JP2002047880A - Method of estimating displacement of facing peripheral part of tunnel, and method of determining prelining member - Google Patents

Method of estimating displacement of facing peripheral part of tunnel, and method of determining prelining member

Info

Publication number
JP2002047880A
JP2002047880A JP2000235619A JP2000235619A JP2002047880A JP 2002047880 A JP2002047880 A JP 2002047880A JP 2000235619 A JP2000235619 A JP 2000235619A JP 2000235619 A JP2000235619 A JP 2000235619A JP 2002047880 A JP2002047880 A JP 2002047880A
Authority
JP
Japan
Prior art keywords
tunnel
displacement
face
ground
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000235619A
Other languages
Japanese (ja)
Other versions
JP3869193B2 (en
Inventor
Seiji Hiruko
清二 蛭子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2000235619A priority Critical patent/JP3869193B2/en
Publication of JP2002047880A publication Critical patent/JP2002047880A/en
Application granted granted Critical
Publication of JP3869193B2 publication Critical patent/JP3869193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of easily and accurately estimating the displacement of a facing peripheral part of a tunnel at a low cost, and a method of determining a prelining member of the tunnel. SOLUTION: An equation for estimating the displacement of the facing peripheral part of the tunnel generated when the tunnel is excavated comprises an equation expressing a curve R based on a circular tunnel theoretical equation which is a dynamical theoretical equation, and an equation expressing a prediction curve P formed referring to an initial earth pressure release rate curve based on a finite element method analysis. A curve of the estimation equation is formed of the continuation of the curve R of the circular tunnel theoretical equation and the prediction curve P. Since the equation expressing the prediction curve P shows the displacement relatively accurately in a region where the displacement cannot be accurately computed by the dynamical theoretical equation, the estimation equation of the displacement becomes accurate over the whole region. The force applied to the prelining member of the tunnel from the ground is easily and accurately estimated using the estimation equation, so that the dimensions, shape and installed state of the prelining member can be easily and appropriately determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、トンネルの切羽
周辺部分の変位推定方法および先受部材の決定方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating a displacement around a face of a tunnel and a method for deciding a receiving member.

【0002】[0002]

【従来の技術】従来、トンネル工事において、切羽やト
ンネル壁面を安定にする補助工法として、図8に示すよ
うな先受工法がある。図8はトンネルの縦断面図であ
る。この先受工法は、まず、トンネルTのトンネル壁面
101に、リング支保土104を施工し、次いでコンク
リートを吹付けて所定厚みの覆工コンクリート層106
を形成し、その後に切羽102より後方の位置に、先受
部材としての鋼管103を、トンネル軸に対して所定の
角度をなすと共にトンネル横断面において放射状に、上
記切羽102の前方に向って挿入する。続いて、上記鋼
管103に設けた孔を介して鋼管103の周りの地盤に
硬化材を注入し、その後、上記トンネルTを掘り進め
る。そうすると、トンネルTの切羽102の前方やトン
ネルTの先端部周辺の地盤が緩んでトンネルの内空側へ
変位しようとするが、この地盤の変位しようとする力を
上記鋼管103で支持して、トンネルTの切羽102の
前方およびトンネルTの壁面101を安定させるように
している。
2. Description of the Related Art Conventionally, in a tunnel construction, there is a prior construction method as shown in FIG. 8 as an auxiliary construction method for stabilizing a face and a tunnel wall surface. FIG. 8 is a longitudinal sectional view of the tunnel. In this pre-receiving method, first, a ring-supporting soil 104 is constructed on the tunnel wall surface 101 of the tunnel T, and then concrete is sprayed onto the lining concrete layer 106 having a predetermined thickness.
After that, a steel pipe 103 as a receiving member is inserted at a position behind the face 102 at a predetermined angle with respect to the tunnel axis and radially in the tunnel cross section toward the front of the face 102. I do. Subsequently, a hardening material is injected into the ground around the steel pipe 103 through a hole provided in the steel pipe 103, and thereafter, the tunnel T is dug. Then, the ground in front of the face 102 of the tunnel T and around the tip of the tunnel T is loosened and tends to be displaced toward the inner space side of the tunnel, but the force for displacing the ground is supported by the steel pipe 103, The front of the face 102 of the tunnel T and the wall surface 101 of the tunnel T are stabilized.

【0003】上記先受工法において、上記鋼管103の
寸法や配置状態の決定は、トンネルTの切羽周辺部分
(切羽102の前方と、トンネルTの先端部の周辺とを
合わせて切羽周辺部分という)に掘削進行によって生じ
る緩み領域を推定して、この緩み領域の大きさに相当す
る地山荷重が鋼管103の上方から死荷重として作用す
ると仮定し、このとき、鋼管103は、トンネルT側端
部を固定端とする片持ち梁の構造として機能し、その曲
げ剛性から支持力が発揮されると仮定することにより行
われている。そして、緩み領域の大きさは、まず、トン
ネルTの切羽周辺部分の地盤の岩質を調べた後、その岩
質とトンネルの形状や土被りに対応する緩み領域の大き
さを、模型実験や過去の工事の実績を基に推定してい
る。この緩み領域の体積に地盤の単位体積重量を乗じた
値が鋼管103に作用する力である。
[0003] In the above-mentioned prior receiving method, the dimensions and arrangement of the steel pipe 103 are determined in the vicinity of the face of the tunnel T (the front of the face 102 and the periphery of the tip of the tunnel T are referred to as the face periphery). At the end of the tunnel T, it is assumed that a ground load corresponding to the size of the slack region acts as a dead load from above the steel pipe 103. It functions as a structure of a cantilever having a fixed end, and assumes that a supporting force is exhibited from its bending rigidity. First, after examining the rock quality of the ground around the face of the tunnel T, the size of the loose area corresponding to the shape of the tunnel and the shape of the tunnel, and the size of the soil cover were determined by model experiments and Estimated based on past construction results. The value obtained by multiplying the volume of the loose area by the unit volume weight of the ground is the force acting on the steel pipe 103.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記ト
ンネルTの切羽周辺部分の緩み体積の推定方法は、岩質
と、従来の工事や模型実験等に基づいて、経験的に推定
しているので、不正確である。したがって、この緩み体
積から推定した上記鋼管103に働く力も不正確になっ
て、そのため、実際に必要な鋼管よりも過大な鋼管を用
いてトンネルTの工事費用が高くなったり、あるいは、
実際に必要な鋼管よりも過小な鋼管を用いて地盤からの
力を支持できなくて、トンネルTの切羽102および壁
面101が不安定になったりするという問題がある。
However, the method of estimating the loose volume around the face of the tunnel T is based on empirical estimation based on rock quality and conventional construction and model tests. Inaccurate. Accordingly, the force acting on the steel pipe 103 estimated from the loose volume becomes inaccurate, and therefore, the construction cost of the tunnel T is increased by using a steel pipe that is larger than the actually required steel pipe, or
There is a problem that the face 102 and the wall surface 101 of the tunnel T become unstable because a force from the ground cannot be supported by using a steel pipe smaller than an actually necessary steel pipe.

【0005】そこで、上記鋼管103に働く力を正確に
把握するために、トンネルTの切羽周辺部分の変位を有
限要素法等の数値解析で推定し、この推定した変位の増
分から、鋼管103に作用する力を求める方法も考えら
れるが、トンネルTの全長に亘るモデルを作成して数値
解析をする必要があり、しかも変位の増分を求めるため
にトンネル進行方向の所定の切羽進行長ごとに解析を行
う必要があるので、多大な手間と費用がかかる。
Therefore, in order to accurately grasp the force acting on the steel pipe 103, the displacement of the periphery of the face of the tunnel T is estimated by numerical analysis such as a finite element method. Although a method of calculating the acting force is also conceivable, it is necessary to create a model over the entire length of the tunnel T and perform a numerical analysis, and furthermore, in order to obtain an increment of displacement, an analysis is performed for each predetermined face traveling length in the tunnel traveling direction. Requires a great deal of labor and cost.

【0006】また、上記鋼管103の現場挙動計測結果
によれば、鋼管から発揮される支持力は鋼管の曲げ剛性
ではなく鋼管軸方向の垂直剛性から主体的に誘起される
ことが明かにされており、前記した梁構造を仮定した支
持力発現機構は不適当であると言え、曲げ剛性での荷重
負担を考える分、鋼管の断面性能を上げる必要があり、
過大設計となる可能性が高い。
According to the results of the field behavior measurement of the steel pipe 103, it has been clarified that the supporting force exerted by the steel pipe is mainly induced not by the bending rigidity of the steel pipe but by the vertical rigidity in the axial direction of the steel pipe. Therefore, it can be said that the supporting force expression mechanism assuming the above-mentioned beam structure is inappropriate, and it is necessary to improve the cross-sectional performance of the steel pipe by considering the load load with bending rigidity,
There is a high possibility of overdesign.

【0007】そこで、本発明の目的は、容易かつ安価
に、それにも拘らず正確にトンネルの切羽周辺部分の変
位を推定する方法と、それを用いたトンネルの先受部材
の決定方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for easily and inexpensively estimating the displacement of the periphery of a face of a tunnel in spite of that, and a method for determining a precedent member of a tunnel using the method. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明のトンネルの切羽周辺部分の変位推定方法
は、トンネルの切羽周辺部分がそのトンネルの掘削によ
り生じる変位を、予め定めた推定式によって求めること
を特徴としている。
In order to achieve the above object, a method for estimating the displacement of a portion around a face of a tunnel according to the present invention comprises: It is characterized by the following.

【0009】本発明のトンネルの先受部材の決定方法
は、掘削されたトンネルの切羽周辺部分に設置されて、
上記地盤の変位によって誘発される力を支持して、上記
トンネルの切羽および壁面を安定にするトンネルの先受
部材の決定方法において、上記のトンネルの切羽周辺部
分の変位推定方法を用いて上記先受部材に作用する力を
求めて、上記先受部材の寸法、形状、打設間隔及び打設
角度の少なくとも1つを決定することを特徴としてい
る。
According to the method for determining a precedent member of a tunnel according to the present invention, the method is provided around a face of an excavated tunnel,
In the method for determining a front end member of a tunnel which stabilizes a face and a wall surface of the tunnel by supporting a force induced by the displacement of the ground, the method for estimating a displacement of a periphery of a face of the tunnel may be used to determine The present invention is characterized in that at least one of a size, a shape, a casting interval, and a casting angle of the receiving member is determined by obtaining a force acting on the receiving member.

【0010】[0010]

【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments.

【0011】図1(a),(b)は、本発明のトンネル
の切羽周辺部分の変位推定方法による変位推定式の曲線
であり、トンネルの切羽周辺部分において、そのトンネ
ルが掘削されたときに生じる変位分布を示す曲線であ
る。図1(a)の縦軸は、トンネル軸方向の無次元変位
u* zを示し、正の符号は切羽が進行する方向である。図
1(b)の縦軸は、鉛直方向の無次元変位u* yを示し、
負の符号はトンネル内空側の方向である。図1(a),
(b)の横軸は、切羽位置を原点としてトンネル半径a
で無次元化したトンネル軸方向位置z/aを示す。図1
(a),(b)の曲線は、曲線Rと、予想曲線Pとから
なり、二つの曲線P,Rは、下に示すような式を基にし
ている。
FIGS. 1 (a) and 1 (b) are curves of a displacement estimating equation according to the displacement estimating method of a portion around a face of a tunnel according to the present invention. It is a curve which shows the displacement distribution which arises. The vertical axis in FIG. 1A is the dimensionless displacement in the tunnel axis direction.
u * z, and a positive sign indicates the direction in which the face moves. The vertical axis in FIG. 1 (b) indicates the dimensionless displacement u * y in the vertical direction,
The negative sign is the direction toward the inside of the tunnel. FIG. 1 (a),
The horizontal axis in (b) is the tunnel radius a with the face position as the origin.
Shows the dimension z / a of the tunnel axis in the dimensionless direction. Figure 1
The curves (a) and (b) consist of a curve R and an expected curve P, and the two curves P and R are based on the following equations.

【0012】[0012]

【数3】 (Equation 3)

【0013】但し、u:トンネル半径方向の地盤の変位
量、a:トンネル半径、ν:地盤のポアソン比、E:地盤
のヤング率、P0:トンネル掘削前の地圧、Pi:トンネル
掘削直後の地圧、r:トンネル横断面切羽中心を原点と
する極座標の動径である。
Where u is the displacement of the ground in the radial direction of the tunnel, a is the radius of the tunnel, ν is the Poisson's ratio of the ground, E is the Young's modulus of the ground, P 0 is the ground pressure before tunnel excavation, and P i is the tunnel excavation. Immediately after earth pressure, r: moving radius in polar coordinates with the origin at the center of the face of the tunnel cross section.

【0014】この式(1)は円形トンネル理論によって
求められていて、円形断面のトンネルにおいて、このト
ンネルの掘削前と掘削後との地圧の差から、トンネルの
横断面方向の弾性変位を求める関数である。最初に、曲
線Rは次のように求める。まず、便宜的にトンネルの縦
断方向切羽中心位置に中心が一致する図2の点線で示さ
れた円形トンネルを考え、この円形トンネル中心を原点
とする極座標(r,θ)を導入すると、縦断方向の変位
関数は式(1)と同じになる。この式(1)を と展開し、(Q×a/r)を、ヤング率、ポアソン比、
初期地圧に依存しない無次元変位u*と表して、さら
に、この式(1)の座標系を、トンネル軸方向と鉛直方
向との直交座標系に変換すると、u*は、夫々下記の式
(2)と式(3)のようになる。
This equation (1) is obtained by the circular tunnel theory. In a circular cross section tunnel, the elastic displacement in the cross section direction of the tunnel is obtained from the difference in ground pressure before and after excavation of the tunnel. Function. First, the curve R is obtained as follows. First, for convenience, consider a circular tunnel indicated by a dotted line in FIG. 2 whose center coincides with the center position of the cutting face in the longitudinal direction, and polar coordinates (r, θ) having the origin at the center of the circular tunnel are introduced. Is the same as equation (1). This equation (1) And expand (Q × a / r) to Young's modulus, Poisson's ratio,
Expressing as a dimensionless displacement u * that does not depend on the initial ground pressure, and further transforming the coordinate system of this equation (1) into an orthogonal coordinate system of the tunnel axis direction and the vertical direction, u * is expressed by the following equation, respectively. Equation (2) and equation (3) are obtained.

【0015】[0015]

【数4】 (Equation 4)

【0016】[0016]

【数5】 (Equation 5)

【0017】但し、u* z:地盤のトンネル軸方向の無次
元変位量、u* y:地盤の鉛直方向の無次元変位量、z:ト
ンネル切羽を原点とするトンネル軸方向座標、y:トン
ネル頂部の壁面を原点とする鉛直方向座標、a:トンネ
ル半径、Q:初期地圧解放率(1−pi/p0)である。
Where u * z : dimensionless displacement of the ground in the direction of the tunnel axis, u * y : dimensionless displacement of the ground in the vertical direction, z: coordinate in the direction of the tunnel axis with the tunnel face as the origin, y: tunnel vertical coordinate as the origin wall of the top, a: tunnel radius, Q: the initial locations pressure release rate (1-p i / p 0 ).

【0018】式(2)は、図1(a)のトンネル軸方向
の変位分布を示す曲線Rを表す式で、式(3)は、図1
(b)の地盤の鉛直方向の変位分布を示す曲線におい
て、0≦zの領域の曲線Rを表す式である。
Equation (2) is an equation representing a curve R indicating the displacement distribution in the tunnel axis direction of FIG. 1A, and equation (3) is
In the curve (b) showing the vertical displacement distribution of the ground, it is an equation representing the curve R in the region of 0 ≦ z.

【0019】一方、図1(b)において、z<0の領域の
曲線は、曲線Pからなる。この曲線Pを表す式は、下記
の式(4)および式(5)に示すような式である。
On the other hand, in FIG. 1B, the curve in the region where z <0 is a curve P. The equation representing the curve P is an equation as shown in the following equations (4) and (5).

【0020】[0020]

【数6】 (Equation 6)

【0021】[0021]

【数7】 (Equation 7)

【0022】但し、u* y:地盤の鉛直方向の無次元変位
量、z:トンネル切羽を原点とするトンネル軸方向座
標、y:トンネル壁面の頂部を原点とする鉛直方向座
標、a:トンネル半径、e:自然対数の底である。
Where u * y : dimensionless displacement of the ground in the vertical direction, z: coordinate in the direction of the tunnel axis with the origin at the tunnel face, y: vertical coordinate with the origin at the top of the tunnel wall, a: radius of the tunnel , E: base of natural logarithm.

【0023】この式(4),(5)は、図3に示す曲線
を参照して定められている。図3の曲線は、地盤に、円
形断面を有するトンネルを掘削する過程とその切羽をモ
デル化して、このモデルを有限要素法で解析して求めた
初期地圧解放率曲線である。この初期地圧解放率曲線
は、上記解析結果の切羽から十分に離れた位置の収束変
位を基準にした壁面変位発生率から求めているので、地
盤変位と相関があって、さらに、この曲線のz=0での値
と、力学的理論式(1)を基に作成された推定式(3)
のz=0での値とが略等しいを等しいと置いて、この推定
式(3)に接続させてz<0において地盤の変位を推定す
るようにした。また、この曲線は、z<-4aにおいて略一
定の値に収束するので、z<-4aの領域の式は、-4a≦z<
0の領域と異なる式にした。
Equations (4) and (5) are determined with reference to the curve shown in FIG. The curve in FIG. 3 is an initial ground pressure release rate curve obtained by modeling a process of excavating a tunnel having a circular cross section on the ground and a face thereof, and analyzing the model by a finite element method. Since this initial ground pressure release rate curve is obtained from the wall displacement occurrence rate based on the convergence displacement at a position sufficiently distant from the face of the above analysis result, there is a correlation with the ground displacement, and furthermore, this curve Estimation formula (3) created based on the value at z = 0 and the mechanical theoretical formula (1)
The values at z = 0 are assumed to be substantially equal, and this is connected to this estimation formula (3) to estimate the displacement of the ground at z <0. Also, since this curve converges to a substantially constant value at z <−4a, the equation in the region of z <−4a is: -4a ≦ z <
The formula is different from the region of 0.

【0024】上記式(2),(3),(4),(5)か
らなる推定式の正確さを検証するために、図1(a),
(b)の曲線P,Rと、図4に示す曲線とを比較する。
図4の曲線は、トンネルの切羽周辺部分において、その
トンネルを掘削した場合の変位分布を示す曲線であっ
て、上記初期地圧解放率曲線を求めた場合と同じモデル
での有限要素法解析の結果である。なお、Qは解析結果
に基づき1/4とした。図4において、u* zは地盤のト
ンネル軸方向の無次元変位であり、u* yは地盤の鉛直方
向の無次元変位である。図1(a)に示す曲線Rは、図
4のu* zの曲線に略一致すると共に、図1(b)に示す
曲線R,Pは、図4のu* yの曲線に略一致する。すなわ
ち、上記推定式(2),(3),(4),(5)は、有
限要素法解析による推定と同じ程度正確に、トンネルの
切羽周辺部分の変位を推定できる。そして、最終的には
掘削対象地盤のE,v,P0を計測等により求め、 のu*にぞれぞれu* z,u* yを代入することにより、変位が
推定される。
In order to verify the accuracy of the estimation equation consisting of the above equations (2), (3), (4), and (5), FIG.
A comparison is made between the curves P and R shown in FIG. 4B and the curve shown in FIG.
The curve in FIG. 4 is a curve showing the displacement distribution when the tunnel is excavated in the vicinity of the face of the tunnel. The curve of the finite element method analysis using the same model as the case where the above-mentioned initial soil pressure release rate curve is obtained. The result. In addition, Q was set to 1/4 based on the analysis result. In FIG. 4, u * z is a dimensionless displacement of the ground in the tunnel axis direction, and u * y is a vertical dimensionless displacement of the ground. The curve R shown in FIG. 1A substantially matches the curve of u * z in FIG. 4, and the curves R and P shown in FIG. 1B substantially match the curve of u * y in FIG. . That is, the estimation formulas (2), (3), (4), and (5) can estimate the displacement around the face of the tunnel as accurately as the estimation by the finite element analysis. Finally, E, v, P 0 of the ground to be excavated is obtained by measurement or the like, The u * Nizorezore u * z, by substituting u * y, displacement is estimated.

【0025】この推定式を用いて、トンネルの先受工法
において、先受部材の寸法や形状および配置形態を決定
する方法を以下に説明する。
A method of determining the size, shape, and arrangement of the precedent member in the preceding method of the tunnel using this estimation formula will be described below.

【0026】図5は、トンネル掘削時の補助工法として
先受工法を用いるトンネル工事において、上記実施の形
態のトンネルの切羽周辺部分の変位推定方法によって先
受部材を決定したトンネルの掘削手順を示す縦断面図で
ある。まず、このトンネルTの切羽がK0の位置にある
とき、トンネル壁面2の切羽K0より多少後方に、先受
部材としての鋼管P0を、トンネル軸に対して所定の角
度をなして、上記切羽K0の前方に向って挿入する。そ
して、トンネル壁面2に切羽K0まで覆工コンクリート
3を設けて、この覆工コンクリート3で上記鋼管P0の
トンネル側端部を固定する。その後、上記トンネルTを
単位掘削量bだけ掘削して、切羽K1の位置まで掘り進
む。このように、切羽Knの多少後方のトンネル壁面2
に鋼管Pnを挿入して、覆工コンクリート3を切羽Kn
まで延長した後、単位掘削量bを掘削してトンネルの掘
削の1サイクルが終了する。図5は、上記切羽K0から
上記サイクルを5回繰り返した後、切羽K5の多少後方
のトンネル壁面2に鋼管P5を挿入して、覆工コンクリ
ート3を切羽K5まで延長した直後の様子を示してい
る。
FIG. 5 shows a tunnel excavation procedure in which a precedent member is determined by the displacement estimating method of the periphery of the face of the tunnel in the above embodiment in the tunnel construction using the precedent construction method as an auxiliary construction method at the time of tunnel excavation. It is a longitudinal cross-sectional view. First, when the face of the tunnel T is at the position K0, the steel pipe P0 as a receiving member is formed at a predetermined angle with respect to the tunnel axis, slightly behind the face K0 of the tunnel wall 2, and the face K0 is formed. Insert toward the front. Then, the lining concrete 3 is provided on the tunnel wall surface 2 up to the face K0, and the lining concrete 3 fixes the end of the steel pipe P0 on the tunnel side. Thereafter, the tunnel T is excavated by the unit excavation amount b, and the tunnel T is dug to the position of the face K1. Thus, the tunnel wall 2 slightly behind the face Kn
Steel pipe Pn is inserted into the lining concrete 3 to cut the face Kn.
After that, one cycle of tunnel excavation is completed by excavating the unit excavation amount b. FIG. 5 shows a state immediately after the steel pipe P5 is inserted into the tunnel wall 2 slightly behind the face K5 and the lining concrete 3 is extended to the face K5 after repeating the above-described cycle five times from the face K0. I have.

【0027】図6(a),(b)は、図5において、切
羽進行長が0mである切羽K0のときのK0から0.5
m後方からの鋼管挿入方向位置の地盤に生じる変位分布
を示した曲線である。なお、これらの曲線はいずれも鋼
管が挿入される方向およびその直交方向の地山変位分布
を調べたものであり、これらの分布には鋼管が地山に挿
入されることによる影響は含まれていない。図6(a)
の縦軸は、鋼管P0の軸方向の無次元地盤変位u* s0を示
し、横軸は、トンネル半径aで無次元化した鋼管P0の
軸方向位置s/aを示す。一方、図6(b)の縦軸は、鋼
管P0の軸直角方向の無次元地盤変位u* t0を示し、横軸
は、図6(a)と同様にトンネル半径aで無次元化した
鋼管P0の軸方向位置s/aを示す。図6(a),(b)
の曲線は、上記鋼管P0がトンネル軸に対して0°と、
30°と、60°の角度方向の地盤の変位を夫々示して
いて、上記推定式(2),(3),(4),(5)の座
標系を上記鋼管P0に沿う座標系に変換した式から求め
ている。
FIGS. 6 (a) and 6 (b) show 0.5 to 0.5 from K0 in FIG. 5 for the face K0 whose face length is 0 m.
It is the curve which showed the displacement distribution which arises in the ground of the steel pipe insertion direction position from the back of m. These curves are obtained by examining the ground displacement distribution in the direction in which the steel pipe is inserted and in the direction perpendicular thereto, and these distributions include the effects of the steel pipe being inserted into the ground. Absent. FIG. 6 (a)
The vertical axis indicates the non-dimensional ground displacement u * s0 in the axial direction of the steel pipe P0, and the horizontal axis indicates the axial position s / a of the non-dimensional steel pipe P0 with the tunnel radius a. On the other hand, the vertical axis in FIG. 6B shows the dimensionless ground displacement u * t0 in the direction perpendicular to the axis of the steel pipe P0, and the horizontal axis shows the dimensionless steel pipe P with the tunnel radius a as in FIG. Indicates the axial position s / a of P0. FIG. 6 (a), (b)
Curve shows that the steel pipe P0 is 0 ° with respect to the tunnel axis,
The displacements of the ground in the angular directions of 30 ° and 60 ° are respectively shown, and the coordinate system of the above estimation equations (2), (3), (4), and (5) is converted into a coordinate system along the steel pipe P0. It is calculated from the formula.

【0028】図6(a)によると、上記鋼管P0をトン
ネル軸に対して所定の角度をなして挿入する方向に生じ
る地盤の未掘削状態から切羽K0までの累積変位がわか
る。一方、図6(b)によると、上記鋼管P0をトンネ
ル軸に対して所定の角度をなして挿入する方向と直角方
向に生じる地盤の未掘削状態から切羽K0までの累積変
位がわかる。
FIG. 6A shows the cumulative displacement from the unexcavated state of the ground to the face K0, which occurs in the direction of inserting the steel pipe P0 at a predetermined angle with respect to the tunnel axis. On the other hand, according to FIG. 6B, the cumulative displacement from the unexcavated state of the ground to the face K0, which occurs in a direction perpendicular to the direction in which the steel pipe P0 is inserted at a predetermined angle with respect to the tunnel axis, can be seen.

【0029】次に切羽進行に伴う地盤変位の変化分を求
める。図6に示した変位はトンネル掘削開始から切羽K
0までの累積変位であるが、先受け工法の場合、トンネ
ル内のある切羽位置から施工が開始されるのが一般的で
あり、鋼管に生じる軸力などは、切羽進行に伴う地盤変
位の変化分によって誘起されるからである。図7
(a),(b)は、鋼管P0の配置位置の地盤につい
て、トンネルTの掘削が切羽K1から切羽K5まで進ん
だ場合に、鋼管P0軸方向の地盤変位の変化量を推定す
る曲線である。図7(a),(b)の縦軸は、無次元変
位変化量Δu* snであり、トンネルが掘進されて切羽がK
0からK1(n=1)と、K3(n=3)と、K5(n
=5)とに進んだときに、鋼管P0位置に生じる無次元
変位変化量を夫々示している。一方、図7(a),
(b)の横軸は、トンネル半径aで無次元化した鋼管P
0の軸方向位置s/aである。図7(a)の曲線は上記鋼
管P0がトンネル軸に対して20°をなして配置される
場合の地盤の鋼管軸方向の無次元変位変化量を示し、図
7(b)は上記鋼管P0がトンネル軸に対して30°を
なして配置される場合の地盤の鋼管軸方向の無次元変位
変化量を示している。なお、図7(a),(b)の曲線
は図6(a)の曲線を表す式から、1切羽の進行長(n
=1)を1m,トンネル半径を5mとして求めたもので
ある。なお、これらの曲線は、いずれも鋼管が挿入され
る方向の地山変位の変化量の分布を調べたものであり、
これらの分布には、鋼管が地山に挿入されたことによる
影響は含まれていない。この変位の変化量から、例えば
地盤と鋼管P0との間のせん断係数等を用いて、地盤か
ら鋼管P0の軸方向に作用する力を求めることができ
る。このようにして鋼管P0に作用する力を正確に求め
て、その力に耐え得る鋼管の寸法と厚みを決定する。そ
うすると、上記鋼管P0の寸法や種類を適切に決定する
ことができて、実際に必要な寸法よりも過大な鋼管を選
択して材料費が高くなったり、実際に必要な寸法よりも
過小な鋼管を選択して地盤の支持が不十分になったりす
る恐れがない。
Next, the amount of change in ground displacement accompanying the progress of the face is determined. The displacement shown in FIG.
It is a cumulative displacement up to 0, but in the case of the precedent method, construction is generally started from a certain face position in the tunnel, and the axial force generated in the steel pipe is the change in ground displacement accompanying the progress of the face. This is because they are induced by the minute. FIG.
(A) and (b) are curves for estimating the amount of change in ground displacement in the axial direction of the steel pipe P0 when the excavation of the tunnel T proceeds from the face K1 to the face K5 on the ground at the position where the steel pipe P0 is arranged. . The vertical axis in FIGS. 7 (a) and 7 (b) is the dimensionless displacement change amount Δu * sn.
From 0 to K1 (n = 1), K3 (n = 3), and K5 (n
= 5) indicates the dimensionless displacement change amount that occurs at the position of the steel pipe P0 when the process proceeds to (5). On the other hand, FIG.
The horizontal axis in (b) is the dimensionless steel pipe P with the tunnel radius a.
0 is the axial position s / a. The curve in FIG. 7A shows the dimensionless displacement change amount of the ground in the steel pipe axis direction when the steel pipe P0 is arranged at 20 ° to the tunnel axis, and FIG. 7B shows the steel pipe P0. Shows the dimensionless displacement change amount in the steel pipe axis direction of the ground when the ground is arranged at 30 ° to the tunnel axis. The curves in FIGS. 7A and 7B are obtained by calculating the travel length (n) of one face from the equation representing the curve in FIG.
= 1) is 1 m and the tunnel radius is 5 m. These curves were obtained by examining the distribution of the change in ground displacement in the direction in which the steel pipe was inserted.
These distributions do not include the effects of inserting steel pipes into the ground. From the amount of change in the displacement, a force acting on the steel pipe P0 in the axial direction from the ground can be obtained using, for example, a shear coefficient between the ground and the steel pipe P0. In this way, the force acting on the steel pipe P0 is accurately determined, and the dimensions and thickness of the steel pipe that can withstand the force are determined. Then, the size and type of the steel pipe P0 can be appropriately determined, and a steel pipe larger than the actually required dimension is selected to increase the material cost, or the steel pipe P0 smaller than the actually required dimension is selected. There is no danger that the ground support will be insufficient by selecting.

【0030】図7(a)の曲線によれば、トンネル軸に
対して20°をなす位置の地盤は、トンネルの掘削が切
羽K1から切羽K5まで進むと、負の変位変化量が増加
して鋼管P0のトンネル側端向きの力が増えると共に、
正の変位変化量が増加して鋼管P0の挿入側端向きの力
も増える。また、鋼管P0において上記軸方向の力が作
用する領域も増える。また、図7(b)の曲線によれ
ば、鋼管P0をトンネル軸に対して30°をなして配置
する場合、トンネルの掘削が切羽K5まで進むと、図7
(a)の鋼管P0を20°に配置する場合に比べて、特
に負の変位変化量、すなわち鋼管P0のトンネル側端向
きの力が大きくなり、鋼管P0において軸方向の力が作
用する領域も増える。すなわち、トンネルの掘削が切羽
K1からK5まで進むと、トンネル周辺の地盤において
地盤が緩む領域が拡大して、その結果、鋼管P0に作用
するトンネル側向きの力が増える。そして、鋼管P0の
トンネル軸に対する配置角度が大きくなると、この地盤
が緩む領域はさらに拡大して、その結果、鋼管P0に作
用するトンネル側向きの力も、さらに増える。
According to the curve of FIG. 7 (a), when the excavation of the tunnel proceeds from the cutting face K1 to the cutting face K5, the amount of negative displacement change increases in the ground at a position making an angle of 20 ° with the tunnel axis. As the force toward the tunnel side end of the steel pipe P0 increases,
The positive displacement change amount increases, and the force toward the insertion side end of the steel pipe P0 also increases. Further, the area where the axial force acts on the steel pipe P0 also increases. Further, according to the curve in FIG. 7B, when the steel pipe P0 is arranged at 30 ° to the tunnel axis, when the excavation of the tunnel proceeds to the face K5, FIG.
As compared with the case where the steel pipe P0 is arranged at 20 ° in (a), particularly, the amount of negative displacement change, that is, the force toward the tunnel side end of the steel pipe P0 increases, and the area where the axial force acts on the steel pipe P0 is also increased. Increase. That is, when the excavation of the tunnel proceeds from the cutting face K1 to K5, an area where the ground is loosened in the ground around the tunnel expands, and as a result, a force acting on the steel pipe P0 toward the tunnel side increases. When the arrangement angle of the steel pipe P0 with respect to the tunnel axis is increased, the area where the ground is loosened further expands, and as a result, the force acting on the steel pipe P0 toward the tunnel side further increases.

【0031】上記図7(a),(b)の曲線を用いる
と、トンネル軸に対して所定の角度をなして配置した鋼
管P0に、トンネルTの掘削が進んだときに、作用する
力を正確に推定できる。したがって、上記力を十分に支
持するように上記鋼管P0の長さおよび寸法を選択する
と、実際に必要で最小限の鋼管P0を選ぶことができる
ので、先受部材の材料費が経済的になって、しかも、ト
ンネル壁面と切羽を安定にできる。
Using the curves shown in FIGS. 7A and 7B, the force acting when the excavation of the tunnel T proceeds on the steel pipe P0 arranged at a predetermined angle with respect to the tunnel axis. It can be estimated accurately. Therefore, if the length and dimensions of the steel pipe P0 are selected so as to sufficiently support the above-mentioned force, it is possible to select the minimum necessary steel pipe P0, so that the material cost of the receiving member becomes economical. Moreover, the tunnel wall surface and the face can be stabilized.

【0032】さらに、上記実施の形態のトンネルの切羽
周辺部分の変位推定方法を用いると、トンネルの覆工部
材を薄くすることができる。すなわち、先受部材の配置
角度がトンネル軸に対して20°の場合、図7(a)の
地盤の変位変化曲線を用いて、地盤から鋼管P0の軸方
向に作用する力を、トンネル側端方向と挿入側端方向と
の両方向で略バランスするように上記鋼管P0の長さを
決めることができる。例えば、上記鋼管P0の長さをs/
a=2.0にすると、トンネルの掘削位置が切羽K5のと
き、地盤の鋼管P0軸方向の変位変化量が、トンネル側
端方向と挿入側端方向との両方向で略等しくなる。しか
も、トンネルの掘削が切羽K1および切羽K3に進んだ
ときに、夫々の場合において、上記鋼管P0における地
盤の軸方向の変位変化量は、挿入側端方向がトンネル側
端方向よりも大きい。したがって、この地盤から鋼管P
0に作用する力は、常に挿入側端方向がトンネル側端方
向を上回ることになる。そのため、上記鋼管P0はトン
ネル側端方向には力が殆ど作用しないので、この鋼管P
0のトンネル側端部を覆工コンクリート3によって強固
に固定して支持する必要がない。そのため、覆工コンク
リート3を薄くすることができて、トンネル工事費用が
安価になる。
Further, by using the method for estimating the displacement around the face of the tunnel according to the above-described embodiment, the lining member of the tunnel can be made thinner. That is, when the arrangement angle of the receiving member is 20 ° with respect to the tunnel axis, the force acting in the axial direction of the steel pipe P0 from the ground is applied to the tunnel side end using the ground displacement change curve of FIG. The length of the steel pipe P0 can be determined so as to be substantially balanced in both the direction and the insertion-side end direction. For example, the length of the steel pipe P0 is s /
When a = 2.0, when the excavation position of the tunnel is at the cutting face K5, the amount of change in the displacement of the ground in the axial direction of the steel pipe P0 is substantially equal in both the direction toward the tunnel side and the direction toward the insertion side. Moreover, when the excavation of the tunnel proceeds to the cutting face K1 and the cutting face K3, in each case, the amount of change in the axial displacement of the ground in the steel pipe P0 is larger in the insertion side end direction than in the tunnel side end direction. Therefore, the steel pipe P
As for the force acting on zero, the insertion side end direction always exceeds the tunnel side end direction. Therefore, almost no force acts on the steel pipe P0 in the direction of the tunnel side end.
It is not necessary to firmly fix and support the tunnel side end portion with the lining concrete 3. Therefore, the lining concrete 3 can be made thinner, and the tunnel construction cost is reduced.

【0033】上記実施の形態では、先受部材の挿入方向
の変位の変化量を用いて、先受部材に作用する力を求め
ることを説明したが、本発明はこれに限らず、挿入方向
と直角方向の変位の変化量を用いてこの変位の変化量か
ら、上記鋼管P0の弾性係数等を用いて、地盤から鋼管
P0の軸直角方向に作用する力を求めるようにしてもよ
く、また両者を併用してもよい。また、上記実施の形態
のトンネルの切羽周辺部分の変位推定方法によって先受
部材を決定したトンネルの掘削において、上記先受部材
に丸い鋼管を用いたが、この先受部材は角筒等の他のも
のでもよい。
In the above-described embodiment, the description has been given of the case where the force acting on the pre-receiving member is obtained by using the change amount of the displacement of the pre-receiving member in the insertion direction. The force acting on the steel pipe P0 in a direction perpendicular to the axis of the steel pipe P0 from the ground may be obtained from the change in the displacement using the change in the displacement in the perpendicular direction and the elasticity of the steel pipe P0 from the change in the displacement. May be used in combination. Further, in the excavation of the tunnel in which the precedent member is determined by the displacement estimating method of the periphery of the face of the tunnel in the above-described embodiment, a round steel pipe is used as the precedent member. It may be something.

【0034】本発明のトンネルの切羽周辺部分の変位推
定方法および先受部材の決定方法は、トンネル工事に限
らず、例えば石油備蓄用等の地下空洞の工事にも適用で
きる。
The method for estimating the displacement around the face of a tunnel and the method for deciding the receiving member according to the present invention can be applied not only to tunnel construction but also to construction of underground cavities for oil storage, for example.

【0035】[0035]

【発明の効果】以上より明らかなように、請求項1の発
明のトンネルの切羽周辺部分の変位推定方法は、トンネ
ルの切羽周辺部分がそのトンネルの掘削により生じる変
位を、予め定めた推定式によって求めるので、簡単にト
ンネルの切羽周辺部分の変位を推定できる。
As is apparent from the above description, the method for estimating the displacement of the periphery of a tunnel face according to the first aspect of the present invention calculates the displacement of the periphery of the tunnel face caused by excavation of the tunnel by a predetermined estimation formula. Since it is obtained, the displacement around the face of the tunnel can be easily estimated.

【0036】請求項2の発明のトンネルの切羽周辺部分
の変位推定方法は、請求項1によるトンネルの切羽周辺
部分の変位推定方法において、上記推定式は、少なくと
も1つの力学的理論式と、予め定められた予想曲線を表
す式とからなるので、上記予想曲線を表す式が、上記力
学的理論式を適用すると現実の値に合致しない領域につ
いて、変位を比較的正確に表すから、全領域にわたって
正確に変位を推定できる。
According to a second aspect of the present invention, there is provided a method for estimating a displacement of a portion around a face of a tunnel according to the first aspect, wherein the estimation formula comprises at least one dynamic theoretical formula and Since it is composed of the equation representing the determined expected curve, the equation representing the expected curve represents the displacement relatively accurately for the area that does not match the actual value when the above-mentioned dynamic theoretical equation is applied. The displacement can be accurately estimated.

【0037】請求項3の発明のトンネルの切羽周辺部分
の変位推定方法は、請求項2によるトンネルの切羽周辺
部分の変位推定方法において、上記力学的理論式は、ト
ンネルの初期地圧とトンネル掘削後の地圧と地盤のポア
ソン比および地盤のヤング率をパラメータとした力学的
理論式を用いるので、正確にトンネルの変位を求めるこ
とができる。
According to a third aspect of the present invention, there is provided a method for estimating the displacement of a portion around a face of a tunnel according to the second aspect of the present invention, wherein the above-mentioned mechanical theoretical formula comprises an initial ground pressure of the tunnel and a tunnel excavation. Since the mechanical theory using the following ground pressure, ground Poisson's ratio, and ground Young's modulus as parameters, the displacement of the tunnel can be accurately obtained.

【0038】請求項4の発明のトンネルの切羽周辺部分
の変位推定方法は、請求項2または3によるトンネルの
切羽周辺部分の変位推定方法において、上記予想曲線を
表す式は、上記トンネルの切羽周辺部分の変位の有限要
素法解析解を参照して予め定められた式であるので、上
記力学的理論式では正確に変位を算出できない領域にお
いても変位を正確かつ簡単に推定できる。
According to a fourth aspect of the present invention, there is provided the method for estimating the displacement of the periphery of a face of a tunnel according to the second or third aspect. Since the equation is predetermined with reference to the finite element method analysis solution of the displacement of the portion, the displacement can be accurately and easily estimated even in a region where the displacement cannot be calculated accurately by the above-mentioned mechanical theoretical formula.

【0039】請求項5の発明のトンネルの切羽周辺部分
の変位推定方法は、請求項2または3によるトンネルの
切羽周辺部分の変位推定方法において、上記予想曲線を
表す式の要素の1つは、上記トンネルの切羽周辺部分の
変位から求めた初期地圧開放率であるので、この初期地
圧開放率の影響を正確に表して、上記力学的理論式では
正確に変位を算出できない領域においても変位を正確か
つ簡単に推定できる。
According to a fifth aspect of the present invention, there is provided a method for estimating a displacement around a face of a tunnel according to the second or third aspect. Since the initial pressure release rate obtained from the displacement around the face of the tunnel, the influence of the initial pressure release rate can be accurately expressed, and the displacement can be calculated even in the area where the displacement cannot be calculated accurately by the above-mentioned mechanical theoretical formula. Can be accurately and easily estimated.

【0040】請求項6の発明のトンネルの切羽周辺部分
の変位推定方法は、請求項2または3によるトンネルの
切羽周辺部分の変位推定方法において、上記予想曲線を
表す式は、トンネルの切羽周辺部分の変位の有限要素法
解析解から求めた初期地圧開放率を参照して求めた曲線
であるので、実際に計測しなくても、その初期地圧解放
率の変位への影響を正確に表して、上記力学的理論式で
は正確に求められない領域でも変位を正確に求めること
ができるため、上記推定式は正確になる。
According to a sixth aspect of the present invention, there is provided a method for estimating a displacement around a face of a tunnel according to the second or third aspect. This is a curve obtained by referring to the initial ground pressure release rate obtained from the finite element method analysis solution of the displacement of the ground, and accurately represents the effect of the initial ground pressure release rate on the displacement without actually measuring it. In addition, since the displacement can be accurately obtained even in a region that cannot be accurately obtained by the above-mentioned mechanical theoretical formula, the above-mentioned estimation formula becomes accurate.

【0041】請求項7の発明のトンネルの先受部材の決
定方法は、掘削されたトンネルの切羽周辺部分に設置さ
れて、上記地盤の変位によって誘発される力を支持し
て、上記トンネルの切羽および壁面を安定にするトンネ
ルの先受部材の決定方法において、請求項1乃至6によ
るトンネルの切羽周辺部分の変位推定方法を用いて上記
先受部材に作用する力を容易かつ比較的正確に求めるの
で、この先受部材の寸法や形状および設置状態等を簡単
かつ適切に決めることができる。
According to a seventh aspect of the present invention, there is provided a method for determining a front face of a tunnel, wherein the front face of the tunnel is installed around a face of an excavated tunnel to support a force induced by displacement of the ground. And a method for determining a receiving member of a tunnel for stabilizing a wall surface, wherein a force acting on the receiving member is easily and relatively accurately obtained by using the displacement estimating method of a portion around a face of a tunnel according to claims 1 to 6. Therefore, it is possible to easily and appropriately determine the size, shape, installation state, and the like of the receiving member.

【0042】請求項8の発明のトンネルの先受部材の決
定方法は、請求項7によるトンネルの先受部材の決定方
法において、上記先受部材は、上記地盤の変位によって
上記先受部材の軸方向に作用する力を、上記先受部材の
トンネル側端部を固定する覆工部材によって支持するの
で、上記地盤の変位を請求項1乃至6によるトンネルの
切羽周辺部分の変位推定方法を用いて容易かつ正確に求
めて、上記先受部材の寸法や形状および設置状態等を簡
単かつ適切に決めることができる。したがって、上記先
受部材を必要最小限にできて、先受部材の材料費を安価
にできる。
According to a eighth aspect of the present invention, there is provided a method for determining a precedent member of a tunnel according to the seventh aspect, wherein the precedent member is provided with a shaft of the precedent member by displacement of the ground. Since the force acting in the direction is supported by the lining member fixing the end of the front receiving member on the side of the tunnel, the displacement of the ground can be estimated using the displacement estimating method of the periphery of the face of the tunnel according to claims 1 to 6. It is possible to easily and accurately determine the size, shape, installation state, and the like of the above-mentioned receiving member in a simple and appropriate manner. Therefore, the number of the above-mentioned receiving members can be minimized, and the material cost of the receiving members can be reduced.

【0043】請求項9の発明のトンネルの先受部材の決
定方法は、請求項7によるトンネルの先受部材の決定方
法において、上記先受部材は、上記地盤の変位によって
上記先受部材の軸方向の両方向に作用する力がバランス
する長さと据付角度および寸法を有するので、上記先受
部材のみで上記地盤を支持してトンネルの切羽周辺部分
を安定させることができる。そのため、先受部材のトン
ネル側端部を強固に固定しなくてよいので、トンネル工
事費用を安価にできる。
According to a ninth aspect of the present invention, there is provided a method for determining a tunnel receiving member according to a seventh aspect of the present invention. Since the force acting in both directions has a length, an installation angle, and a dimension that balance the forces, the ground can be supported by only the front receiving member, and the periphery of the face of the tunnel can be stabilized. Therefore, it is not necessary to firmly fix the tunnel-side end of the receiving member, so that tunnel construction costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1(a),(b)は、夫々本発明によるト
ンネルの切羽周辺部分の変位推定方法による推定式の曲
線を示す図である。
FIGS. 1 (a) and 1 (b) are diagrams showing curves of an estimation formula by a displacement estimation method of a portion around a face of a tunnel according to the present invention.

【図2】 円形断面のトンネルにおいて推定式を表す座
標系を示す図である。
FIG. 2 is a diagram showing a coordinate system representing an estimation formula in a tunnel having a circular cross section.

【図3】 地盤に円形断面を有するトンネルを掘削した
場合の有限要素法解析による初期地圧解放率曲線であ
る。
FIG. 3 is an initial ground pressure release rate curve obtained by finite element analysis when a tunnel having a circular cross section is excavated in the ground.

【図4】 有限要素法解析によるトンネルの切羽周辺部
分の変位を示す図である。
FIG. 4 is a diagram showing displacement of a portion around a face of a tunnel by finite element analysis.

【図5】 図1に示すトンネルの切羽周辺部分の変位推
定方法によって決定した先受部材を用いたトンネルの掘
削手順を示す図である。
FIG. 5 is a diagram showing a tunnel excavation procedure using a receiving member determined by the displacement estimating method of a portion around a face of the tunnel shown in FIG. 1;

【図6】 図6(a),(b)は、トンネルの略切羽位
置に配置された先受部材について、そのトンネルが掘削
されたときの先受部材位置の変位を推定して、上記先受
部材の座標系で示した曲線である。
FIGS. 6 (a) and 6 (b) show the estimation of the displacement of the position of the receiving member when the tunnel is excavated with respect to the receiving member disposed at the approximate face position of the tunnel. It is a curve shown in the coordinate system of the receiving member.

【図7】 図7(a),(b)は、トンネルの略切羽位
置に配置された先受部材について、そのトンネルの掘削
が進んで切羽が前進した場合の上記先受部材位置の変位
変化量を推定した曲線である。
FIGS. 7 (a) and 7 (b) show displacement changes in the position of the front receiving member when the excavation of the tunnel advances and the front face advances, with respect to the front receiving member arranged at the approximate face position of the tunnel. It is the curve which estimated the amount.

【図8】 図8(a),(b)は、従来のトンネルの切
羽周辺部分の変位推定方法によって決定した先受部材を
用いたトンネルの先受工法を示す図である。
8 (a) and 8 (b) are views showing a pre-receiving method of a tunnel using a pre-receiving member determined by a conventional displacement estimating method for a portion around a face of a tunnel.

【符号の説明】[Explanation of symbols]

K0,K1,K2,K3,K4,K5 切羽 P0,P1,P2,P3,P4,P5 鋼管 T トンネル 2 トンネル壁面 3 覆工コンクリート K0, K1, K2, K3, K4, K5 Face P0, P1, P2, P3, P4, P5 Steel pipe T Tunnel 2 Tunnel wall 3 Lining concrete

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 トンネルの切羽周辺部分がそのトンネル
の掘削により生じる変位を、予め定めた推定式によって
求めることを特徴とするトンネルの切羽周辺部分の変位
推定方法。
1. A displacement estimating method for a section around a face of a tunnel, wherein a displacement generated by excavation of the section around the face of the tunnel is obtained by a predetermined estimation formula.
【請求項2】 請求項1によるトンネルの切羽周辺部分
の変位推定方法において、 上記推定式は、力学的理論式を基に作成されたものであ
ることを特徴とするトンネルの切羽周辺部分の変位推定
方法。
2. The displacement estimating method according to claim 1, wherein said estimating formula is created based on a dynamic theoretical formula. Estimation method.
【請求項3】 請求項2によるトンネルの切羽周辺部分
の変位推定方法において、 上記力学的理論式は、円形トンネルと等方的初期地圧を
仮定した下記の式であることを特徴とするトンネルの切
羽周辺部分の変位推定方法。 【数1】 但し、u:トンネル半径方向の地盤の変位量、a:トンネ
ル半径、ν:地盤のポアソン比、E:地盤のヤング率、P
0:トンネル掘削前の地圧、Pi:トンネル掘削直後の地
圧、r:トンネル横断面切羽中心を原点とする極座標の
動径。
3. A method according to claim 2, wherein said dynamic theoretical formula is the following formula assuming a circular tunnel and an isotropic initial ground pressure. Method for estimating the displacement around the face of the face. (Equation 1) Where u is the displacement of the ground in the radial direction of the tunnel, a is the radius of the tunnel, ν is the Poisson's ratio of the ground, E is the Young's modulus of the ground, P
0: tunneling previous ground pressure, P i: immediately after the tunnel excavation ground pressure, r: polar radius vector having an origin of the tunnel cross section Face center.
【請求項4】 請求項2または3によるトンネルの切羽
周辺部分の変位推定方法において、 上記推定式は、上記トンネルの切羽周辺部分の変位の有
限要素法解析解を参照して定められた式であることを特
徴とするトンネルの切羽周辺部分の変位推定方法。
4. The displacement estimating method of a portion around a face of a tunnel according to claim 2 or 3, wherein the estimating formula is an equation determined with reference to a finite element method analytical solution of displacement of a portion around a face of the tunnel. A method for estimating a displacement around a face of a tunnel.
【請求項5】 請求項2または3によるトンネルの切羽
周辺部分の変位推定方法において、 上記推定式の要素の1つは、初期地圧開放率であること
を特徴とするトンネルの切羽周辺部分の変位推定方法。
5. A method according to claim 2, wherein one of the elements of the estimation formula is an initial ground pressure release rate. Displacement estimation method.
【請求項6】 請求項2または3によるトンネルの切羽
周辺部分の変位推定方法において、 上記推定式のうちの一つは、下記の式で表されることを
特徴とするトンネルの切羽周辺部分の変位推定方法。 【数2】 但し、u* y:地盤の鉛直方向の無次元変位量、z:トンネ
ル切羽を原点とするトンネル軸方向座標、y:トンネル
頂部の壁面を原点とする鉛直方向座標、a:トンネル半
径、e:自然対数の底。
6. A method according to claim 2, wherein one of said estimating formulas is represented by the following equation: Displacement estimation method. (Equation 2) Where u * y : the dimensionless displacement of the ground in the vertical direction, z: the coordinate of the tunnel axis with the origin at the tunnel face, y: the vertical coordinate with the origin of the wall at the top of the tunnel, a: the radius of the tunnel, e: The base of the natural logarithm.
【請求項7】 掘削されたトンネルの切羽周辺部分に設
置されて、上記地盤の変位増分によって誘起される力を
支持して、上記トンネルの切羽および壁面を安定にする
トンネルの先受部材の決定方法において、 請求項1乃至6によるトンネルの切羽周辺部分の変位推
定方法を用いて上記先受部材に作用する力を求めて、上
記先受部材の寸法、形状、打設間隔および打設角度の少
なくとも1つを決定することを特徴とするトンネルの先
受部材の決定方法。
7. Determining a pre-loaded member of the tunnel which is installed around the face of the excavated tunnel to support the force induced by the displacement of the ground and to stabilize the face and wall surface of the tunnel. A method for estimating a force acting on the receiving member by using a displacement estimating method of a portion around a face of a tunnel according to claims 1 to 6, and determining a size, a shape, a driving interval and a driving angle of the receiving member. A method for determining a preceding member of a tunnel, wherein at least one is determined.
【請求項8】 請求項7によるトンネルの先受部材の決
定方法において、 上記先受部材は、上記地盤の変位増分によって上記先受
部材の軸方向に作用する力を、上記先受部材のトンネル
側端部を固定する覆工部材によって支持することを特徴
とするトンネルの先受部材の決定方法。
8. The method for determining a receiving member of a tunnel according to claim 7, wherein the receiving member applies a force acting in an axial direction of the receiving member by an increase in displacement of the ground to a tunnel of the receiving member. A method for deciding a preceding bearing member of a tunnel, wherein the side end portion is supported by a lining member that fixes the side end portion.
【請求項9】 請求項7によるトンネルの先受部材の決
定方法において、 上記先受部材は、上記地盤の変位増分によって誘起され
る上記先受部材の軸方向の両方向に作用する力が略バラ
ンスする長さと据付角度および寸法を有することを特徴
とするトンネルの先受部材の決定方法。
9. The method according to claim 7, wherein the force acting in both the axial direction of the support member induced by the displacement of the ground is substantially balanced. A method for determining a preceding bearing member of a tunnel, characterized by having a length, an installation angle and dimensions.
JP2000235619A 2000-08-03 2000-08-03 Displacement estimation method for peripheral part of tunnel face and determination method of receiving member Expired - Lifetime JP3869193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235619A JP3869193B2 (en) 2000-08-03 2000-08-03 Displacement estimation method for peripheral part of tunnel face and determination method of receiving member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235619A JP3869193B2 (en) 2000-08-03 2000-08-03 Displacement estimation method for peripheral part of tunnel face and determination method of receiving member

Publications (2)

Publication Number Publication Date
JP2002047880A true JP2002047880A (en) 2002-02-15
JP3869193B2 JP3869193B2 (en) 2007-01-17

Family

ID=18727805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235619A Expired - Lifetime JP3869193B2 (en) 2000-08-03 2000-08-03 Displacement estimation method for peripheral part of tunnel face and determination method of receiving member

Country Status (1)

Country Link
JP (1) JP3869193B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019654A (en) * 2006-07-13 2008-01-31 Shimizu Corp Calculation method of stress release ratio used for tunnel design and its program
JP2014062385A (en) * 2012-09-20 2014-04-10 Katekkusu:Kk Long steel pipe forepiling method
CN114722578A (en) * 2022-03-17 2022-07-08 中铁第一勘察设计院集团有限公司 Tunnel surface settlement calculation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019654A (en) * 2006-07-13 2008-01-31 Shimizu Corp Calculation method of stress release ratio used for tunnel design and its program
JP4650768B2 (en) * 2006-07-13 2011-03-16 清水建設株式会社 Calculation method and program of stress release rate used for tunnel design
JP2014062385A (en) * 2012-09-20 2014-04-10 Katekkusu:Kk Long steel pipe forepiling method
CN114722578A (en) * 2022-03-17 2022-07-08 中铁第一勘察设计院集团有限公司 Tunnel surface settlement calculation method

Also Published As

Publication number Publication date
JP3869193B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
Bobet Analytical solutions for shallow tunnels in saturated ground
CN105138767B (en) A kind of buried asymmetric closely-spaced tunnel pressure from surrounding rock computational methods
JP5181272B2 (en) Tunnel stability evaluation method and program thereof
JP6065155B2 (en) Foundation pile construction method, program, storage medium, and foundation pile construction system
Schwamb et al. Considerations for monitoring of deep circular excavations
JP2010163748A (en) Earth retaining wall load testing method
JP2007284903A (en) Method of suppressing amount of settlement of ground in shield construction
JP2002047880A (en) Method of estimating displacement of facing peripheral part of tunnel, and method of determining prelining member
JP2003314188A (en) Method for predicting settlement in excavation of tunnel
CN110174503A (en) A method of determining that country rock weakens development range based on tunnel deformation
Nisha et al. Design, construction and uncertainties of a deep excavation adjacent to the high-rise building
JP4750615B2 (en) Design method of mirror stop bolt and method of placing mirror stop bolt
CN112344983B (en) Method and system for monitoring settlement construction level in soft soil base environment
CN112177061B (en) System and method for monitoring microscopic horizontal deformation under complex geological structure
JP3870131B2 (en) Estimation method of displacement of tunnel wall
Liu et al. Performance assessment of arch-shaped primary lining during construction in weak rock shallow-buried tunnel
JP5694977B2 (en) Ground condition prediction method
CN110619178A (en) Method for estimating deformation of overlying pipeline caused by excavation of underground excavation subway tunnel
CN116108543B (en) Method for determining additional internal force and deformation of shield tunnel caused by settlement of under-consolidated stratum
Jia et al. Semi-Empirical Method for Estimating Stiffness and Deformation of Cylindrical Retaining Diaphragm Wall
CN115544702B (en) Oil-gas pipeline immersed tube construction stress checking method, device, equipment and storage medium
Janda et al. Modeling successive excavation within two dimensional finite element mesh
CN112343098B (en) Level monitoring system and method for building envelope top
JP7096480B2 (en) How to build a structure Shinbashira using ready-made piles
JP2005273218A (en) Apparatus and method for evaluating behavior of groundwater in bedrock drilling, computer program, and recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3869193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151020

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term