JPH11343998A - Axial flow compressor - Google Patents

Axial flow compressor

Info

Publication number
JPH11343998A
JPH11343998A JP15251898A JP15251898A JPH11343998A JP H11343998 A JPH11343998 A JP H11343998A JP 15251898 A JP15251898 A JP 15251898A JP 15251898 A JP15251898 A JP 15251898A JP H11343998 A JPH11343998 A JP H11343998A
Authority
JP
Japan
Prior art keywords
edge side
blade
curvature
radius
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15251898A
Other languages
Japanese (ja)
Inventor
Hisashi Hamatake
久司 濱武
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15251898A priority Critical patent/JPH11343998A/en
Publication of JPH11343998A publication Critical patent/JPH11343998A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce loss of impulse waver at a tip part by constituting a camber line to be a center line of a blade surface by two or more of circular arcs and providing a circular arc connection location of a frontmost edge side on the front edge side of the half of a blade cord length. SOLUTION: When a camber line 12 to be a center line of a blade is constituted of two circular arcs, a circular arc connection location 13 is made a front edge 16 side of the half of a blade cord length 11 and a center angle of the circular arc located on a frontmost edge side is constituted to be larger than a center angle of the circular arc located on a rear edge side, a radius of curvature of a back side blade surface 14 up to the camber connection location 13 is small and a radius of curvature of a back side blade surface 14 from the camber connection location 13 up to a rear edge 17 is large. Acceleration of flow in the blade surface area of the small radius of curvature is large, and conversely, when the radius of curvature is large, acceleration is small. Therefore, when the camber connection location 13 is made a front edge side of the half location of the blade cord length 11, an acceleration area becomes short and the number of mach can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン用あ
るいは産業用の軸流圧縮機に係わり、特に遷音速で作動
する動翼列を有する軸流圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine or industrial axial flow compressor, and more particularly to an axial flow compressor having a row of moving blades operating at a transonic speed.

【0002】[0002]

【従来の技術】多段軸流圧縮機は図4に示した軸流圧縮
機の模式図のように複数の動翼列42が取り付けられた
回転3するロータ44と、複数の静翼列41を取り付け
たケーシング43より構成され、ロータ44とケーシン
グ43および各翼列41,42により環状流路が形成さ
れている。流入気流1はこの環状流路を通過しながら、
各翼列により圧縮され高温高圧の流出気流2となる。軸
流圧縮機の設計においては、所定の流量と圧力比が高い
効率で達成されるように、流路形状と翼列が設計され
る。
2. Description of the Related Art A multi-stage axial compressor includes a rotating rotor 44 having a plurality of moving blade rows 42 attached thereto and a plurality of stationary blade rows 41 as shown in the schematic diagram of the axial flow compressor shown in FIG. An annular flow path is formed by the casing 43 attached, and the rotor 44, the casing 43, and each of the blade rows 41 and 42. While the inflow airflow 1 passes through this annular flow path,
It is compressed by each cascade to become a high-temperature and high-pressure outflow airflow 2. In the design of the axial compressor, the flow path shape and the cascade are designed so that a predetermined flow rate and pressure ratio are achieved with high efficiency.

【0003】軸流圧縮機の翼列設計では、回転による遠
心力および気流から受ける流体力による、翼付け根部分
に作用する応力に対応するため、十分な翼根元厚みが設
けられる。軸流圧縮機の低圧段動翼の先端部分では、周
速が大きいため、翼列に対する流入マッハ数が高く、流
入流速が音速を超える領域が発生する。かかる翼列の先
端部断面においては、文献「ターボ送風機と圧縮機」
(生井武文,井上雅弘著、昭和63年、コロナ社)に記
載してあるような、二重円弧翼あるいは最大厚み位置を
後縁側にして翼前縁側を薄くした多重円弧翼の採用によ
り、衝撃波損失の低減が図られている。
In the cascade design of the axial flow compressor, a sufficient blade root thickness is provided in order to cope with the stress acting on the blade root portion due to the centrifugal force due to rotation and the fluid force received from the airflow. At the tip of the low-pressure stage rotor blade of the axial compressor, the peripheral speed is high, so that the inflow Mach number to the cascade is high, and a region where the inflow velocity exceeds the sonic speed occurs. In the section of the tip of such a cascade, see the document "Turbo Blower and Compressor"
(Takefumi Ikui, Masahiro Inoue, 1988, Corona Co., Ltd.), the shock wave by adopting a double arc wing or a multiple arc wing with the maximum thickness position on the trailing edge side and the wing leading edge side thinned The loss has been reduced.

【0004】[0004]

【発明が解決しようとする課題】軸流圧縮機の大流量化
および高周速化は翼長の増大につながり、翼が気流から
受ける流体力と、動翼においては遠心力による応力を増
大させる。そのため、材料として鋼を使用して、強度上
の信頼性を確保するために十分な根元厚みをとると、計
画流量の確保が困難となる場合がある。すなわち、翼根
元を厚くすると根元近傍断面のスロート幅が狭くなり、
文献「ターボ送風機と圧縮機」(生井武文,井上雅弘
著、昭和63年、コロナ社)に記載されている流入マッ
ハ数に対する(スロート幅/入口流路幅)の限界値よ
り、翼根元部分の(スロート幅/入口流路幅)が小さく
なってチョーク流れの状態となり、所定の流量が確保で
きない。比強度の大きいチタン合金等の高強度,軽量材
料を使用すれば、翼の根元を薄くしても強度上の信頼性
は確保でき流量の確保は容易となるが、コストが高くな
り経済的でない。また、材料は鋼で根元が厚いままで
も、先端形状をチョークマージンの大きい二重円弧翼と
すれば流量の確保は容易となるが、先端領域の超音速流
入域での衝撃波損失が増大し軸流圧縮機の効率低下につ
ながる。
An increase in the flow rate and an increase in the peripheral speed of the axial flow compressor lead to an increase in the blade length, which increases the fluid force received by the blade from the airflow and the stress caused by the centrifugal force in the rotor blade. . Therefore, if steel is used as the material and a sufficient base thickness is secured to secure the reliability in strength, it may be difficult to secure the planned flow rate. In other words, when the blade root is made thicker, the throat width of the section near the root becomes narrower,
From the limit value of (throat width / inlet passage width) for the inflow Mach number described in the document "Turbo Blower and Compressor" (Takefumi Ikui, Masahiro Inoue, 1988, Corona Co.) (Throat width / inlet flow path width) becomes small, resulting in a choke flow state, and a predetermined flow rate cannot be secured. If high strength and lightweight materials such as titanium alloy with large specific strength are used, even if the root of the blade is thinned, the reliability of strength can be secured and the flow rate can be easily secured, but the cost increases and it is not economical . In addition, even if the material is steel and the root remains thick, if the tip shape is a double arc blade with a large choke margin, it is easy to secure the flow rate, but the shock wave loss in the supersonic inflow region in the tip region increases and the shaft loss increases. This leads to reduced efficiency of the flow compressor.

【0005】そこで本発明の目的は、低コストで強度上
の信頼性を確保する厚翼としたうえで、チョーク流れを
回避し、所定の流量の確保と先端部での衝撃波損失の低
減、を可能とする遷音速翼列、を有する軸流圧縮機を提
供することにある。
Accordingly, an object of the present invention is to provide a thick blade which ensures reliability in strength at low cost, avoids choke flow, secures a predetermined flow rate, and reduces shock wave loss at the tip. It is an object of the present invention to provide an axial compressor having a transonic cascade.

【0006】[0006]

【課題を解決するための手段】前記課題を解決する本発
明は、遷音速動翼列の少なくとも1つの動翼列の超音速
流入断面で、翼面の中心線である反り線を2つ以上の円
弧で構成し、かつ最前縁側の円弧接続位置を翼弦長の半
分より前縁側に設け、かつ最前縁側に位置する円弧の中
心角を、最前縁側に位置する円弧以外の円弧の中心角の
和以上にして、かつ最前縁側の円弧接続位置を翼先端に
向かって前縁側にすることにより、所定の流量を確保
し、先端部での衝撃波損失を低減するものである。
According to the present invention, there is provided a supersonic inflow section of at least one moving blade row of a transonic moving blade row, wherein two or more warpage lines which are center lines of the blade surface are formed. The arc connection position on the forefront edge side is provided on the front edge side from half of the chord length, and the center angle of the arc located on the front edge side is the center angle of the arc other than the arc located on the front edge side. By setting the arc connection position on the leading edge side toward the leading edge side toward the blade tip, the predetermined flow rate is ensured, and the shock wave loss at the tip part is reduced.

【0007】また、遷音速動翼列の少なくとも1つの動
翼列の超音速流入断面で、翼面の中心線である反り線
を、その反り線の曲率半径が、前縁から翼弦長の半分以
下の位置より増加を始め、前縁から翼弦長の半分以下の
位置で翼弦長に対する増加率が減少もしくは後縁まで一
定となるように構成して、かつ超音速流入域で反り線の
曲率半径が増加を開始する位置を翼先端に向かって前縁
側にすることにより、所定の流量を確保し、先端部での
衝撃波損失を低減するものである。
In the supersonic inflow cross section of at least one of the transonic rotor cascades, a warp line, which is a center line of the blade surface, is formed such that the curvature radius of the warp line is equal to the chord length from the leading edge. Start increasing from less than half of the chord length at the position less than half the chord length from the leading edge, or decrease or remain constant from the trailing edge to the chord length. By setting the position where the radius of curvature starts to increase toward the leading edge toward the tip of the blade, a predetermined flow rate is ensured, and the shock wave loss at the tip is reduced.

【0008】[0008]

【発明の実施の形態】本発明の実施例を図1,図2およ
び図4を用いて説明する。図4は本発明を適用した軸流
圧縮機を示す。図4に示す軸流圧縮機は、静翼列41を
取り付けたケーシング43,動翼列42を取り付けた回
転3するロータ44を持ち、流入気流1は複数の静翼列
41と複数の動翼列42を通過して高温,高圧の流出気
流2となる。超音速流入域45とは、図4に示すように
遷音速動翼列の先端側に位置していて、一般的には翼先
端ほど流入マッハ数は高い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 4 shows an axial compressor to which the present invention is applied. The axial flow compressor shown in FIG. 4 has a casing 43 to which a stationary blade row 41 is attached, and a rotating rotor 44 to which a moving blade row 42 is attached, and the inflow airflow 1 has a plurality of stationary blade rows 41 and a plurality of rotating blades. After passing through the row 42, a high-temperature, high-pressure outflow air stream 2 is formed. The supersonic inflow region 45 is located on the tip side of the transonic rotor cascade as shown in FIG. 4, and the inflow Mach number is generally higher at the tip of the blade.

【0009】動翼列の超音速流入断面(例えば断面A−
A)は、図5に示すような形状で、翼面の中心線である
反り線12が定義される。図5は反り線12が、反り接
続位置13で接続された、それぞれ円弧反り線の中心角
φ1,φ2,曲率半径R1,R2の2つの円弧反り線か
ら構成されている例である。
[0009] The supersonic inflow section of the rotor row (for example, section A-
A) has a shape as shown in FIG. 5 and defines a warp line 12 which is the center line of the wing surface. FIG. 5 shows an example in which the warp line 12 is composed of two arc warp lines connected at the warp connection position 13 and each having a center angle φ1, φ2 of a circular warp line and a radius of curvature R1, R2.

【0010】図1(a)は、2つの円弧より翼の中心線
である反り線12を構成し、円弧接続位置(最前縁側の
円弧接続位置)13を翼弦長11の半分より前縁16側
にして、前縁側(最前縁側)に位置する円弧の中心角φ
1を、後縁側に位置する円弧(最前縁側の円弧以下の円
弧)の中心角φ2(中心角の和)より大きくした例であ
る。このような反り線を構成すると、反り接続位置(最
前縁側の反り接続位置)13までの背側翼面14の曲率
半径が小さく、反り接続位置(最前縁側の反り接続位
置)13から後縁17までの背側翼面14の曲率半径が
大きい。ここでいう翼面の曲率半径とは翼で一般的な前
縁近傍と後縁近傍での急激な曲率変化は考慮していな
い。
In FIG. 1A, a warp line 12 which is a center line of a blade is formed by two arcs, and an arc connection position (a frontmost arc connection position) 13 is shifted from a half of a chord length 11 to a front edge 16. And the center angle φ of the arc located at the leading edge (most leading edge)
This is an example in which 1 is larger than the central angle φ2 (sum of central angles) of an arc located on the trailing edge side (an arc smaller than the arc on the leading edge side). When such a warp line is formed, the radius of curvature of the back side wing surface 14 up to the warp connection position (leading edge side warp connection position) 13 is small, and from the warp connection position (leading edge side warp connection position) 13 to the trailing edge 17. The radius of curvature of the back side wing surface 14 is large. Here, the radius of curvature of the wing surface does not take into account sudden changes in curvature near the leading edge and the trailing edge, which are common in wings.

【0011】曲率半径の小さい翼面領域での流れの加速
は大きく、反対に曲率半径の大きい翼面領域での加速は
小さい。したがって反り接続位置(最前縁側の反り線の
接続位置)13を翼弦長11の半分の位置より前縁側に
すると、加速の領域が短くなり、マッハ数を低減するこ
とができる。すなわち、前縁近傍での加速は大きくなる
がその領域が短いため、翼間衝撃波の発生するスロート
位置18でのマッハ数を低く抑えることができ、衝撃波
損失を低減することができる。
[0011] The acceleration of the flow in the wing surface region having a small radius of curvature is large, while the acceleration in the wing surface region having a large radius of curvature is small. Therefore, if the warp connection position (the connection position of the warp line on the forefront edge side) 13 is on the front edge side from a half position of the chord length 11, the acceleration region becomes shorter, and the Mach number can be reduced. In other words, the acceleration near the leading edge increases, but the region is short, so that the Mach number at the throat position 18 where the interblade shock wave is generated can be kept low, and the shock wave loss can be reduced.

【0012】また、反り接続位置(最前縁側の円弧接続
位置)13を翼弦長11の半分より前縁側にして、前縁
側(最前縁側に位置する円弧)の中心角φ1を、後縁側
に位置する円弧の中心角φ2(最前縁側に位置する円弧
以外の円弧の中心角の和)以上になるように2つの円弧
(2つ以上の円弧)より、翼の中心線である反り線12
を構成しているので、前縁側の腹側翼面15が凸面の度
合いが緩和されあるいは凹面の状態となり、後縁側の背
側翼面14でも曲率が小さく凸面の度合いが緩和され
る。したがって、後縁側背側翼面上の点と前縁側腹側翼
面上の点で構成されるスロート18の幅が広がり(スロ
ート幅/入口流路幅)の値を大きくすることができる。
したがって、先端近傍ではチョーク限界に対し大きいマ
ージンを持たせることが可能となり、根元近傍のチョー
ク状態を相殺し計画した流量を確保できる。
Further, the warp connection position (arc connection position on the forefront edge side) 13 is set to the front edge side from half of the chord length 11, and the center angle φ1 of the front edge side (the arc located on the forefront edge side) is set to the rear edge side. Warp line 12 which is the center line of the wings from two arcs (two or more arcs) so as to be larger than or equal to the central angle φ2 (the sum of the central angles of the arcs other than the arc located on the leading edge side).
Therefore, the degree of convexity of the front-side abdominal wing surface 15 is reduced or the surface of the rear-side wing surface 14 of the rear-edge side is reduced in curvature, and the degree of convexity is reduced. Therefore, the width of the throat 18 formed by the points on the trailing edge-side dorsal wing surface and the points on the leading edge-side ventral wing surface can be increased, and the value of (throat width / inlet flow path width) can be increased.
Therefore, it is possible to provide a large margin with respect to the choke limit near the tip, thereby canceling the choke state near the root and securing the planned flow rate.

【0013】さらに、図1(b)に示すように翼先端に
向かって反り接続位置(最前縁側の反り線の接続位置)
の翼弦長に対する比率を減少させると、流入マッハ数の
増大を相殺するように加速領域を短くすることとなり、
全翼高さにおいて最大マッハ数を抑えることができ、衝
撃波損失を低減することができる。図1(b)では、亜
音速流入域(翼根元近傍)では反り接続位置の翼弦長に
対する比率を0.5 としているが、本発明とは直接関係
無く、どのような翼断面でもよい。
Further, as shown in FIG. 1 (b), the warp connection position toward the blade tip (connection position of the warp line on the forefront edge side)
Decreasing the ratio of the to the chord length would shorten the acceleration range to offset the increase in the inflow Mach number,
The maximum Mach number can be suppressed at the entire wing height, and the shock wave loss can be reduced. In FIG. 1 (b), the ratio of the warp connection position to the chord length is set to 0.5 in the subsonic inflow region (near the blade root), but may be of any blade cross section without being directly related to the present invention.

【0014】図2(a)は本実施例の効果を示すため
に、従来例の二重円弧翼と比較して圧力比と流量の関係
を示したものである。本発明により、上述の作用により
所定の流量が確保できていることが分かる。また、図2
(b)は従来例と本発明の実施例の衝撃波損失の比較を
示したものであるが、本発明により全ての翼高さにおい
て、上述の作用によりマッハ数が低減されるため衝撃波
損失が低減されていることが分かる。
FIG. 2A shows the relationship between the pressure ratio and the flow rate in comparison with the conventional double-arc blade in order to show the effect of this embodiment. According to the present invention, it can be seen that a predetermined flow rate can be ensured by the above-described operation. FIG.
(B) shows a comparison between the shock wave loss of the conventional example and the shock wave loss of the embodiment of the present invention. The Mach number is reduced by the above-described operation at all blade heights according to the present invention, so that the shock wave loss is reduced. You can see that it is done.

【0015】上記では、2つの円弧より反り線が構成さ
れる場合に説明したが、翼の中心線である反り線を2つ
以上の円弧より構成して、最前縁側の円弧接続位置を翼
弦長の半分より前縁側に設けて、最前縁側に位置する円
弧の中心角を、最前縁側に位置する円弧以外の円弧の中
心角の和以上にすれば、同様の作用により、所定の流量
を確保し、衝撃波損失を低減できる。
In the above description, the case where the warp line is constituted by two arcs has been described. However, the warp line, which is the center line of the blade, is constituted by two or more arcs, and the arc connection position on the leading edge side is determined by the chord. Provided on the leading edge side of half of the length, if the center angle of the arc located on the leading edge side is equal to or greater than the sum of the center angles of the arcs other than the arc located on the leading edge side, a predetermined flow rate is secured by the same action Thus, shock wave loss can be reduced.

【0016】図3は図4に示したような軸流圧縮機の超
音速流入断面(A−A断面)に、本発明を適用した第2
の実施例である。図3(a)に示すように、翼の中心線
である反り線の曲率半径が、前縁から翼弦長の半分以下
の位置より増加を始め、前縁から翼弦長の半分以下の位
置まで増加し最大値となり、以下後縁まで一定であるよ
うに翼面の中心線である反り線を構成したものである。
FIG. 3 shows a second embodiment of the present invention applied to a supersonic inflow section (AA section) of an axial compressor as shown in FIG.
This is an embodiment of the invention. As shown in FIG. 3A, the radius of curvature of the warp line, which is the center line of the wing, starts increasing from a position less than half the chord length from the leading edge, and a position less than half the chord length from the leading edge. In this case, a warp line, which is the center line of the wing surface, is configured so that it increases to a maximum value and is constant until the trailing edge.

【0017】このような反り線を構成すると、反り線の
曲率半径が増加始める位置31までの、背側翼面の曲率
半径は小さく、反り線の曲率半径が一定ともなる位置3
2以後の背側翼面の曲率半径は大きい。背側翼面では前
縁から曲率半径が最大に達するあたりまで加速は続く
が、それより下流では翼面の曲率半径が大きいため加速
の度合いが小さい。したがって曲率が一定値に達する位
置(曲率半径の増加率が減少する位置)を翼弦長の半分
の位置より前縁側にすると、加速の領域が短くなり、マ
ッハ数を低減することができる。
When such a warp line is formed, a position 3 where the radius of curvature of the back side wing surface is small and the curvature radius of the warp line is constant up to a position 31 where the radius of curvature of the warp line starts increasing.
The radius of curvature of the back side wing surface after 2 is large. On the dorsal wing surface, acceleration continues from the leading edge to the point where the radius of curvature reaches a maximum, but the degree of acceleration is lower downstream than that because the radius of curvature of the wing surface is large. Therefore, if the position where the curvature reaches a constant value (the position where the rate of increase of the radius of curvature decreases) is closer to the leading edge than the position where the chord length is half, the acceleration region becomes shorter, and the Mach number can be reduced.

【0018】すなわち、前縁近傍での加速は大きくなる
がその領域が短いため、翼間衝撃波の発生するスロート
位置でのマッハ数を低く抑えることができ、衝撃波損失
を低減することができる。また、前縁近傍で反り線の曲
率半径が小さいので、前縁側の腹側翼面で凸面の度合い
が緩和されあるいは前縁側の腹側翼面が凹面の状態とな
る。また、後縁側の背側翼面では曲率半径が大きく凸面
の度合いが緩和される。
That is, the acceleration near the leading edge increases, but the region is short, so that the Mach number at the throat position where the interblade shock wave is generated can be suppressed low, and the shock wave loss can be reduced. Further, since the radius of curvature of the warp line is small near the leading edge, the degree of convexity on the leading edge side ventral wing surface is reduced, or the leading edge side ventral wing surface becomes concave. In addition, the radius of curvature is large on the rear side wing surface on the trailing edge side, and the degree of convexity is reduced.

【0019】したがって、後縁側背側翼面上の点と前縁
側腹側翼面上の点で構成されるスロートの幅が広がり
(スロート幅/入口流路幅)の値を大きくすることがで
き、先端近傍ではチョーク限界に対し大きいマージンを
持たせることが可能となり、根元近傍のチョーク状態を
相殺し計画した流量を確保できる。
Therefore, the width of the throat formed by the points on the trailing edge-side dorsal wing surface and the points on the leading edge-side ventral wing surface can be increased, and the value of (throat width / inlet flow path width) can be increased. In the vicinity, it is possible to have a large margin with respect to the choke limit, thereby canceling the choke state near the root and securing the planned flow rate.

【0020】さらに、図3(b)に示すように、反り線
の曲率半径が増加を開始する位置31を翼先端に向かっ
て前縁側にする(翼弦長に対する比率を小さくする)
と、流入マッハ数の増大を相殺するように加速領域を短
くすることとなり、全翼高さにおいて最大マッハ数を抑
えることができ、衝撃波損失を低減することができる。
図3(b)では、亜音速流入域(翼根元近傍)では反り
線の曲率半径が増加を始める位置の翼弦長に対する割合
を0.5 としているが、このことは本発明とは直接関係
なく、どのような翼断面でもよい。
Further, as shown in FIG. 3B, the position 31 where the curvature radius of the warp line starts to increase is set to the leading edge side toward the blade tip (the ratio to the chord length is reduced).
Thus, the acceleration region is shortened so as to cancel the increase in the inflow Mach number, so that the maximum Mach number can be suppressed at all blade heights, and the shock wave loss can be reduced.
In FIG. 3 (b), in the subsonic inflow region (near the blade root), the ratio of the position where the radius of curvature of the warp starts to increase to the chord length is 0.5, which is directly related to the present invention. Instead, any wing section may be used.

【0021】上記では、前縁から翼弦長の半分以下の位
置で曲率半径が一定となる例で説明したが、前縁から翼
弦長の半分以下の位置で翼弦長に対する増加率が減少す
る場合でも、同様の作用により、所定の流量の確保し、
先端部での衝撃波損失を低減できる。
In the above description, the radius of curvature is constant at a position less than half the chord length from the leading edge, but the rate of increase with respect to the chord length decreases at a position less than half the chord length from the leading edge. Even if it does, by the same action, ensure a predetermined flow rate,
Shock wave loss at the tip can be reduced.

【0022】以上説明した実施例は、流入流速が亜音速
から超音速に亙る遷音速動翼列を有する軸流圧縮機に適
用したものであるが、翼先端マッハ数が1.1〜1.3の
遷音速動翼列に適用するのがより好ましい。
The embodiment described above is applied to an axial flow compressor having a transonic rotor cascade in which the inflow velocity ranges from subsonic to supersonic, but the tip Mach number is 1.1 to 1.1. More preferably, the present invention is applied to the transonic bucket row No. 3.

【0023】[0023]

【発明の効果】以上説明したとおり、本発明により、低
コストで強度上の信頼性を確保し、かつチョーク流れを
回避し、衝撃波損失を低減した、遷音速翼列を有する高
性能の軸流圧縮機を提供できる。
As described above, according to the present invention, a high-performance axial flow having a transonic cascade, which is low in cost, secures strength reliability, avoids choke flow, and reduces shock wave loss. A compressor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は本発明による第1の実施例
である軸流圧縮機の遷音速動翼列の断面図及び流入マッ
ハ数と列接続位置との関係を示す特性図。
FIGS. 1 (a) and 1 (b) are a cross-sectional view of a transonic rotor cascade of an axial compressor according to a first embodiment of the present invention, and a characteristic diagram showing a relationship between an inflow Mach number and a row connection position. .

【図2】(a)ないし(b)は本発明の効果を示す特性
図。
FIGS. 2A and 2B are characteristic diagrams showing the effect of the present invention.

【図3】(a)ないし(b)は本発明による軸流圧縮機
の遷音速動翼列との関係を示す特性図。
FIGS. 3 (a) and 3 (b) are characteristic diagrams showing a relationship between the axial flow compressor and a transonic rotor cascade according to the present invention.

【図4】本発明を適用する軸流圧縮機の模式図。FIG. 4 is a schematic view of an axial compressor to which the present invention is applied.

【図5】本発明の動翼列の反り接続位置を説明する図。FIG. 5 is a diagram illustrating a warp connection position of a bucket row according to the present invention.

【符号の説明】[Explanation of symbols]

1…流入気流、2…流出気流、3…回転、11…翼弦
長、12…反り線、13…反り接続位置、14…背側翼
面、15…腹側翼面、16…前縁、17…後縁、18…
スロート、31…反り線の曲率半径が増加を始める位
置、32…反り線の曲率半径が最大で一定となるもしく
は増加率が減少する位置、41…静翼列、42…動翼
列、43…ケーシング、44…ロータ、45…超音速流
入域、φ1,φ2…円弧中心角。
DESCRIPTION OF SYMBOLS 1 ... Inflow airflow, 2 ... Outflow airflow, 3 ... Rotation, 11 ... Chord length, 12 ... Warp line, 13 ... Warp connection position, 14 ... Dorsal wing surface, 15 ... Ventral wing surface, 16 ... Leading edge, 17 ... Trailing edge, 18 ...
Throat, 31 ... Position where the radius of curvature of the warp line starts to increase, 32 ... Position where the radius of curvature of the warp line is maximum and constant or the rate of increase decreases, 41 ... Stator blade row, 42 ... Rotating blade row, 43 ... Casing, 44: rotor, 45: supersonic inflow area, φ1, φ2: arc center angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流入流速が亜音速から超音速に亙る遷音速
動翼列を有する軸流圧縮機において、当該遷音速動翼列
の少なくとも1つの動翼列の超音速流入断面で、翼面の
中心線である反り線を2つ以上の円弧で構成し、かつ最
前縁側の円弧接続位置を翼弦長の半分より前縁側に設
け、かつ最前縁側に位置する円弧の中心角を、最前縁側
に位置する円弧以外の円弧の中心角の和以上にし、かつ
最前縁側の円弧接続位置を翼先端に向かって前縁側にし
たことを特徴とする軸流圧縮機。
An axial flow compressor having a transonic moving blade cascade having an inflow velocity ranging from subsonic to supersonic speeds, wherein a supersonic inflow section of at least one moving blade cascade of the transonic moving cascade has a blade surface. The center line of the arc is located at two or more arcs, and the arc connection position on the forefront edge side is provided closer to the front edge side than half of the chord length, and the center angle of the arc located on the forefront edge side is the front edge side. An axial flow compressor characterized in that the center angle of the arc other than the arc located at the center is equal to or greater than the sum of the center angles of the arcs, and the arc connection position on the frontmost edge side is on the front edge side toward the blade tip.
【請求項2】流入流速が亜音速から超音速に亙る遷音速
動翼列を有する軸流圧縮機において、当該遷音速動翼列
の少なくとも1つの動翼列の超音速流入断面で、翼面の
中心線である反り線を、その反り線の曲率半径が、前縁
から翼弦長の半分以下の位置より増加を始め、かつ前縁
から翼弦長の半分以下の位置で翼弦長に対する増加率が
減少もしくは後縁まで一定となるように構成し、かつ反
り線の曲率半径が増加を開始する位置を翼先端に向かっ
て前縁側にしたことを特徴とする軸流圧縮機。
2. An axial flow compressor having a transonic rotor cascade with an inflow velocity ranging from subsonic to supersonic, wherein at least one of the transonic rotor cascades has a supersonic inflow cross section, and a blade surface The radius of curvature of the warp line starts increasing from a position less than half the chord length from the leading edge, and the curvature line relative to the chord length at a position less than half the chord length from the leading edge. An axial flow compressor, wherein an increasing rate is reduced or constant up to a trailing edge, and a position where a curvature radius of a warp line starts increasing is set to a leading edge side toward a blade tip.
JP15251898A 1998-06-02 1998-06-02 Axial flow compressor Pending JPH11343998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15251898A JPH11343998A (en) 1998-06-02 1998-06-02 Axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15251898A JPH11343998A (en) 1998-06-02 1998-06-02 Axial flow compressor

Publications (1)

Publication Number Publication Date
JPH11343998A true JPH11343998A (en) 1999-12-14

Family

ID=15542205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15251898A Pending JPH11343998A (en) 1998-06-02 1998-06-02 Axial flow compressor

Country Status (1)

Country Link
JP (1) JPH11343998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155613A (en) * 2003-10-31 2005-06-16 Hitachi Ltd Gas turbine and its manufacturing method
US7913495B2 (en) 2003-10-31 2011-03-29 Hitachi, Ltd. Gas turbine and manufacturing process of gas turbine
CN102454633A (en) * 2010-10-14 2012-05-16 株式会社日立制作所 Axial compressor
WO2016024461A1 (en) * 2014-08-12 2016-02-18 株式会社Ihi Compressor stator vane, axial flow compressor, and gas turbine
CN106844839A (en) * 2016-12-14 2017-06-13 中国长江动力集团有限公司 Method for optimizing turbine blade molded line
EP2631491A4 (en) * 2010-10-18 2017-08-16 Mitsubishi Hitachi Power Systems, Ltd. Transonic blade
CN115270318A (en) * 2022-06-15 2022-11-01 中国船舶重工集团公司第七0三研究所 Modeling method for transonic-grade moving blade of axial flow compressor of marine gas turbine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155613A (en) * 2003-10-31 2005-06-16 Hitachi Ltd Gas turbine and its manufacturing method
US7913495B2 (en) 2003-10-31 2011-03-29 Hitachi, Ltd. Gas turbine and manufacturing process of gas turbine
US7937947B2 (en) 2003-10-31 2011-05-10 Hitachi, Ltd. Gas turbine and manufacturing process of gas turbine
CN102454633A (en) * 2010-10-14 2012-05-16 株式会社日立制作所 Axial compressor
EP2631491A4 (en) * 2010-10-18 2017-08-16 Mitsubishi Hitachi Power Systems, Ltd. Transonic blade
WO2016024461A1 (en) * 2014-08-12 2016-02-18 株式会社Ihi Compressor stator vane, axial flow compressor, and gas turbine
US10480532B2 (en) 2014-08-12 2019-11-19 Ihi Corporation Compressor stator vane, axial flow compressor, and gas turbine
CN106844839A (en) * 2016-12-14 2017-06-13 中国长江动力集团有限公司 Method for optimizing turbine blade molded line
CN106844839B (en) * 2016-12-14 2020-01-31 中国长江动力集团有限公司 Method for optimizing the profile of a steam turbine blade
CN115270318A (en) * 2022-06-15 2022-11-01 中国船舶重工集团公司第七0三研究所 Modeling method for transonic-grade moving blade of axial flow compressor of marine gas turbine

Similar Documents

Publication Publication Date Title
JP4307706B2 (en) Curved barrel airfoil
JP5301148B2 (en) Turbine assembly of gas turbine engine and manufacturing method thereof
JP3876195B2 (en) Centrifugal compressor impeller
JP4746484B2 (en) Integrated counter rotating turbo fan
JP4691002B2 (en) Mixed flow turbine or radial turbine
US4531890A (en) Centrifugal fan impeller
US8186962B2 (en) Fan rotating blade for turbofan engine
US6358003B2 (en) Rotor blade an axial-flow engine
JP5172320B2 (en) Gas turbine engine including inclined vanes and method of assembling the same
EP2096320B1 (en) Cascade of axial compressor
JP2007536459A (en) Extraction of shock wave induced boundary layer of transonic gas turbine
JPH0783196A (en) Axial compressor
US5513952A (en) Axial flow compressor
US6312221B1 (en) End wall flow path of a compressor
JPH01121599A (en) Radial discharge centrifugal compressor
JP4115180B2 (en) Impeller and centrifugal compressor
JP4949882B2 (en) Centrifugal compressor impeller and centrifugal compressor
JPH11343998A (en) Axial flow compressor
JPH11148497A (en) Moving blade of axial flow compressor
JPH11229805A (en) Turbine blade and steam turbine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH11173104A (en) Turbine rotor blade
JPS6139482B2 (en)
US11220910B2 (en) Compressor stator
JPH1113692A (en) Axial flow compressor cascade