JPH07247996A - Passage form of compressor - Google Patents

Passage form of compressor

Info

Publication number
JPH07247996A
JPH07247996A JP4068094A JP4068094A JPH07247996A JP H07247996 A JPH07247996 A JP H07247996A JP 4068094 A JP4068094 A JP 4068094A JP 4068094 A JP4068094 A JP 4068094A JP H07247996 A JPH07247996 A JP H07247996A
Authority
JP
Japan
Prior art keywords
blade
vicinity
peripheral surface
row
blade row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068094A
Other languages
Japanese (ja)
Inventor
Masakazu Nishiura
正和 西浦
Kenji Kobayashi
健児 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4068094A priority Critical patent/JPH07247996A/en
Publication of JPH07247996A publication Critical patent/JPH07247996A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce pressure loss to attain high load of a blade by forming recesses of a gentle curve in the axial direction on at least one of the outer peripheral surface of a rotating shaft near the blade row and the inner peripheral surface of a casing near the blade row in an axial flow air compressor having a blade row. CONSTITUTION:An axial air compressor for a gas turbine is so constructed that a rotating shaft 1 rotatably supported in a casing 2 is provided witch a moving blade 3 and a stationary blade 4 arranged in the axial direction like a row. In this case, recesses 16-19 of a gentle curve in the axial direction which are increased in the passage cross sectional area extending from the vicinity of a blade inlet end to the vicinity of the center of the blade and decreased in the passage cross sectional area extending from the vicinity of the center of the blade to the vicinity of the blade outlet are formed on at least one of the outer peripheral surface of the rotating shaft near the blade rows 3, 4 and the inner peripheral surface of the casing near the blade rows 3, 4. Thus, the maximum value of flow speed on the back side of each blade row can be relatively decreased so as to reduce pressure loss.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン用圧縮機
などの翼列を有する軸流空気圧縮機の通路形状に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passage shape of an axial air compressor having a blade row such as a compressor for a gas turbine.

【0002】[0002]

【従来の技術】従来のガスタービン用軸流空気圧縮機
は、たとえば、図3に示すような構成からなっている。
図3において、1は回転軸、2はケーシング、3は翼列
を構成している動翼、4は翼列を構成している静翼、5
は該動翼3の翼先端、6は該動翼3の翼根元、7は該静
翼4の翼先端、8は該静翼4の翼根元である。
2. Description of the Related Art A conventional gas turbine axial flow air compressor has, for example, a structure as shown in FIG.
In FIG. 3, 1 is a rotating shaft, 2 is a casing, 3 is a moving blade which constitutes a blade row, 4 is a stationary blade which constitutes a blade row, and 5
Is a blade tip of the moving blade 3, 6 is a blade root of the moving blade 3, 7 is a blade tip of the stationary blade 4, and 8 is a blade root of the stationary blade 4.

【0003】図4は動翼3あるいは静翼4の翼面上の速
度分布を示し、図5は図3の切断線A−Aに沿う断面図
である。図5において、9は前記動翼3の腹側、10は
同じく背側、11は同じく入口端、12は同じく出口端
である。すなわち、ガスタービンの燃焼用空気は動翼3
の翼列の回転により加圧されて図3の矢印13で示すよ
うに流入し、静翼4の翼列で案内されて矢印14で示す
ように流出し、図示されていない燃焼室へ供給されるよ
うになっている。
FIG. 4 shows the velocity distribution on the blade surface of the moving blade 3 or the stationary blade 4, and FIG. 5 is a sectional view taken along the section line AA of FIG. In FIG. 5, 9 is the ventral side of the moving blade 3, 10 is the back side, 11 is the inlet end, and 12 is the outlet end. That is, the combustion air of the gas turbine is the moving blade 3
Is pressurized by the rotation of the blade row of FIG. 3, flows in as shown by arrow 13 in FIG. 3, is guided by the blade row of the stationary blade 4 and flows out as shown by arrow 14, and is supplied to the combustion chamber (not shown). It has become so.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図3に
示した従来の軸流空気圧縮機においては、公知のよう
に、図4に示す背側での減速量が大きくなると、図5に
示すように、動翼3の背側10の出口端12の付近から
剥離15が発生し、圧力損失が増大するという問題点が
あった。
However, in the conventional axial air compressor shown in FIG. 3, as is well known, when the deceleration amount on the back side shown in FIG. 4 becomes large, as shown in FIG. In addition, there is a problem that the peeling 15 occurs near the outlet end 12 on the back side 10 of the moving blade 3 and the pressure loss increases.

【0005】また静翼4についても、同様な剥離が発生
して圧力損失が増大するという問題点があった。
The stationary blade 4 also has a problem that similar peeling occurs and pressure loss increases.

【0006】本発明は、上記のような問題点を解決しよ
うとするものである。すなわち、本発明は、翼列からの
剥離の発生を抑制して圧力損失を低減することができる
とともに、翼の高負荷化を図ることができる圧縮機の通
路形状を提供することを目的とするものである。
The present invention is intended to solve the above problems. That is, it is an object of the present invention to provide a passage shape of a compressor that can suppress the occurrence of separation from the blade row to reduce the pressure loss and can increase the load on the blade. It is a thing.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、翼列を有する軸流空気圧縮機において、
前記翼列の付近の回転軸の外周面と該翼列の付近のケー
シングの内周面の少なくとも一方に、翼入口端の付近か
ら翼中央の付近に至るにつれて通路横断面積が大きくな
るとともに翼中央の付近から翼出口端の付近に至るにつ
れて通路横断面積が小さくなるように、軸方向に沿う緩
い曲線による窪みが形成されているものとした。
In order to achieve the above object, the present invention provides an axial flow air compressor having a blade row,
At least one of the outer peripheral surface of the rotary shaft near the blade row and the inner peripheral surface of the casing near the blade row has a passage cross-sectional area that increases from the vicinity of the blade inlet end to the vicinity of the blade center and the blade center. It is assumed that a recess with a gentle curve along the axial direction is formed so that the cross-sectional area of the passage decreases from the vicinity of to the vicinity of the blade outlet end.

【0008】[0008]

【作用】本発明によれば、翼列を有する軸流空気圧縮機
において、前記翼列の付近の回転軸の外周面と該翼列の
付近のケーシングの内周面の少なくとも一方に、翼入口
端の付近から翼中央の付近に至るにつれて通路横断面積
が大きくなるとともに翼中央の付近から翼出口端の付近
に至るにつれて通路横断面積が小さくなるように、軸方
向に沿う緩い曲線による窪みが形成されているので、前
記窪みがない場合の通路に比較して図4のように、翼列
背側での流速最大値を相対的に減少させる。
According to the present invention, in an axial air compressor having a blade row, at least one of the outer peripheral surface of the rotary shaft near the blade row and the inner peripheral surface of the casing near the blade row has a blade inlet. A dent formed by a gentle curve along the axial direction is formed so that the passage cross-sectional area increases from the vicinity of the edge to the vicinity of the blade center and decreases from the vicinity of the blade center to the vicinity of the blade outlet end. Therefore, the maximum flow velocity on the back side of the blade row is relatively reduced as shown in FIG. 4 as compared with the passage without the depression.

【0009】したがって、背側部での減速量が小さくな
って剥離を抑制し、その部での圧力損失を低減する。ま
た前記窪みのために、翼としての有効面積がそれだけ増
加し、翼の高負荷化が図れる。
Therefore, the amount of deceleration at the back side portion is reduced to suppress peeling and reduce the pressure loss at that portion. Further, because of the depression, the effective area of the blade is increased by that amount, and the load of the blade can be increased.

【0010】[0010]

【実施例】図1は本発明の第1実施例を示している。図
1において、符号1から8までおよび11から14まで
は図3および図5の場合と同じである。そして、16は
前記動翼3の翼列の付近の回転軸1の外周面に形成され
た窪み、17は該動翼3の翼列の付近のケーシング2の
内周面に形成された窪み、18は前記静翼4の翼列の付
近のケーシング2の内周面に形成された窪み、19は該
静翼4の翼列の付近の回転軸1の外周面に形成された窪
みである。
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, reference numerals 1 to 8 and 11 to 14 are the same as those in FIGS. 3 and 5. 16 is a depression formed on the outer peripheral surface of the rotary shaft 1 near the blade row of the moving blades 3, 17 is a depression formed on the inner peripheral surface of the casing 2 near the blade row of the moving blades 3, Reference numeral 18 denotes a recess formed on the inner peripheral surface of the casing 2 near the blade row of the stationary blade 4, and 19 denotes a recess formed on the outer peripheral surface of the rotary shaft 1 near the blade row of the stationary blade 4.

【0011】前記窪み16,17は、いずれも、動翼3
の翼入口端11の付近から動翼中央の付近に至るにつれ
て通路横断面積が大きくなるとともに動翼中央の付近か
ら翼出口端12の付近に至るにつれて通路横断面積が小
さくなるように軸方向に沿う緩い曲線によるものからな
っている。しかも、図1の実施例では、動翼3の翼先端
5の形状は、前記窪み17と小間隙を持たせて対応させ
た形状にしてある。したがって、動翼3の高さ(回転軸
1からの半径方向の長さ)Hは翼入口端11の付近から
翼中央の付近に至るにつれて大きくなっているとともに
翼中央の付近から翼出口端12の付近に至るにつれて小
さくなっている。
Each of the recesses 16 and 17 has a rotor blade 3
Along the axial direction such that the passage cross-sectional area increases from the vicinity of the blade inlet end 11 to near the center of the blade and decreases from the vicinity of the center of the blade to near the blade outlet end 12. It consists of a gentle curve. Moreover, in the embodiment of FIG. 1, the blade tip 5 of the rotor blade 3 is shaped to correspond to the recess 17 with a small gap. Therefore, the height H of the moving blade 3 (the length in the radial direction from the rotating shaft 1) increases from the vicinity of the blade inlet end 11 to the vicinity of the blade center, and the height H increases from the vicinity of the blade center to the blade outlet end 12. It becomes smaller as it gets closer to.

【0012】前記窪み18,19は、いずれも、静翼4
の翼入口端の付近から静翼中央の付近に至るにつれて通
路横断面積が大きくなるとともに静翼中央の付近から翼
出口端の付近に至るにつれて通路横断面積が小さくなる
ように軸方向に沿う緩い曲線によるものからなってい
る。しかも、図1の実施例では、静翼4の翼先端7の形
状は、前記窪み19と小間隙を持たせて対応させた形状
にしてある。したがって、静翼4の高さ(ケーシング2
からの内側半径方向の長さ)hは翼入口端の付近から静
翼中央の付近に至るにつれて大きくなっているとともに
静翼中央の付近から翼出口端の付近に至るにつれて小さ
くなっている。
The recesses 18 and 19 are both stationary vanes 4.
A gentle curve along the axial direction so that the passage cross-sectional area increases from the vicinity of the blade inlet end to the center of the vane and decreases from the vicinity of the center of the vane to the vicinity of the blade outlet end. It consists of Moreover, in the embodiment shown in FIG. 1, the blade tip 7 of the stationary blade 4 has a shape corresponding to the depression 19 with a small gap. Therefore, the height of the vane 4 (the casing 2
(Inward radial length h) increases from the vicinity of the blade entrance end to the vicinity of the center of the vane, and decreases from the vicinity of the center of the vane to the vicinity of the blade exit end.

【0013】図1に示すように構成された圧縮機の通路
形状においては、動翼3の翼列と静翼4の翼列の両方の
付近の回転軸1の外周面およびケーシング2の内周面
に、翼入口端の付近から翼中央の付近に至るにつれて通
路横断面積が大きくなるとともに翼中央の付近から翼出
口端の付近に至るにつれて通路横断面積が小さくなるよ
うに、軸方向に沿う緩い曲線による窪み16,17,1
8,19が形成されているので、前記窪み16,17,
18,19が、それぞれの翼列背側での流速最大値を相
対的に減少させる。
In the passage shape of the compressor configured as shown in FIG. 1, the outer peripheral surface of the rotary shaft 1 and the inner periphery of the casing 2 near both the blade row of the moving blade 3 and the blade row of the stationary blade 4. The surface is loose along the axial direction so that the passage cross-sectional area increases from the vicinity of the blade inlet end to the vicinity of the blade center and decreases from the vicinity of the blade center to the vicinity of the blade outlet end. Curved depressions 16, 17, 1
Since 8, 19 are formed, the depressions 16, 17,
18 and 19 relatively reduce the maximum value of the flow velocity on the back side of each blade row.

【0014】したがって、動翼3および静翼4の翼背側
部での減速量が小さくなって剥離が抑制され、その部で
の圧力損失が低減される。また前記窪み16,17,1
8,19のために、翼としての有効面積がそれだけ増加
し、翼の高負荷化が図れる。
Therefore, the amount of deceleration on the blade back side portions of the moving blades 3 and the stationary blades 4 is reduced, the separation is suppressed, and the pressure loss at those portions is reduced. In addition, the depressions 16, 17, 1
Due to 8 and 19, the effective area as a blade increases correspondingly, and the load of the blade can be increased.

【0015】図2は本発明の第2実施例を示している。
この第2実施例では、前述の第1実施例と比較して、窪
み17と19が設けられていないので、それだけ剥離を
抑制する性能が劣ることになる。
FIG. 2 shows a second embodiment of the present invention.
In the second embodiment, as compared with the first embodiment described above, the recesses 17 and 19 are not provided, so the performance of suppressing peeling is inferior.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
翼列を有する軸流空気圧縮機において、前記翼列の付近
の回転軸の外周面と該翼列の付近のケーシングの内周面
の少なくとも一方に、翼入口端の付近から翼中央の付近
に至るにつれて通路横断面積が大きくなるとともに翼中
央の付近から翼出口端の付近に至るにつれて通路横断面
積が小さくなるように、軸方向に沿う緩い曲線による窪
みが形成されているので、前記窪みがない場合の通路に
比較して翼列背側での流速最大値を相対的に減少させ
る。
As described above, according to the present invention,
In an axial-flow air compressor having a blade row, on at least one of the outer peripheral surface of the rotary shaft near the blade row and the inner peripheral surface of the casing near the blade row, from near the blade inlet end to near the blade center. Since the passage cross-sectional area becomes larger as it reaches and the passage cross-sectional area becomes smaller from the vicinity of the blade center to the vicinity of the blade outlet end, the depression is formed by a gentle curve along the axial direction. The flow velocity maximum value on the back side of the blade row is relatively reduced as compared with the case of the case.

【0017】したがって、翼背側部での減速量が小さく
なって剥離を抑制し、その部での圧力損失を低減する。
しかも、前記窪みは緩い曲線によって形成されているた
め、圧力損失がほとんどない。また前記窪みの存在によ
って翼としての有効面積がそれだけ増加し、翼の高負荷
化を容易に図ることができる。
Therefore, the amount of deceleration on the blade back side portion is reduced to suppress the separation and reduce the pressure loss at that portion.
Moreover, since the recess is formed by a gentle curve, there is almost no pressure loss. In addition, the existence of the depression increases the effective area of the blade by that amount, and the load on the blade can be easily increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示した断面側面図であ
る。
FIG. 1 is a sectional side view showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示した断面側面図であ
る。
FIG. 2 is a sectional side view showing a second embodiment of the present invention.

【図3】従来の技術の一例を示した断面側面図である。FIG. 3 is a sectional side view showing an example of a conventional technique.

【図4】本発明の通路形状および従来例における翼面の
速度分布をグラフで示した説明図である。
FIG. 4 is an explanatory view showing a graph of a passage shape of the present invention and a velocity distribution of a blade surface in a conventional example.

【図5】図3の切断線A−Aに沿う断面図である。5 is a cross-sectional view taken along the section line AA of FIG.

【符号の説明】[Explanation of symbols]

1 回転軸 2 ケーシング 3 動翼 4 静翼 11 動翼の入口端 12 動翼の出口端 16 動翼列の付近の回転軸の外周面の窪み 17 動翼列の付近のケーシングの内周面の窪み 18 静翼列の付近のケーシングの内周面の窪み 19 静翼列の付近の回転軸の外周面の窪み DESCRIPTION OF SYMBOLS 1 rotating shaft 2 casing 3 moving blade 4 stationary blade 11 inlet end of moving blade 12 outlet end of moving blade 16 depression of outer peripheral surface of rotating shaft near moving blade row 17 in inner peripheral surface of casing near moving blade row Cavity 18 Cavity on the inner peripheral surface of the casing near the vane row 19 Cavity on the outer peripheral surface of the rotating shaft near the vane row

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 翼列を有する軸流空気圧縮機において、
前記翼列の付近の回転軸の外周面と該翼列の付近のケー
シングの内周面の少なくとも一方に、翼入口端の付近か
ら翼中央の付近に至るにつれて通路横断面積が大きくな
るとともに翼中央の付近から翼出口端の付近に至るにつ
れて通路横断面積が小さくなるように、軸方向に沿う緩
い曲線による窪みが形成されていることを特徴とする、
圧縮機の通路形状。
1. An axial flow air compressor having a blade row,
At least one of the outer peripheral surface of the rotary shaft near the blade row and the inner peripheral surface of the casing near the blade row has a passage cross-sectional area that increases from the vicinity of the blade inlet end to the vicinity of the blade center and the blade center. Is formed so that the cross-sectional area of the passage decreases from the vicinity of to the vicinity of the blade outlet end, and the depression is formed by a gentle curve along the axial direction.
The passage shape of the compressor.
【請求項2】 動翼の翼列の付近の回転軸の外周面に窪
みが形成されている請求項1記載の圧縮機の通路形状。
2. The passage shape of the compressor according to claim 1, wherein a recess is formed in the outer peripheral surface of the rotary shaft near the blade row of the moving blades.
【請求項3】 静翼の翼列の付近のケーシングの内周面
に窪みが形成されている請求項1記載の圧縮機の通路形
状。
3. The passage shape of the compressor according to claim 1, wherein a recess is formed in the inner peripheral surface of the casing near the blade row of the stationary blades.
【請求項4】 動翼の翼列の付近のケーシングの内周面
に窪みが形成されている請求項2記載の圧縮機の通路形
状。
4. The passage shape of the compressor according to claim 2, wherein a recess is formed in the inner peripheral surface of the casing near the blade row of the moving blades.
【請求項5】 静翼の翼列の付近の回転軸の外周面に窪
みが形成されている請求項3記載の圧縮機の通路形状。
5. The passage shape of the compressor according to claim 3, wherein a recess is formed on the outer peripheral surface of the rotary shaft near the blade row of the stationary blades.
JP4068094A 1994-03-11 1994-03-11 Passage form of compressor Pending JPH07247996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068094A JPH07247996A (en) 1994-03-11 1994-03-11 Passage form of compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068094A JPH07247996A (en) 1994-03-11 1994-03-11 Passage form of compressor

Publications (1)

Publication Number Publication Date
JPH07247996A true JPH07247996A (en) 1995-09-26

Family

ID=12587258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068094A Pending JPH07247996A (en) 1994-03-11 1994-03-11 Passage form of compressor

Country Status (1)

Country Link
JP (1) JPH07247996A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271792A (en) * 2000-02-18 2001-10-05 General Electric Co <Ge> Flow path for compressor with flute
WO2012086044A1 (en) * 2010-12-24 2012-06-28 三菱重工業株式会社 Flow path structure and gas turbine exhaust diffuser
JP2012145064A (en) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd Diffuser structure of fluid machine
CN102678602A (en) * 2011-03-18 2012-09-19 株式会社大柱机械 Variable throat device for air compressor
DE102011076804A1 (en) 2011-05-31 2012-12-06 Honda Motor Co., Ltd. Inner peripheral surface shape of a Axialverdichtergehäuses
JP2015187451A (en) * 2015-07-31 2015-10-29 三菱重工業株式会社 Diffuser structure of fluid machine
EP2589752A3 (en) * 2011-11-01 2017-06-28 United Technologies Corporation Non Axis-Symmetric Stator Vane Endwall Contour
WO2018155189A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Rotating machine and exhaust member of rotating machine
US10399664B2 (en) 2015-05-11 2019-09-03 General Electric Company Immersed core flow inlet between rotor blade and stator vane for an unducted fan gas turbine
JP2020176598A (en) * 2019-04-22 2020-10-29 株式会社Ihi Axial flow compressor
CN113389755A (en) * 2021-08-17 2021-09-14 中国航发上海商用航空发动机制造有限责任公司 Compressor of gas turbine, gas turbine and aircraft

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271792A (en) * 2000-02-18 2001-10-05 General Electric Co <Ge> Flow path for compressor with flute
US9732674B2 (en) 2010-12-24 2017-08-15 Mitsubishi Hitachi Power Systems, Ltd. Flow path structure and gas turbine exhaust diffuser
WO2012086044A1 (en) * 2010-12-24 2012-06-28 三菱重工業株式会社 Flow path structure and gas turbine exhaust diffuser
EP2657482A1 (en) * 2010-12-24 2013-10-30 Mitsubishi Heavy Industries, Ltd. Flow path structure and gas turbine exhaust diffuser
EP2657482A4 (en) * 2010-12-24 2017-05-03 Mitsubishi Hitachi Power Systems, Ltd. Flow path structure and gas turbine exhaust diffuser
JP2012145064A (en) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd Diffuser structure of fluid machine
CN102678602A (en) * 2011-03-18 2012-09-19 株式会社大柱机械 Variable throat device for air compressor
DE102011076804A1 (en) 2011-05-31 2012-12-06 Honda Motor Co., Ltd. Inner peripheral surface shape of a Axialverdichtergehäuses
DE102011076804B4 (en) 2011-05-31 2019-04-25 Honda Motor Co., Ltd. Inner peripheral surface shape of a fan housing of an axial compressor
EP2589752A3 (en) * 2011-11-01 2017-06-28 United Technologies Corporation Non Axis-Symmetric Stator Vane Endwall Contour
US10399664B2 (en) 2015-05-11 2019-09-03 General Electric Company Immersed core flow inlet between rotor blade and stator vane for an unducted fan gas turbine
JP2015187451A (en) * 2015-07-31 2015-10-29 三菱重工業株式会社 Diffuser structure of fluid machine
WO2018155189A1 (en) * 2017-02-27 2018-08-30 三菱重工業株式会社 Rotating machine and exhaust member of rotating machine
JP2018141399A (en) * 2017-02-27 2018-09-13 三菱重工業株式会社 Rotary machine and exhaust member of rotary machine
KR20190032554A (en) * 2017-02-27 2019-03-27 미츠비시 쥬고교 가부시키가이샤 Rotating machine, Exhaust member of rotating machine
JP2020176598A (en) * 2019-04-22 2020-10-29 株式会社Ihi Axial flow compressor
CN113389755A (en) * 2021-08-17 2021-09-14 中国航发上海商用航空发动机制造有限责任公司 Compressor of gas turbine, gas turbine and aircraft

Similar Documents

Publication Publication Date Title
JP3876195B2 (en) Centrifugal compressor impeller
RU2296247C2 (en) Turbocompressor recirculating device
US7500824B2 (en) Angel wing abradable seal and sealing method
US6837679B2 (en) Gas turbine engine
EP1895101B1 (en) Counter tip baffle airfoil
EP1967699B1 (en) Gas turbine engine with an abradable seal
JP3872830B2 (en) Vane passage hub structure for stator vane with cantilever and manufacturing method thereof
RU2293221C2 (en) Recirculation structure for turbine compressor
JP4152184B2 (en) Turbine platform with descending stage
US5238364A (en) Shroud ring for an axial flow turbine
JP3564420B2 (en) gas turbine
US20110002777A1 (en) Systems and apparatus relating to turbine engines and seals for turbine engines
JP2001271792A (en) Flow path for compressor with flute
JP2001289050A (en) Variable capacity turbo supercharger
WO2014143413A2 (en) Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine
GB2422641A (en) Vane having sealing part with a cavity
JPH08165999A (en) Axial flow blower
JPH07247996A (en) Passage form of compressor
US8561997B2 (en) Adverse pressure gradient seal mechanism
JP2018173020A (en) Centrifugal compressor
US6877953B2 (en) Gas turbine
US10247013B2 (en) Interior cooling configurations in turbine rotor blades
JPH0738641Y2 (en) Multi-stage axial turbine
JP2000073702A (en) Axial flow turbine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine