the amount of Al added on the number of copper sulfide particles having a size of 005 to 0.5 μm is shown. Al content is 0.015%
If it is less than 1, the number of copper sulfide particles is small. At this time, Mg is present as an oxide mainly as MgAl 2 O 4 or MgO, so that the amount of dissolved Mg is small. On the other hand, when the amount of Al added is 0.015% or more, the number of copper sulfide particles increases remarkably. Since the oxide is mainly composed of Al 2 O 3 , most of Mg exists as solid solution Mg. That is, 0.015%
Many fine copper sulfide particles can be generated by the addition of Al.
【0029】本発明では、硫化銅粒子の粒子径を0.0
05〜0.5μmに限定した。0.005μm未満では
オーステナイト粒成長抑制効果が小さくなる。また、
0.5μm超ではこれらの粒子や粒子と地鉄との界面が
破壊起点となる確率が高くなり靭性を低下させる。0.
005〜0.5μmのサイズの硫化銅粒子の個数が1平
方mmあたり1.0×105 個以上の場合にオーステナ
イト粒成長抑制効果が顕著となり、1.0×107 個を
超えると鋼の延性を低下させるので、硫化銅粒子の個数
を1平方mmあたり1.0×105 〜1.0×107 個
に制限した。In the present invention, the particle size of the copper sulfide particles is set to 0.0
It was limited to 05 to 0.5 μm. If the thickness is less than 0.005 μm, the effect of suppressing austenite grain growth becomes small. Also,
If it exceeds 0.5 μm, the probability that these particles or the interface between the particles and the ground iron will be the starting point of fracture increases, and the toughness decreases. 0.
Austenite grain growth suppressing effect becomes remarkable when the number of copper sulfides particle size 005~0.5μm of 1.0 × 10 5 or more per square mm, 1.0 × 10 7 cells more than the steel To reduce ductility, the number of copper sulfide particles was limited to 1.0 × 10 5 to 1.0 × 10 7 per square mm.
【0030】粒子個数の測定方法は、鋼板から抽出レプ
リカを作成し、特性X線検出器(EDX)付きの透過型
電子顕微鏡(TEM)で、0.005〜0.5μmの大
きさの粒子個数を、少なくとも1000μm2 以上の面
積につき測定し、単位面積当たりの個数に換算する。例
えば、2万倍の倍率にて1視野を100mm×80mm
として観察した場合、1視野あたりの観察面積は20μ
m2 であるから少なくとも50視野につき観察を行う。
この時の0.005〜0.5μmの粒子の個数が50視
野(1000μm2 )で200個であれば、粒子個数は
1平方mmあたり2×105 個と換算できる。The number of particles is measured by preparing an extraction replica from a steel plate and measuring the number of particles having a size of 0.005 to 0.5 μm with a transmission electron microscope (TEM) equipped with a characteristic X-ray detector (EDX). Is measured for an area of at least 1000 μm 2 and converted to the number per unit area. For example, one field of view is 100 mm x 80 mm at a magnification of 20,000 times.
Observed area per visual field is 20μ
Observe at least 50 fields of view because of m 2 .
If the number of particles of 0.005 to 0.5 μm at this time is 200 in 50 visual fields (1000 μm 2 ), the number of particles can be converted to 2 × 10 5 per square mm.
【0031】次に、個数を測定した粒子のうち、硫化銅
粒子がどれだけ存在したかを測定するが、粒子個数は最
低でも100個以上、多い場合には10000個以上と
なるため全粒子を逐一同定することは大変な作業とな
る。このため、少なくとも50個以上の粒子について下
記の条件にて硫化銅粒子を同定しその存在割合を求め、
先に求めた粒子個数に硫化銅粒子の存在割合をかけるこ
とで硫化銅粒子の個数を求める。例えば、上述した粒子
個数、1平方mmあたり2×105 個に対し、硫化銅粒
子の存在割合が90%であった場合には硫化銅粒子の個
数は1平方mmあたり1.8×105 個であるとする。Next, it is measured how many copper sulfide particles are present among the particles whose number has been measured. When the number of particles is at least 100 or more, and when the number is large, it is 10,000 or more. Identifying one by one is a daunting task. For this reason, at least 50 particles or more of the copper sulfide particles are identified under the following conditions and the abundance ratio is determined,
The number of copper sulfide particles is obtained by multiplying the number of particles obtained above by the existing ratio of copper sulfide particles. For example, when the existing ratio of copper sulfide particles is 90% with respect to the number of particles described above and 2 × 10 5 per square mm, the number of copper sulfide particles is 1.8 × 10 5 per square mm. It is assumed that there are
【0032】次に硫化銅粒子の同定方法について述べ
る。本発明で言う硫化銅粒子とはEDXの定性分析にて
CuとSのピークが明瞭に検出される粒子のことであ
り、主にはCu2 SおよびCu2-X S(0<x<0.
2)、Cu1.8 S、CuS等である。粒子からCu以外
の元素として、例えばMn、Mg、Ca等が各1%以下
の微量にて検出されても、明らかにCuを主体とする硫
化物であれば本発明のオーステナイト粒微細化効果を発
揮するものと考えられる。また、粒子中から微量のOが
検出される場合があるが、SとOの割合が重量%にて9
5%≦Sであり、含まれているOが5%未満と微量であ
れば本発明で言う硫化銅であるとみなす。尚、SとOの
割合が重量%にて95%≦Sであり、含まれているOが
5%未満であっても、粒子が明らかに硫化銅と酸化物
(例えばMgO等)の複合体であると同定できる場合に
は、本発明で言う硫化銅とはみなさない。Next, a method for identifying copper sulfide particles will be described. The copper sulfide particles referred to in the present invention are particles in which the peaks of Cu and S are clearly detected by qualitative analysis of EDX, and are mainly composed of Cu 2 S and Cu 2-X S (0 <x <0). .
2), Cu 1.8 S, CuS and the like. Even if Mn, Mg, Ca, etc., as elements other than Cu, for example, are detected from the particles in trace amounts of 1% or less, the sulfides mainly composed of Cu can clearly show the austenite grain refinement effect of the present invention. It is considered to be effective. Also, a small amount of O may be detected from the particles, but the ratio of S and O is 9% by weight.
If 5% ≦ S and the amount of O contained is as small as less than 5%, it is regarded as copper sulfide according to the present invention. In addition, even if the ratio of S and O is 95% ≦ S in weight% and the contained O is less than 5%, the particles are clearly a complex of copper sulfide and an oxide (for example, MgO or the like). If it can be identified as, it is not regarded as copper sulfide in the present invention.
【0033】このEDX定性、定量分析時に使用する電
子ビーム径は0.001〜0.02μm、TEM観察倍
率は5万〜100万倍とし、微細な硫化銅粒子内の任意
の位置を定量する。抽出レプリカの試料作成時にはCu
を含有しないメッシュホルダーを使用するか、Cuを含
有するメッシュホルダーを使用する場合にはCuメッシ
ュから十分離れた位置の粒子につきCuのL線を用いて
定量する。The electron beam diameter used during the EDX qualitative and quantitative analysis is 0.001 to 0.02 μm, the TEM observation magnification is 50,000 to 1,000,000, and an arbitrary position in the fine copper sulfide particles is quantified. When preparing a sample of the extraction replica, Cu
When a mesh holder containing no Cu is used, or when a mesh holder containing Cu is used, particles at positions sufficiently separated from the Cu mesh are quantified using the Cu L line.
【0034】鋼板から抽出レプリカを作成した場合に、
0.005〜0.5μmのサイズの硫化銅以外の析出
物、例えばセメンタイトや合金炭窒化物などが多数生成
して硫化銅粒子の個数を測定しにくい場合には、140
0℃にて60秒程度保持して硫化銅以外の粒子を固溶さ
せ、その後急冷してセメンタイトや合金炭窒化物が少な
いサンプルを作成し、これから抽出レプリカを作成する
と良い。When an extraction replica is created from a steel sheet,
When a large number of precipitates other than copper sulfide having a size of 0.005 to 0.5 μm, such as cementite and alloy carbonitride, are formed and it is difficult to measure the number of copper sulfide particles, 140
It is preferred to hold the solution at 0 ° C. for about 60 seconds to dissolve particles other than copper sulfide, and then rapidly cool to prepare a sample containing less cementite and alloy carbonitride, and to prepare an extraction replica from this.
【0035】上記のようなサイズおよび個数の粒子を鋼
中に分散させるためには、Cu、Mg、SおよびAlの
含有量を下記のとおり限定することが望ましい。Cuは
硫化銅を構成する元素であるため本発明に必須の元素で
ある。Cuは0.03%以上添加することで微細な硫化
銅粒子の多量分散が可能となるので0.03%を下限と
した。Cuが2.0%を超えると硫化銅粒子が粗大化し
やすくなりHAZ靭性向上効果が小さくなるため2.0
%を上限とした。In order to disperse particles having the above-mentioned size and number in steel, it is desirable to limit the contents of Cu, Mg, S and Al as follows. Cu is an essential element in the present invention because it is an element constituting copper sulfide. By adding 0.03% or more of Cu, a large amount of fine copper sulfide particles can be dispersed. Therefore, the lower limit is set to 0.03%. If Cu exceeds 2.0%, the copper sulfide particles tend to be coarsened and the effect of improving the HAZ toughness is reduced.
% As the upper limit.
【0036】Sは硫化銅を生成させるために必須の元素
である。0.002%未満では硫化銅粒子の数が不十分
となるので下限を0.002%とした。より多量の微細
な硫化銅粒子を生成させるためには0.003%以上の
添加がより好ましい。0.02%超含有すると、粗大な
硫化銅粒子が生成して超大入熱溶接HAZのγ粒細粒化
効果が得られないため上限値を0.02%とした。S is an essential element for producing copper sulfide. If it is less than 0.002%, the number of copper sulfide particles becomes insufficient, so the lower limit was made 0.002%. In order to generate a larger amount of fine copper sulfide particles, addition of 0.003% or more is more preferable. If the content exceeds 0.02%, coarse copper sulfide particles are generated and the effect of refining the γ grains of the super-large heat input welding HAZ cannot be obtained, so the upper limit value is set to 0.02%.
【0037】Mgは硫化銅粒子の生成促進に必須の元素
である。0.001%未満では硫化銅粒子の生成促進効
果が小さい。より多量の微細な硫化銅粒子を生成させる
ためには0.002%以上の添加がより好ましい。0.
005%超の添加はMgが酸化物を生成するため硫化銅
粒子の生成促進効果が飽和しHAZ靭性向上効果も飽和
する上、経済性を損なうのでその上限値を0.005%
とした。Mg is an element essential for promoting the formation of copper sulfide particles. If it is less than 0.001%, the effect of promoting the formation of copper sulfide particles is small. In order to generate a large amount of fine copper sulfide particles, addition of 0.002% or more is more preferable. 0.
Addition of more than 005% saturates the effect of accelerating the formation of copper sulfide particles because Mg forms an oxide, saturates the effect of improving the HAZ toughness, and impairs economic efficiency. Therefore, the upper limit is 0.005%.
And
【0038】AlはMgが酸化物を生成することを抑制
し、硫化銅粒子の生成を促進するのに必要な固溶Mg量
を確保するために本発明において必須の元素であり、
0.015%以上の添加が必要である。より多量の微細
な硫化銅を生成させるためには、0.02%以上のAl
添加がより好ましい。0.5%を超えて含有すると、固
溶AlによるHAZ脆化が起るため硫化銅粒子によって
HAZのオーステナイト粒を微細化しても大きな靭性向
上効果が得られない。従って、上限を0.5%とした。Al is an essential element in the present invention to suppress the formation of oxides by Mg and to secure the amount of solid solution Mg necessary to promote the formation of copper sulfide particles.
It is necessary to add 0.015% or more. In order to generate a larger amount of fine copper sulfide, 0.02% or more of Al
Addition is more preferred. If the content exceeds 0.5%, HAZ embrittlement due to solid solution Al occurs, so that even if the austenitic grains of the HAZ are refined by the copper sulfide particles, a large toughness improving effect cannot be obtained. Therefore, the upper limit is set to 0.5%.
【0039】HAZ靭性はオーステナイト粒微細化と粒
内組織微細化だけではなく、合金元素により大きく変化
する。また、母材の強度確保のためにも適正な合金元素
を含有させる場合があるので、以下の理由により合金元
素の添加量を限定した。The HAZ toughness varies greatly depending on the alloying element as well as the refinement of austenite grains and the grain structure. Further, since an appropriate alloy element may be contained in order to secure the strength of the base material, the amount of the alloy element added is limited for the following reasons.
【0040】Cは母材の強度を上昇できる元素である。
0.04%未満では母材強度の確保が得られないので
0.04%を下限とした。逆に、Cを多く含有すると、
脆性破壊の起点となるセメンタイトや島状マルテンサイ
トを増加させるため、硫化銅粒子によってHAZのオー
ステナイト粒を微細化しても大きな靭性向上効果が得ら
れない。0.25%を超えると靭性低下が顕著となるの
でこれを上限値とした。C is an element capable of increasing the strength of the base material.
If it is less than 0.04%, the base material strength cannot be secured, so 0.04% was made the lower limit. Conversely, if a large amount of C is contained,
In order to increase the amount of cementite or island martensite which is a starting point of brittle fracture, even if the austenitic grains of HAZ are refined by copper sulfide particles, a large effect of improving toughness cannot be obtained. If it exceeds 0.25%, the toughness is significantly reduced.
【0041】Siは母材強度上昇に有効な元素である。
0.02%未満ではこの効果が得られないので下限値を
0.02%とした。逆に、0.5%超含有すると、HA
Z組織中に島状マルテンサイトが多量に生成し、さら
に、フェライト地を硬化させるので、硫化銅粒子によっ
てHAZのオーステナイト粒を微細化しても大きな靭性
向上効果が得られない。従って、上限を0.5%とし
た。Si is an element effective for increasing the strength of the base material.
If less than 0.02%, this effect cannot be obtained, so the lower limit is set to 0.02%. Conversely, if the content exceeds 0.5%, HA
Since a large amount of island martensite is generated in the Z structure and the ferrite ground is hardened, even if the austenite grains of the HAZ are refined by the copper sulfide particles, a large effect of improving toughness cannot be obtained. Therefore, the upper limit is set to 0.5%.
【0042】Pは粒界脆化をもたらし、靭性に有害な元
素であり、低いほうが望ましい。0.02%超含有する
と硫化銅粒子によってHAZのオーステナイト粒を微細
化しても靭性低下が顕著となるので0.02%を上限と
する。P is an element that causes grain boundary embrittlement and is harmful to toughness. If the content exceeds 0.02%, even if the austenitic grains of the HAZ are refined by the copper sulfide particles, the reduction in toughness becomes remarkable, so the upper limit is made 0.02%.
【0043】さらに、母材強度上昇に効果のある選択元
素の限定範囲を以下の理由で決定した。Niは焼入れ性
を上昇させることにより母材強度上昇に効果を有し、さ
らに、靭性を向上させる。0.05%未満ではこれらの
効果が得られないので下限値を0.05%とした。Ni
は高価な元素であり、4.0%超含有すると経済性を損
なうため上限値を4.0%とした。Further, the limited range of the selected element effective in increasing the base metal strength was determined for the following reasons. Ni has the effect of increasing the base metal strength by increasing the hardenability, and further improves the toughness. If the content is less than 0.05%, these effects cannot be obtained, so the lower limit is set to 0.05%. Ni
Is an expensive element, and if the content exceeds 4.0%, economical efficiency is impaired, so the upper limit was set to 4.0%.
【0044】Crは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1.0%超含有するとHAZに硬
化組織を生成し、硫化銅粒子によってHAZのオーステ
ナイト粒を微細化しても大きなHAZ靭性向上効果が得
られない。従って、上限値を1.0%とした。Cr is effective in increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1.0%, a hardened structure is formed in the HAZ, and even if the austenitic grains of the HAZ are refined by the copper sulfide particles, a large HAZ toughness improving effect cannot be obtained. Therefore, the upper limit was set to 1.0%.
【0045】Moは母材強度上昇に効果を有する。0.
02%未満ではこの効果が得られないので下限値を0.
02%とした。逆に、1.0%超含有するとHAZに硬
化組織を生成し、硫化銅粒子によってHAZのオーステ
ナイト粒を微細化しても大きなHAZ靭性向上効果が得
られない。従って、上限値を1.0%とした。Mo is effective in increasing the strength of the base material. 0.
If it is less than 02%, this effect cannot be obtained, so the lower limit is set to 0.
02%. Conversely, if the content exceeds 1.0%, a hardened structure is formed in the HAZ, and even if the austenitic grains of the HAZ are refined by the copper sulfide particles, a large HAZ toughness improving effect cannot be obtained. Therefore, the upper limit was set to 1.0%.
【0046】Nbは母材の強度上昇および細粒化に有効
な元素である。0.005%未満ではこれらの効果が得
られないので下限値を0.005%とした。逆に、0.
05%超含有するとHAZにおけるNb炭窒化物の析出
が顕著となり、硫化銅粒子によってHAZのオーステナ
イト粒を微細化しても大きなHAZ靭性向上効果が得ら
れない。従って、上限値を0.05%とした。Nb is an element effective for increasing the strength and refining the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.
If the content exceeds 0.05%, precipitation of Nb carbonitride in the HAZ becomes remarkable, and even if the austenite grains of the HAZ are refined by the copper sulfide particles, a large effect of improving the HAZ toughness cannot be obtained. Therefore, the upper limit is set to 0.05%.
【0047】Vは母材の強度上昇および細粒化に有効な
元素である。0.005%未満ではこれらの効果が得ら
れないので下限値を0.005%とした。逆に、0.1
%超含有するとHAZにおける炭窒化物の析出が顕著と
なり、硫化銅粒子によってHAZのオーステナイト粒を
微細化しても大きなHAZ靭性向上効果が得られない。
従って、上限値を0.1%とした。V is an element effective for increasing the strength and refining the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.1
%, The precipitation of carbonitride in the HAZ becomes remarkable, and even if the austenitic grains of the HAZ are refined by the copper sulfide particles, a large HAZ toughness improving effect cannot be obtained.
Therefore, the upper limit is set to 0.1%.
【0048】Tiは母材の強度上昇および細粒化に有効
な元素である。0.005%未満ではこれらの効果が得
られないので下限値を0.005%とした。逆に、0.
025%超含有すると粗大なTiNを生成しこれが破壊
の発生起点となるため、硫化銅粒子によってHAZのオ
ーステナイト粒を微細化しても大きなHAZ靭性向上効
果が得られない。従って、上限値を0.025%とし
た。Ti is an element effective for increasing the strength and reducing the grain size of the base material. If the content is less than 0.005%, these effects cannot be obtained, so the lower limit is set to 0.005%. Conversely, 0.
If the content exceeds 025%, coarse TiN is generated and this becomes a starting point of fracture. Therefore, even if the austenite grains of HAZ are refined by copper sulfide particles, a large HAZ toughness improving effect cannot be obtained. Therefore, the upper limit is set to 0.025%.
【0049】Bは制御冷却および焼入れ熱処理を施す場
合に特に顕著な強度上昇の効果を発揮する。0.000
4%未満の含有量では強度上昇効果が得られないので下
限値を0.0004%とした。逆に、0.004%超含
有すると粗大なB窒化物や炭硼化物を析出してこれが破
壊の起点となるために、硫化銅粒子によってHAZのオ
ーステナイト粒を微細化しても大きなHAZ靭性向上効
果が得られない。従って、上限値を0.004%とし
た。B exerts a particularly remarkable increase in strength when subjected to controlled cooling and quenching heat treatment. 0.000
If the content is less than 4%, the effect of increasing the strength cannot be obtained, so the lower limit was made 0.0004%. Conversely, if the content exceeds 0.004%, coarse B nitrides and carbohydrates precipitate and serve as starting points of destruction. Therefore, even when the austenite grains of HAZ are refined by copper sulfide particles, a large HAZ toughness improving effect is obtained. Can not be obtained. Therefore, the upper limit is set to 0.004%.
【0050】本発明では微細な硫化銅粒子を生成させる
ことが必要であり、このためにはCu以外の硫化物形成
元素は極力下げることが望ましい。代表的な元素はCa
およびREMであり、これらは0.0005%以下とす
ることが望ましい。In the present invention, it is necessary to generate fine copper sulfide particles. For this purpose, it is desirable to reduce the sulfide-forming elements other than Cu as much as possible. A typical element is Ca
And REM, which are desirably 0.0005% or less.
【0051】本発明では鋼中酸素量については特に制限
しない。0.015〜0.5%のAl添加鋼では鋼中酸
素量は0.0003〜0.0040%程度となるが、こ
の範囲内の酸素量であれば本発明の細粒化効果を損なう
ことはない。本発明では鋼中窒素量については特に制限
しない。通常の0.0010〜0.010%程度の窒素
量であれば本発明の細粒化効果を損なうことはない。本
発明によるHAZ靭性向上効果は超大入熱溶接ばかりで
なく、大入熱溶接(例えば、100〜200未満kJ/
cm程度)でも有効である。In the present invention, the oxygen content in steel is not particularly limited. In the case of the Al-added steel of 0.015 to 0.5%, the oxygen content in the steel is about 0.0003 to 0.0040%. However, if the oxygen content is within this range, the grain refining effect of the present invention is impaired. There is no. In the present invention, the amount of nitrogen in steel is not particularly limited. If the amount of nitrogen is about 0.0010 to 0.010% of the normal amount, the effect of the present invention on grain refinement is not impaired. The effect of improving the HAZ toughness according to the present invention is not only super large heat input welding but also large heat input welding (for example, 100 to less than 200 kJ /
cm) is also effective.
【0052】なお、本発明では鋼中に通常不可避的に含
有される不純物元素は許容できる。Ni、Cr、Mo、
Nb、V、B、N、Ti等が不純物として混入しても本
発明の性質を損なうことはない。例えば、Niは0.0
5%未満、Cr、およびMoは0.02%未満、Nb、
V、Tiは0.005%未満、Bは0.0004%未満
まで不純物として含有されていても特に悪影響を及ぼさ
ない。鋼の溶製方法は、例えば溶鋼温度を1650℃以
下として、溶鋼O濃度を0.01%以下、溶鋼S濃度を
0.02%以下とした状態で、適量のCu、Mgおよび
Alを添加することにより溶鋼中に微細な硫化銅粒子を
生成できる。この溶鋼を連続鋳造により鋳造することに
より鋼中に硫化銅の微細粒子を含有させることができ
る。鋼の製造方法は、硫化銅粒子が所定量存在すれば良
いので、鋳造後の加熱、圧延、熱処理条件は母鋼材の機
械的性質に応じて適宜選定すればよい。In the present invention, impurity elements usually unavoidably contained in steel are acceptable. Ni, Cr, Mo,
Even if Nb, V, B, N, Ti and the like are mixed as impurities, the properties of the present invention are not impaired. For example, Ni is 0.0
Less than 5%, Cr and Mo less than 0.02%, Nb,
Even if V and Ti are contained as impurities by less than 0.005% and B is contained by less than 0.0004%, there is no particular adverse effect. For example, in the method of smelting steel, appropriate amounts of Cu, Mg, and Al are added in a state in which the temperature of molten steel is 1650 ° C. or less, the concentration of molten steel O is 0.01% or less, and the concentration of molten steel S is 0.02% or less. As a result, fine copper sulfide particles can be generated in the molten steel. By casting this molten steel by continuous casting, fine particles of copper sulfide can be contained in the steel. Since the steel production method only needs to have a predetermined amount of copper sulfide particles, heating, rolling, and heat treatment conditions after casting may be appropriately selected according to the mechanical properties of the base steel material.
【0053】[0053]
【実施例】以下に本発明の実施例を示す。転炉により鋼
を溶製し、連続鋳造により厚さが240〜400mmの
スラブを製造した。表1に鋼材の化学成分を示す。HA
Z靭性は鋼材の炭素等量にも大きく依存するので、本発
明の効果を確認するために、ほぼ同一の化学成分でC
u、Mg、S、Al量のみを変えた鋼を溶製して比較し
た。Examples of the present invention will be described below. Steel was melted by a converter, and a slab having a thickness of 240 to 400 mm was manufactured by continuous casting. Table 1 shows the chemical components of the steel materials. HA
Since the Z toughness greatly depends on the carbon equivalent of steel, in order to confirm the effect of the present invention, C
Steels in which only the amounts of u, Mg, S, and Al were changed were melted and compared.
【0054】表2に鋼板の製造方法と板厚、母材の機械
的性質を示す。同表に示すとおり、制御圧延・制御冷却
法、焼入れ・焼戻し法、直接焼入れ・焼戻し法、および
直接焼入れ・二相域熱処理・焼戻し法により鋼板を製造
した。板厚は40〜100mmとした。図2に示すエレ
クトロガス溶接及び図3に示すエレクトロスラグ溶接に
より溶接試験体を作成した。板厚を35mmにそろえ
て、入熱が310kJ/cmのエレクトロガス溶接を実
施した。ここで、溶接の電流を610A、電圧を35
V、速度を4.1cm/分とした。同図に示すように、
溶接融合線(FL)および溶接融合線から3mm(HA
Z3)の位置がノッチ位置に一致するようにシャルピー
衝撃試験片を採取した。また、エレクトロスラグ溶接の
電流は380A、電圧は46V、速度は1.14cm/
分とした。入熱は920kJ/cmである。エレクトロ
スラグ溶接と同じノッチ位置となるようにシャルピー衝
撃試験片を採取した。衝撃試験は−5℃で行い、3本繰
り返しの平均値で靭性を評価した。結果を表3に示す。
また、エレクトロスラグ溶接部FL直近のHAZのミク
ロ組織観察を実施しγ粒径を測定し、さらに、0.00
5〜0.5μmの粒子径の硫化銅粒子の粒子個数を上記
の方法に従って測定した結果を表3に併せて示す。Table 2 shows the steel sheet manufacturing method, the sheet thickness, and the mechanical properties of the base material. As shown in the table, steel sheets were produced by a controlled rolling / controlled cooling method, a quenching / tempering method, a direct quenching / tempering method, and a direct quenching / two-phase region heat treatment / tempering method. The plate thickness was 40 to 100 mm. Weld specimens were prepared by electrogas welding shown in FIG. 2 and electroslag welding shown in FIG. The plate thickness was adjusted to 35 mm, and electrogas welding with a heat input of 310 kJ / cm was performed. Here, the welding current was 610 A and the voltage was 35.
V, the speed was 4.1 cm / min. As shown in the figure,
3mm from welding fusion line (FL) and welding fusion line (HA
A Charpy impact test piece was collected so that the position of Z3) coincided with the notch position. The current of the electroslag welding was 380 A, the voltage was 46 V, and the speed was 1.14 cm /.
Minutes. The heat input is 920 kJ / cm. A Charpy impact test specimen was collected so as to be at the same notch position as in electroslag welding. The impact test was performed at −5 ° C., and the toughness was evaluated by the average value of three repetitions. Table 3 shows the results.
In addition, the microstructure of the HAZ near the electroslag weld FL was observed to measure the γ particle size, and further, 0.00
Table 3 also shows the results of the measurement of the number of copper sulfide particles having a particle diameter of 5 to 0.5 μm according to the method described above.
【0055】表3から明らかなとおり、本発明鋼は硫化
銅粒子の個数が多く、エレクトロスラグ溶接HAZのγ
粒径が小さい。その結果、超大入熱溶接HAZの靭性が
高い。同様に、エレクトロガス溶接でも本発明鋼のHA
Z靭性向上が明らかである。これに対して、比較鋼9、
10、18、20、22、24ではCu、S、Al添加
量は適正であるもののMg添加量が本発明範囲より低い
ため硫化銅粒子の個数が少なくγ粒成長抑制効果は小さ
くHAZ靭性向上効果は小さい。比較鋼5ではCu、M
g、Al添加量は適正であるもののS添加量が本発明範
囲より低いため硫化銅粒子の個数が少なくγ粒成長抑制
効果は小さくHAZ靭性向上効果は小さい。比較鋼6で
はS添加量が本発明範囲より高いため微細な硫化銅粒子
の個数が少なくγ粒成長抑制効果は小さくHAZ靭性向
上効果は小さい。比較鋼7、8、26、28ではCu、
Mg、S添加量は適正であるもののAl添加量が本発明
範囲より低いため硫化銅粒子の個数が少なくγ粒成長抑
制効果は小さくHAZ靭性向上効果は小さい。As is clear from Table 3, the steel of the present invention has a large number of copper sulfide particles, and the γ of electroslag welding HAZ is large.
Small particle size. As a result, the toughness of the ultra-high heat input welding HAZ is high. Similarly, the HA of the steel of the present invention is also used in electrogas welding.
The improvement in Z toughness is apparent. In contrast, comparative steel 9,
In 10, 18, 20, 22, and 24, the addition amounts of Cu, S, and Al are appropriate, but the addition amount of Mg is lower than the range of the present invention, so that the number of copper sulfide particles is small, the effect of suppressing the growth of γ grains is small, and the effect of improving the HAZ toughness is reduced. Is small. In comparative steel 5, Cu, M
Although the addition amounts of g and Al are appropriate, the addition amount of S is lower than the range of the present invention, so that the number of copper sulfide particles is small, the effect of suppressing the growth of γ grains and the effect of improving the HAZ toughness are small. In Comparative Steel 6, since the amount of S added is higher than the range of the present invention, the number of fine copper sulfide particles is small, the effect of suppressing the growth of γ grains is small, and the effect of improving the HAZ toughness is small. In comparative steels 7, 8, 26 and 28, Cu,
Although the addition amounts of Mg and S are appropriate, the addition amount of Al is lower than the range of the present invention, so that the number of copper sulfide particles is small, the effect of suppressing the growth of γ grains is small, and the effect of improving the HAZ toughness is small.
【0056】[0056]
【表1】 [Table 1]
【0057】[0057]
【表2】 [Table 2]
【0058】[0058]
【表3】 [Table 3]
【0059】[0059]
【発明の効果】以上説明したとおり、本発明鋼ではAl
脱酸鋼において鋼中に硫化銅粒子を微細分散させること
により入熱が200kJ/cm以上の超大入熱溶接のF
L及びHAZのγ粒成長抑制作用によりHAZの有効結
晶粒が微細化され、HAZ靭性を顕著に向上させること
ができる。本発明を超大入熱溶接が適用される構造物に
適用することにより、極めて信頼性の高い溶接構造物を
製造することが可能である。従って、本発明は工業上極
めて効果が大きい。As described above, in the steel of the present invention, Al
In the case of deoxidized steel, the heat input is 200 kJ / cm or more by dispersing copper sulfide particles finely in the steel.
The effective crystal grains of HAZ are refined by the action of L and HAZ to suppress the growth of γ grains, and the HAZ toughness can be remarkably improved. By applying the present invention to a structure to which ultra-high heat input welding is applied, it is possible to manufacture a highly reliable welded structure. Therefore, the present invention is extremely effective industrially.
【図1】 0.005〜0.5μmの大きさの硫化銅粒
子の個数に及ぼすAl添加量の影響を示す図である。FIG. 1 is a graph showing the effect of the amount of Al added on the number of copper sulfide particles having a size of 0.005 to 0.5 μm.
【図2】 エレクトロガス溶接の条件を示す図である。FIG. 2 is a diagram showing conditions of electrogas welding.
【図3】 エレクトロスラグ溶接の条件を示す図であ
る。FIG. 3 is a diagram showing conditions of electroslag welding.
1 シャルピー試験片 2 シャルピー試験片のノッチ位置 : FL 3 シャルピー試験片のノッチ位置 : HAZ3mm 1 Charpy test piece 2 Notch position of Charpy test piece: FL 3 Notch position of Charpy test piece: HAZ 3 mm
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成12年8月3日(2000.8.3)[Submission date] August 3, 2000 (2008.3.3)
【手続補正1】[Procedure amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0052[Correction target item name] 0052
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【0052】なお、本発明では鋼中に通常不可避的に含
有される不純物元素は許容できる。Ni、Cr、Mo、
Nb、V、B、N、Ti等が不純物として混入しても本
発明の性質を損なうことはない。例えば、Niは0.0
5%未満、Cr、およびMoは0.02%未満、Nb、
V、Tiは0.005%未満、Bは0.0004%未満
まで不純物として含有されていても特に悪影響を及ぼさ
ない。鋼の溶製方法は、例えば溶鋼温度を1650℃以
下として、溶鋼O濃度を0.01%以下、溶鋼S濃度を
0.02%以下とした状態で、適量のCu、Mgおよび
Alを添加した鋼を連続鋳造により鋳造することにより
鋼中に硫化銅の微細粒子を含有させることができる。鋼
の製造方法は、硫化銅粒子が所定量存在すれば良いの
で、鋳造後の加熱、圧延、熱処理条件は母鋼材の機械的
性質に応じて適宜選定すればよい。In the present invention, impurity elements usually unavoidably contained in steel are acceptable. Ni, Cr, Mo,
Even if Nb, V, B, N, Ti and the like are mixed as impurities, the properties of the present invention are not impaired. For example, Ni is 0.0
Less than 5%, Cr and Mo less than 0.02%, Nb,
Even if V and Ti are contained as impurities by less than 0.005% and B is contained by less than 0.0004%, there is no particular adverse effect. In the method of smelting steel, appropriate amounts of Cu, Mg and Al are added, for example, with the molten steel temperature set to 1650 ° C. or less, the molten steel O concentration set to 0.01% or less, and the molten steel S concentration set to 0.02% or less . By casting steel by continuous casting, fine particles of copper sulfide can be contained in the steel. Since the steel production method only needs to have a predetermined amount of copper sulfide particles, heating, rolling, and heat treatment conditions after casting may be appropriately selected according to the mechanical properties of the base steel material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 植森 龍治 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 長尾 年通 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Ryuji Uemori 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Toshimichi Nagao 5-3 Tokaicho, Tokai City, Aichi Prefecture Nippon Steel Corporation Nagoya Works
Claims (2)
子を1平方mmあたり1.0×105 〜1.0×107
個含み、残部Feおよび不可避的不純物よりなる鋼であ
ることを特徴とする超大入熱溶接用高張力鋼。1. In% by weight, 0.04 ≦ C ≦ 0.25, 0.02 ≦ Si ≦ 0.5, 0.02 ≦ Mn ≦ 2.0, P ≦ 0.02, 0.002 ≦ S ≦ 0.02, 0.03 ≦ Cu ≦ 2.0, 0.015 ≦ Al ≦ 0.5, 0.001 ≦ Mg ≦ 0.005, having a particle diameter of 0.005 to 0.5 μm. 1.0 × 10 5 to 1.0 × 10 7 copper sulfide particles per square mm
A high-strength steel for ultra-high heat input welding, characterized in that it is a steel containing, in balance, Fe and unavoidable impurities.
項1記載の超大入熱溶接用高張力鋼。2. The element group for increasing the strength of the base material, in terms of% by weight, 0.05 ≦ Ni ≦ 4.0, 0.02 ≦ Cr ≦ 1.0, 0.02 ≦ Mo ≦ 1.0. 005 ≦ Nb ≦ 0.05, 0.005 ≦ V ≦ 0.1, 0.005 ≦ Ti ≦ 0.025, 0.0004 ≦ B ≦ 0.004, or one or more of the following: The high-strength steel for ultra-high heat input welding according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233338A JP3782648B2 (en) | 2000-08-01 | 2000-08-01 | High strength steel for super large heat input welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000233338A JP3782648B2 (en) | 2000-08-01 | 2000-08-01 | High strength steel for super large heat input welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002053928A true JP2002053928A (en) | 2002-02-19 |
JP3782648B2 JP3782648B2 (en) | 2006-06-07 |
Family
ID=18725870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000233338A Expired - Fee Related JP3782648B2 (en) | 2000-08-01 | 2000-08-01 | High strength steel for super large heat input welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3782648B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195438A (en) * | 2014-08-25 | 2014-12-10 | 武汉钢铁(集团)公司 | Steel with 520MPa-grade tensile strength for agitator tank and production method of steel |
-
2000
- 2000-08-01 JP JP2000233338A patent/JP3782648B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195438A (en) * | 2014-08-25 | 2014-12-10 | 武汉钢铁(集团)公司 | Steel with 520MPa-grade tensile strength for agitator tank and production method of steel |
Also Published As
Publication number | Publication date |
---|---|
JP3782648B2 (en) | 2006-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3408385B2 (en) | Steel with excellent heat-affected zone toughness | |
JP5692138B2 (en) | High strength steel for super high heat input welding with excellent low temperature toughness in heat affected zone | |
JP3256118B2 (en) | Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness | |
WO2013190975A1 (en) | Steel material having excellent toughness in weld-heat-affected zone | |
KR101608239B1 (en) | Steel material for high-heat-input welding | |
JP2011074447A (en) | High strength steel excellent in toughness in high heat input weld heat-affected zone | |
JP5321766B1 (en) | Steel for welding | |
JP6301805B2 (en) | Thick steel plate for tanks with excellent toughness of weld heat affected zone | |
JP3782645B2 (en) | High strength steel for super large heat input welding | |
JP3752075B2 (en) | High strength steel for super large heat input welding | |
JP2005307261A (en) | Thick high strength steel plate having large heat input weld heat affected zone toughness | |
JPH11279684A (en) | High tensile strength steel for welding, excellent in toughness in extra large heat input weld heat-affected zone | |
JP2940647B2 (en) | Method for producing low-temperature high-toughness steel for welding | |
JP2002309338A (en) | High tensile strength steel for large heat input welding | |
JP3782648B2 (en) | High strength steel for super large heat input welding | |
JP3492314B2 (en) | High strength steel for super large heat input welding | |
JP3403293B2 (en) | Steel sheet with excellent toughness of weld heat affected zone | |
JP3492313B2 (en) | High strength steel for super large heat input welding | |
JP3513001B2 (en) | Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness | |
JP6447253B2 (en) | High strength steel for welding | |
JP3502805B2 (en) | Method for producing steel with excellent toughness in weld joint | |
JP7205618B2 (en) | steel | |
JP2018016890A (en) | Thick steel sheet for tank excellent in toughness of hot affected zone | |
JP3481418B2 (en) | Thick steel plate with excellent toughness of weld heat affected zone | |
JP2002309337A (en) | High tensile strength steel for large heat input welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060310 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3782648 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120317 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130317 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140317 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |