JP2002048095A - Blade for axial flow compressor - Google Patents

Blade for axial flow compressor

Info

Publication number
JP2002048095A
JP2002048095A JP2000240367A JP2000240367A JP2002048095A JP 2002048095 A JP2002048095 A JP 2002048095A JP 2000240367 A JP2000240367 A JP 2000240367A JP 2000240367 A JP2000240367 A JP 2000240367A JP 2002048095 A JP2002048095 A JP 2002048095A
Authority
JP
Japan
Prior art keywords
blade
thickness
natural frequency
stripe
axial flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000240367A
Other languages
Japanese (ja)
Inventor
Kazuyuki Yamaguchi
和幸 山口
Hiroshi Ishii
石井  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000240367A priority Critical patent/JP2002048095A/en
Publication of JP2002048095A publication Critical patent/JP2002048095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blade 6 for an axial flow compressor prevented from damage due to resonance with a fluid vibrating force by selectively increasing a stripe natural frequency 19 of the blade 6 for the axial flow compressor. SOLUTION: In this blade 6 for the axial flow compressor, when a cross section having a maximum thickness 10 smaller than that of a blade tip part 11 cross section is decided to the thickness 10 of the intermediate part 13 in the blade height 12 direction, the stripe natural frequency 19 is increased higher than that of a conventional blade, and consequently, resonance with a fluid vibrating force can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は軸流圧縮機の翼に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade of an axial compressor.

【0002】[0002]

【従来の技術】軸流圧縮機は例えば特開平11−343998号
公報の図4に示された軸流圧縮機の模式図のように、複
数の動翼6列が取り付けられた回転するロータと、複数
の静翼6列が取り付けられたケーシングにより構成さ
れ、ロータとケーシング及び各翼6列により環状流路が
形成されている。流入気流はこの環状流路を通過しなが
ら各翼6列により圧縮され、高温,高圧の流出気流にな
る。
2. Description of the Related Art As shown in FIG. 4 of Japanese Patent Application Laid-Open No. H11-343998, for example, an axial flow compressor includes a rotating rotor having a plurality of rows of moving blades 6 attached thereto, as shown in FIG. And a casing to which a plurality of rows of stationary blades are attached, and an annular flow path is formed by the rotor, the casing, and the six rows of blades. The inflow airflow is compressed by the six rows of blades while passing through the annular flow path, and becomes a high-temperature, high-pressure outflow airflow.

【0003】軸流圧縮機の翼6列設計では、回転による
遠心力および気流から受ける流体力によって翼根元部9
に作用する応力を許容値以下に低減するために、十分な
翼根元部9厚さ10が設けられている。一方、翼先端部
11では流れのチョークを防止するために翼厚さ10を
小さくしている。
[0003] In the six-row design of the axial flow compressor, the blade root portion 9 is formed by centrifugal force due to rotation and fluid force received from airflow.
In order to reduce the stress acting on the blade below a permissible value, a sufficient blade root 9 thickness 10 is provided. On the other hand, the blade thickness 10 is reduced at the blade tip 11 in order to prevent flow choke.

【0004】[0004]

【発明が解決しようとする課題】軸流圧縮機の翼6には
前側翼6の後流や後側翼6とのポテンシャル干渉などに
よって様々な流体加振力が作用する。振動によって翼6
が破損しないためには、定格回転数22付近で翼6の固
有振動数と加振周波数21が一致しないように共振回避
設計を実施する必要がある。
Various fluid exciting forces act on the blades 6 of the axial compressor due to the wake of the front blades 6 and potential interference with the rear blades 6. Wings 6 by vibration
In order not to break the resonance frequency, it is necessary to implement a resonance avoidance design so that the natural frequency of the blade 6 does not coincide with the excitation frequency 21 near the rated rotation speed 22.

【0005】共振回避設計では翼厚さ10を変化させて
翼6の固有振動数を変化させることが多い。翼6全体の
厚さ10を大きくすると固有振動数は増加する。例えば
曲げ固有振動数は数式1に示すように翼厚さ10に比例
する。
In the resonance avoidance design, the natural frequency of the blade 6 is often changed by changing the blade thickness 10. When the thickness 10 of the entire blade 6 is increased, the natural frequency increases. For example, the bending natural frequency is proportional to the blade thickness 10 as shown in Expression 1.

【0006】[0006]

【数1】 (Equation 1)

【0007】ここに、fbは曲げ固有振動数、Tは翼厚
さ10である。
Here, fb is the natural frequency of bending, and T is the blade thickness 10.

【0008】軸流圧縮機の翼6の高次固有振動モードの
中には翼高さ方向節16が翼根元部9にのみ存在するス
トライプ固有振動モードがある。図2は翼幅方向節17
が3本の場合のストライプ固有振動モードの例を示して
いる。
Among the higher-order natural vibration modes of the blade 6 of the axial flow compressor, there is a stripe natural vibration mode in which the blade height direction node 16 exists only at the blade root 9. FIG.
3 shows an example of the stripe natural vibration mode when there are three lines.

【0009】一般的に、固有振動数と加振周波数21が
一致しても、加振力パターン18と固有振動モードが一
致しなければ、大きな振動は発生しないので、変形パタ
ーンの複雑な多くの高次固有振動モードについては共振
回避設計を実施する必要がない。
In general, even if the natural frequency and the excitation frequency 21 match, if the excitation force pattern 18 and the natural vibration mode do not match, no large vibration is generated, so that many complicated deformation patterns are formed. There is no need to implement resonance avoidance design for higher-order natural vibration modes.

【0010】しかし、ストライプ固有振動モードは翼高
さ12方向にわたって同相であり、流体加振力パターン
18も翼高さ12方向に同相であるため、固有振動数と
加振周波数21が一致すると大きな振動が発生する可能
性がある。従って、ストライプ固有振動モードの共振に
よる不具合を発生させないために、通常の設計で実施さ
れている低次固有振動モードの共振回避設計とともに、
ストライプ固有振動モードの共振回避設計を実施する必
要がある。
However, the stripe natural vibration mode is in phase in the blade height 12 direction, and the fluid excitation force pattern 18 is also in phase in the blade height 12 direction. Vibration can occur. Therefore, in order to avoid the problem caused by the resonance of the stripe natural vibration mode, together with the resonance avoidance design of the low-order natural vibration mode implemented in the normal design,
It is necessary to implement a design for avoiding resonance of the stripe natural vibration mode.

【0011】ストライプ固有振動モードは翼先端部11
の曲げ変形に起因するため、固有振動数は数式2に示す
ように翼先端部11の厚さ10にほぼ比例し、固有振動
数に対する翼根元厚さの影響は小さい。
The natural vibration mode of the stripe is the blade tip 11
, The natural frequency is substantially proportional to the thickness 10 of the blade tip 11 as shown in Expression 2, and the influence of the blade root thickness on the natural frequency is small.

【0012】[0012]

【数2】 (Equation 2)

【0013】ここに、fsはストライプ固有振動数、T
tは翼先端部11の厚さ10である。
Where fs is the natural frequency of the stripe, T
t is the thickness 10 of the blade tip 11.

【0014】図3に軸流圧縮機の翼6の固有振動数と軸
回転数の関係の概略図を示す。図の横軸は軸回転数、縦
軸は振動数を表す。図中の太線は固有振動数を、原点を
通る細線は加振周波数21を表す。共振を回避するため
には固有振動数と加振周波数21の線が定格回転数22
付近で交差しないようにする必要がある。
FIG. 3 is a schematic diagram showing the relationship between the natural frequency of the blade 6 of the axial flow compressor and the shaft rotation speed. The horizontal axis in the figure represents the shaft rotation speed, and the vertical axis represents the vibration frequency. The bold line in the figure represents the natural frequency, and the thin line passing through the origin represents the excitation frequency 21. To avoid resonance, the line between the natural frequency and the excitation frequency 21
It is necessary to avoid crossing near.

【0015】例えば図3に破線で示すように、低次固有
振動数20は加振周波数21より十分低く、ストライプ
固有振動数19は定格回転数22で加振周波数21と一
致しているとする。図3に記号bで示すように、従来の
翼根元部9の厚さ10と翼先端部11の厚さ10の比を
固定したまま翼厚さ10を大きくすることにより、スト
ライプ固有振動数19を増加させて共振を回避すると、
低次固有振動数20も増加して加振周波数と一致するた
め、両方の固有振動数の共振回避を実施することは困難
であった。
For example, as shown by a broken line in FIG. 3, it is assumed that the low-order natural frequency 20 is sufficiently lower than the excitation frequency 21 and the stripe natural frequency 19 matches the excitation frequency 21 at the rated rotation speed 22. . As shown by a symbol b in FIG. 3, by increasing the blade thickness 10 while keeping the ratio of the thickness 10 of the conventional blade root portion 9 to the thickness 10 of the blade tip portion 11, the stripe natural frequency 19 is increased. To avoid resonance by increasing
Since the low-order natural frequency 20 also increases and matches the excitation frequency, it has been difficult to avoid resonance at both natural frequencies.

【0016】本発明の目的は、軸流圧縮機の翼6のスト
ライプ固有振動数19を選択的に高くすることにより、
流体加振力との共振で破損しない軸流圧縮機の翼6を提
供することにある。
It is an object of the present invention to selectively increase the stripe natural frequency 19 of the blade 6 of the axial flow compressor,
An object of the present invention is to provide a blade 6 of an axial compressor which does not break due to resonance with a fluid exciting force.

【0017】[0017]

【課題を解決するための手段】請求項1に記載した本発
明の軸流圧縮機の翼6は、根元部9を固定された軸流圧
縮機の翼6において、最大厚さ10が翼先端部11断面
より小さい断面を翼高さ12方向の中間部13に有する
ものである。
According to the first aspect of the present invention, there is provided a blade of an axial flow compressor according to the present invention, wherein a maximum thickness of the blade in the axial flow compressor is fixed at a root portion. The cross section smaller than the cross section of the section 11 is provided in the intermediate section 13 in the blade height 12 direction.

【0018】これにより、翼根元部9の厚さ10が大き
く翼先端部11の厚さ10が小さい従来翼と比較して、
翼先端部11の厚さ10が相対的に大きくなる。ストラ
イプ固有振動数19に対する翼先端部11の厚さ10の
影響は低次固有振動数20よりも大きいため、数式1の
関係に従って、低次固有振動数20が従来翼と一致する
ように翼根元部9及び翼中間部13の厚さ10を決定す
れば、数式2の関係に従って、ストライプ固有振動数1
9は従来翼よりも高くなる。すなわち、低次固有振動数
20を変化させずにストライプ固有振動数19のみを選
択的に高くすることができ、流体加振力との共振を回避
することが可能である。
As a result, as compared with a conventional wing in which the thickness 10 of the blade root portion 9 is large and the thickness 10 of the blade tip portion 11 is small.
The thickness 10 of the wing tip 11 becomes relatively large. Since the influence of the thickness 10 of the blade tip 11 on the stripe natural frequency 19 is greater than the low-order natural frequency 20, the blade root is adjusted so that the low-order natural frequency 20 matches the conventional blade according to the relationship of Expression 1. If the thickness 10 of the portion 9 and the wing intermediate portion 13 is determined, the stripe natural frequency 1
9 is higher than the conventional wing. That is, it is possible to selectively increase only the stripe natural frequency 19 without changing the low-order natural frequency 20, and to avoid resonance with the fluid excitation force.

【0019】[0019]

【発明の実施の形態】以下、図面を用いて本発明の実施
例を詳細に説明する。図1は本発明の軸流圧縮機の翼6
の翼高さ12方向厚さ10分布の例を示す。図の縦軸は
各断面の最大厚さ10、横軸は翼高さ12方向位置であ
り、図の左端が翼根元部9、右端が翼先端部11であ
る。図4は軸流圧縮機の翼6の模式図を示す。図4に示
すように翼の根元部9,中間部13,先端部11,翼高
さ12、及び翼幅14を定義する。図5は本発明の軸流
圧縮機の翼6の一実施例の模式図を示す。図6(a),
(b),(c)は本発明の軸流圧縮機の翼6の一実施例
の断面図を、図7(a),(b),(c)は本発明の軸
流圧縮機の翼6の他の実施例の断面図を示す。図6及び
図7の断面の位置は図4に示している。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows the blade 6 of the axial compressor of the present invention.
An example of the distribution of thickness 10 in the blade height 12 direction is shown. The vertical axis in the figure is the maximum thickness 10 of each section, the horizontal axis is the position in the blade height 12 direction, and the left end of the figure is the blade root 9 and the right end is the blade tip 11. FIG. 4 shows a schematic view of the blade 6 of the axial compressor. As shown in FIG. 4, the root portion 9, the intermediate portion 13, the tip portion 11, the blade height 12, and the blade width 14 of the blade are defined. FIG. 5 is a schematic view of an embodiment of the blade 6 of the axial compressor according to the present invention. FIG. 6 (a),
(B) and (c) are cross-sectional views of one embodiment of the blade 6 of the axial compressor of the present invention, and FIGS. 7 (a), (b) and (c) are blades of the axial compressor of the present invention. 6 shows a sectional view of another embodiment 6; The positions of the cross sections in FIGS. 6 and 7 are shown in FIG.

【0020】多段圧縮機は例えば特開平11−343998号公
報の図4に示された軸流圧縮機の模式図のように、複数
の動翼6列が取り付けられた回転するロータと、複数の
静翼6列が取り付けられたケーシングにより構成され、
ロータとケーシング及び各翼6列により環状流路が形成
されている。流入気流はこの環状流路を通過しながら各
翼6列により圧縮され、高温,高圧の流出気流になる。
As shown in FIG. 4 of Japanese Patent Application Laid-Open No. 11-343998, for example, a multi-stage compressor includes a rotating rotor provided with a plurality of six rows of moving blades, and a plurality of rotating blades. It is composed of a casing to which six rows of stationary vanes are attached,
An annular flow path is formed by the rotor, the casing, and the six rows of blades. The inflow airflow is compressed by the six rows of blades while passing through the annular flow path, and becomes a high-temperature, high-pressure outflow airflow.

【0021】図5に示す本実施例の翼6は、翼先端部1
1の厚さ10を大きくすることにより翼先端部11断面
より最大厚さ10が小さい断面を翼中間部13に有す
る。これにより、翼根元部9の厚さ10が大きく翼先端
部11の厚さ10が小さい従来翼と比較して、翼先端部
11の厚さ10が相対的に大きくなる。ストライプ固有
振動数19に対する翼先端部11の厚さ10の影響は低
次固有振動数20よりも大きいため、数式1の関係に従
って、低次固有振動数20が従来翼と一致するように翼
根元部9及び翼中間部13の厚さ10を決定すれば、数
式2の関係に従って、ストライプ固有振動数19は従来
翼よりも高くなる。すなわち、低次固有振動数20を変
化させずにストライプ固有振動数19のみを選択的に高
くすることができ、流体加振力との共振を回避すること
が可能である。
The wing 6 of this embodiment shown in FIG.
By increasing the thickness 10 of the blade 1, the blade middle portion 13 has a cross section having a maximum thickness 10 smaller than the cross section of the blade tip 11. As a result, the thickness 10 of the blade tip 11 is relatively larger than that of a conventional blade in which the thickness 10 of the blade root 9 is large and the thickness 10 of the blade tip 11 is small. Since the influence of the thickness 10 of the blade tip 11 on the stripe natural frequency 19 is greater than the low-order natural frequency 20, the blade root is adjusted so that the low-order natural frequency 20 matches the conventional blade according to the relationship of Expression 1. If the thickness 10 of the portion 9 and the wing intermediate portion 13 is determined, the stripe natural frequency 19 will be higher than that of the conventional wing according to the relationship of Expression 2. That is, only the stripe natural frequency 19 can be selectively increased without changing the low-order natural frequency 20, and resonance with the fluid excitation force can be avoided.

【0022】翼高さ12方向の厚さ10分布は図1の例
1,例2に示すように連続的に変化しても良いし、例
3,例4に示すように段階的に変化しても良い。また、
翼先端部11の断面形状は図6(a),(b),(c)
に示すような翼形状であってもよいし、図7(a),
(b),(c)に示すように翼形状でなくてもよい。
The distribution of the thickness 10 in the direction of the blade height 12 may change continuously as shown in Examples 1 and 2 of FIG. 1 or may change stepwise as shown in Examples 3 and 4. May be. Also,
FIGS. 6A, 6B, and 6C show cross-sectional shapes of the wing tip 11.
7 (a) and FIG. 7 (a).
It is not necessary to have a wing shape as shown in (b) and (c).

【0023】ストライプ固有振動モードの応力分布を計
算すると、発生応力は翼先端11から翼高さ12の10
%以内の範囲で大きくなるため、翼厚さ10を大きくす
る翼先端部11の範囲はは翼高さ12の10%程度とす
ることが望ましいが、これ以外であっても効果はある。
When the stress distribution of the natural vibration mode of the stripe is calculated, the generated stress is from the blade tip 11 to the blade height 12
%, It is desirable that the range of the blade tip 11 where the blade thickness 10 is increased is about 10% of the blade height 12, but other than that, the effect is also obtained.

【0024】なお、本発明は軸流圧縮機のみならず、軸
流ファン等の流体機械にも適用可能である。
The present invention is applicable not only to an axial compressor but also to a fluid machine such as an axial fan.

【0025】[0025]

【発明の効果】以上説明してきたように、本発明の請求
項1によれば、根元部9を固定された軸流圧縮機の翼6
において、最大厚さ10が翼先端部11断面より小さい
断面を翼高さ12方向の中間部13に有することによ
り、翼根元部9の厚さ10が大きく翼先端部11の厚さ
10が小さい従来翼と比較して、翼先端部11の厚さ1
0が相対的に大きくなる。ストライプ固有振動数19に
対する翼先端部11の厚さ10の影響は低次固有振動数
20よりも大きいため、数式1の関係に従って低次固有
振動数20が従来翼と一致するように翼根元部9及び翼
中間部13の厚さ10を決定すれば、数式2の関係に従
ってストライプ固有振動数19は従来翼よりも高くな
る。すなわち、低次固有振動数20を変化させずにスト
ライプ固有振動数19のみを選択的に高くすることがで
き、流体加振力との共振を回避することが可能である。
As described above, according to the first aspect of the present invention, the blade 6 of the axial flow compressor with the root 9 fixed.
In the above, the thickness 10 of the blade root portion 9 is large and the thickness 10 of the blade tip portion 11 is small by having a cross section in which the maximum thickness 10 is smaller than the cross section of the blade tip portion 11 in the intermediate portion 13 in the blade height 12 direction. Compared to the conventional blade, the thickness of the blade tip 11
0 becomes relatively large. Since the influence of the thickness 10 of the blade tip 11 on the stripe natural frequency 19 is larger than the low-order natural frequency 20, the blade root portion is adjusted so that the low-order natural frequency 20 matches the conventional blade in accordance with the relationship of Expression 1. When the thickness 9 and the thickness 10 of the blade intermediate portion 13 are determined, the stripe natural frequency 19 becomes higher than that of the conventional blade according to the relationship of Expression 2. That is, only the stripe natural frequency 19 can be selectively increased without changing the low-order natural frequency 20, and resonance with the fluid excitation force can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である軸流圧縮機の翼の厚さ分
布を示す図。
FIG. 1 is a diagram showing a blade thickness distribution of an axial flow compressor according to an embodiment of the present invention.

【図2】軸流圧縮機の翼のストライプ固有振動モードの
模式図。
FIG. 2 is a schematic view of a stripe natural vibration mode of a blade of an axial compressor.

【図3】軸流圧縮機の翼の固有振動数と回転数の関係を
示す模式図。
FIG. 3 is a schematic diagram showing the relationship between the natural frequency and the rotation speed of the blade of the axial compressor.

【図4】軸流圧縮機の翼を示す模式図。FIG. 4 is a schematic view showing a blade of the axial compressor.

【図5】本発明の軸流圧縮機の翼の一実施例を示す模式
図。
FIG. 5 is a schematic view showing an embodiment of the blade of the axial compressor of the present invention.

【図6】本発明の軸流圧縮機の翼の一実施例を示す断面
図。
FIG. 6 is a sectional view showing an embodiment of the blade of the axial flow compressor of the present invention.

【図7】本発明の軸流圧縮機の翼の一実施例を示す断面
図。
FIG. 7 is a sectional view showing an embodiment of the blade of the axial flow compressor of the present invention.

【符号の説明】[Explanation of symbols]

6…翼、9…翼根元部、10…翼厚さ、11…翼先端
部、12…翼高さ、13…翼中間部、14…翼幅、16
…翼高さ方向節、17…翼幅方向節、18…加振力パタ
ーン、19…ストライプ固有振動数、20…低次固有振
動数、21…加振周波数、22…定格回転数。
6 wing, 9 wing root, 10 wing thickness, 11 wing tip, 12 wing height, 13 wing middle, 14 wing width, 16
... nodes in the blade height direction, 17 ... nodes in the blade width direction, 18 ... excitation force pattern, 19 ... stripe natural frequency, 20 ... lower order natural frequency, 21 ... excitation frequency, 22 ... rated rotation speed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】根元部を固定された軸流圧縮機の翼におい
て、最大厚さが翼先端部断面より小さい断面を翼高さ方
向の中間部に有することを特徴とする軸流圧縮機の動
翼。
1. A blade of an axial flow compressor having a fixed root portion, wherein the blade has a cross section having a maximum thickness smaller than a cross section of a blade tip portion in an intermediate portion in a blade height direction. Bucket.
JP2000240367A 2000-08-03 2000-08-03 Blade for axial flow compressor Pending JP2002048095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240367A JP2002048095A (en) 2000-08-03 2000-08-03 Blade for axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240367A JP2002048095A (en) 2000-08-03 2000-08-03 Blade for axial flow compressor

Publications (1)

Publication Number Publication Date
JP2002048095A true JP2002048095A (en) 2002-02-15

Family

ID=18731737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240367A Pending JP2002048095A (en) 2000-08-03 2000-08-03 Blade for axial flow compressor

Country Status (1)

Country Link
JP (1) JP2002048095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591624A1 (en) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Compressor blade and compressor.
EP1754859A2 (en) * 2005-08-16 2007-02-21 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
JP2007231946A (en) * 2006-02-27 2007-09-13 Nuovo Pignone Spa Rotor blade for ninth stage of compressor, rotor, and compressor
WO2014099520A1 (en) * 2012-12-19 2014-06-26 Solar Turbines Incorporated Compressor blade for gas turbine engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591624A1 (en) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Compressor blade and compressor.
EP1754859A2 (en) * 2005-08-16 2007-02-21 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
JP2007051642A (en) * 2005-08-16 2007-03-01 General Electric Co <Ge> Airfoil with less vibration to be induced and gas turbine engine therewith
EP1754859A3 (en) * 2005-08-16 2013-11-20 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
JP2007231946A (en) * 2006-02-27 2007-09-13 Nuovo Pignone Spa Rotor blade for ninth stage of compressor, rotor, and compressor
KR101433373B1 (en) 2006-02-27 2014-08-26 누보 피그노네 에스피에이 Rotor blade for a ninth phase of a compressor
WO2014099520A1 (en) * 2012-12-19 2014-06-26 Solar Turbines Incorporated Compressor blade for gas turbine engine
GB2523961A (en) * 2012-12-19 2015-09-09 Solar Turbines Inc Compressor blade for gas turbine engine
CN104956032A (en) * 2012-12-19 2015-09-30 索拉透平公司 Compressor blade for gas turbine engine
US9506347B2 (en) 2012-12-19 2016-11-29 Solar Turbines Incorporated Compressor blade for gas turbine engine
GB2523961B (en) * 2012-12-19 2020-02-19 Solar Turbines Inc Compressor blade for gas turbine engine

Similar Documents

Publication Publication Date Title
JP2015183691A (en) gas turbine blade
EP3124794B1 (en) Axial flow compressor with end-wall contouring
US5466118A (en) Centrifugal compressor with a flow-stabilizing casing
JP5420729B2 (en) Turbomachinery wing
JP2753382B2 (en) Axial flow turbine vane device and axial flow turbine
CN103814192B (en) high camber compressor rotor blade
US8152467B2 (en) Blade with tangential jet generation on the profile
JP2013545936A (en) Turbine engine blades with improved stacking rules
JP2002188404A (en) Row of flow directing elements
US20100098536A1 (en) Fluid flow machine with running gap retraction
JPH0222239B2 (en)
JP2004324646A (en) Method and device for supporting tip of airfoil structurally
US10669864B2 (en) Unshrouded turbomachine impeller with improved rigidity
JP5494972B2 (en) Axial-flow turbomachine and its modification method
JP2003227302A (en) Blade for promoting wake mixing
JP2002048095A (en) Blade for axial flow compressor
JPH07247996A (en) Passage form of compressor
JPH0726904A (en) Blade tip structure of rotating machine
JP2006144575A (en) Axial flow type rotary fluid machine
JPH11148497A (en) Moving blade of axial flow compressor
JP2013177816A (en) Axial-flow turbomachine
JPH11343998A (en) Axial flow compressor
JP2021006713A (en) Turbocharger Turbine rotor and turbocharger
JPH09133095A (en) Moving blade for radial turbine and diagonal flow turbine
JP2003161298A (en) Compressor cascade for gas turbine