JP5181272B2 - Tunnel stability evaluation method and program thereof - Google Patents

Tunnel stability evaluation method and program thereof Download PDF

Info

Publication number
JP5181272B2
JP5181272B2 JP2007287578A JP2007287578A JP5181272B2 JP 5181272 B2 JP5181272 B2 JP 5181272B2 JP 2007287578 A JP2007287578 A JP 2007287578A JP 2007287578 A JP2007287578 A JP 2007287578A JP 5181272 B2 JP5181272 B2 JP 5181272B2
Authority
JP
Japan
Prior art keywords
support
excavation
ground
natural ground
characteristic curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007287578A
Other languages
Japanese (ja)
Other versions
JP2009114697A (en
Inventor
博夫 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2007287578A priority Critical patent/JP5181272B2/en
Publication of JP2009114697A publication Critical patent/JP2009114697A/en
Application granted granted Critical
Publication of JP5181272B2 publication Critical patent/JP5181272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、トンネルを構築するにあたって、事前にトンネルの安定性を評価するための方法及びそのプログラムに関するものである。   The present invention relates to a method and a program for evaluating the stability of a tunnel in advance when constructing a tunnel.

高レベル放射性廃棄物の処分方法として、地下深くにトンネル群を建設してその中に放射性廃棄物を埋設する「地層処分」が検討されている。この地層処分施設は、図13に示すように、地下300m以深の地下施設とすることが法令で定められており、複数の処分トンネル(坑道)とこれらをつなぐ主要トンネルと、これらのトンネルを地上受入施設とつなぐ数種類の立坑とから構成されている。   As a high-level radioactive waste disposal method, “geological disposal” in which a tunnel group is built deep underground and the radioactive waste is buried therein is being studied. As shown in Fig. 13, it is stipulated by law that this geological disposal facility should be an underground facility with a depth of 300m or more. Multiple disposal tunnels (tunnels), main tunnels connecting these tunnels, and these tunnels above the ground It consists of several types of shafts connected to the receiving facility.

このような地層処分施設を対象とした坑道の安定性を評価する手法として、特性曲線法が用いられている。特性曲線法は、トンネルの構築方法としてNATM(New Austrian Tunneling Method)が導入されて以来、山岳トンネルの標準工法の安定解析手法として定着した手法である。トンネルの掘削部位(切羽)での力学的な挙動は極めて3次元的であるが、特性曲線法ではこれを2次元の力学モデルに置き換えることによって、掘削部位の力学的な挙動を解いている。   The characteristic curve method is used as a method for evaluating the stability of a mine shaft for such a geological disposal facility. The characteristic curve method has been established as a stability analysis method for the standard method of mountain tunnels since the introduction of the New Austrian Tunneling Method (NATM) as a tunnel construction method. The mechanical behavior at the excavation site (face) of the tunnel is extremely three-dimensional, but the characteristic curve method solves the mechanical behavior of the excavation site by replacing it with a two-dimensional dynamic model.

この特性曲線法は、地山の掘削に伴う変形挙動を表す地山特性曲線と、支保設置後の支保の変形挙動を表す支保特性曲線の2つで構成される。図14−1に、地山特性曲線と支保特性曲線の一例を示す。地山特性曲線は、平面ひずみ状態の2次元断面に対して理論解析や有限要素法等を行い、図14−2に示すように、支保が地山を支持する圧力である支保内圧Piと壁面変位uの関係で得られるものである。また、支保特性曲線は、図14−3に示すように、支保に作用する地圧である支保反力Piと支保外周の変位(=壁面変位)uとの関係から得られるものである。 This characteristic curve method is composed of a ground characteristic curve representing deformation behavior associated with excavation of a natural ground and a support characteristic curve representing deformation behavior of the support after the support is installed. FIG. 14-1 shows an example of a natural ground characteristic curve and a support characteristic curve. Natural ground characteristic curve performs theoretical analysis and the finite element method or the like to the 2-dimensional cross section of the plane strain state, as shown in Figure 14-2, and支保pressure P i is the pressure支保supports the natural ground It is obtained by the relationship of the wall surface displacement u. Further, as shown in FIG. 14-3, the support characteristic curve is obtained from the relationship between the support reaction force P i that is the earth pressure acting on the support and the displacement (= wall surface displacement) u of the support outer periphery.

特性曲線法では、吹付けコンクリート等の地山への支保内圧と支保に作用する地圧の相互作用を、二次元モデルを用いて評価している。このため、地山と支保が共に安定する状態は、地山に作用する支保内圧と、支保に作用する地圧(支保反力)が等しい状態を釣合い点と考えることから、地山特性曲線と支保特性曲線の交点となる。   In the characteristic curve method, a two-dimensional model is used to evaluate the interaction between support internal pressure on ground such as shotcrete and the earth pressure acting on the support. For this reason, the state where both the natural ground and the support are stable is considered to be the balance point because the internal pressure acting on the natural ground and the ground pressure acting on the support (supporting reaction force) are equal. This is the intersection of the support characteristic curves.

トンネル掘削時の切羽近傍の地山と支保の相互作用等は極めて3次元的な挙動を示すため、より実際に近い挙動予測、地山と支保の安定性の評価を行うためには、3次元あるいは準3次元のモデルによる検討が求められる。   Since the interaction between the ground and the support near the face during tunnel excavation shows a very three-dimensional behavior, it is necessary to predict the behavior closer to the actual situation and to evaluate the stability of the ground and the support. Or examination with a quasi-three-dimensional model is required.

本発明者は、円形坑道の中心軸を対称軸とした軸対称モデルによる逐次掘削・逐次支保解析を行うことによって支保特性曲線を求める方法を提案した(非特許文献1及び特願2006−193280を参照)。以下、この軸対称モデルによる逐次掘削・逐次支保解析により支保特性曲線を求める方法の概要を説明する。まず、所定長さの掘削及び支保の設置を行う掘進区間と、周辺地山及び支保の物性値とを設定し、掘削部分、支保の設置部分及び周辺地山を有限要素に分割して解析モデルを作成する。次いで、この解析モデルを用いて逐次掘削・逐次支保解析を実施する。逐次掘削・逐次支保解析では、i−1番目の掘進区間の支保の設置を行ったのち、i番目の掘進区間の掘削を行い、このi番目の掘削に伴い、安定性の評価対象となる掘進区間(評価対象掘進区間)における地山と支保との境界に位置する要素の節点変位と半径方向応力とを算出する処理を行う。この処理を、iを1ずつ増加させてiが掘進区間の総数になるまで逐次繰り返す。次いで、上記の処理により得られた節点変位及び半径方向応力を、掘削解析した各掘進区間ごとに平均する演算を行う。ここで、掘削解析した各掘進区間に対応する上記節点変位の平均値を、各掘進区間の掘削が完了した時点での評価対象掘進区間の壁面変位uLとみなす。また、掘削解析した各掘進区間に対応する上記半径方向応力の平均値を、各掘進区間の掘削が完了した時点での評価対象掘進区間の支保反力Pi Lとみなす。壁面変位uをx軸とし、支保反力Piをy軸としたu−Pi平面上に、これらの壁面変位uと支保反力Piの値をプロットすることにより、支保特性曲線を得る。 The present inventor has proposed a method for obtaining a support characteristic curve by performing sequential excavation / sequential support analysis using an axially symmetric model with the central axis of the circular mine shaft as a symmetric axis (Non-Patent Document 1 and Japanese Patent Application No. 2006-193280). reference). The outline of a method for obtaining a support characteristic curve by sequential excavation / sequential support analysis using this axisymmetric model will be described below. First, set the excavation section for excavation and support installation of a predetermined length, and the physical properties of surrounding ground and support, and divide the excavation part, support installation and surrounding ground into finite elements and analyze model Create Next, sequential excavation and sequential support analysis is performed using this analysis model. In sequential drilling / sequential support analysis, after installing the support of the i-1th excavation section, excavation of the ith excavation section is performed, and the excavation for which stability is evaluated along with this ith excavation A process of calculating the nodal displacement and the radial stress of the element located at the boundary between the natural ground and the support in the section (evaluation target excavation section) is performed. This process is sequentially repeated until i is incremented by 1 until i reaches the total number of excavation sections. Next, a calculation is performed to average the node displacement and radial stress obtained by the above processing for each excavation section analyzed for excavation. Here, the average value of the nodal displacement corresponding to each excavation section analyzed for excavation is regarded as the wall displacement u L of the evaluation excavation section at the time when excavation in each excavation section is completed. Further, the average value of the radial stress corresponding to each excavation section analyzed for excavation is regarded as the support reaction force P i L of the evaluation target excavation section when the excavation of each excavation section is completed. The parietal displacements u and x-axis, the支保reaction force P i on the u-P i plane with y-axis, by plotting the values of these parietal displacements u and支保reaction force P i, obtaining a支保characteristic curve .

International Journal of the JCRM, Volume 3, Number 1, February 2007, pp1-6International Journal of the JCRM, Volume 3, Number 1, February 2007, pp1-6

しかしながら、上記の3次元あるいは準3次元モデル(軸対称モデル)による逐次掘削・逐次支保解析を実施することによって得られた支保特性曲線は、地山を弾性体と仮定した場合に、地山特性曲線との交点上で釣合状態となる一方で、地山を弾塑性体と仮定し、掘削に伴う地山の降伏・破壊挙動を考慮した場合には、支保特性曲線の壁面変位と支保反力が地山特性曲線上に収束せず、壁面変位と支保反力ともに大きな値をとるという結果が得られた。すなわち、地山モデルを弾塑性体とした場合、上記解析により得られた支保特性曲線は地山特性曲線上で釣合い状態とならない。特に、地圧の大きな大深度において掘削の影響を極力防ぐために短時間で高い剛性を発揮する吹付けコンクリートによる支保を用いた条件下では、従来の特性曲線法による解析から得られる壁面変位及び支保反力よりも、これらの値が明らかに大きくなる報告もされている。このため、従来の特性曲線法のように、地山特性曲線と支保特性曲線との交点の値を採用して支保設計を行うと、実際よりも小さな荷重(支保反力)を想定して設計を行ってしまう可能性がある。同様に、地山の壁面変位も大きな値となり、トンネル周辺の地山の変形を小さく評価することになる。つまり、地山の安定性や支保の安定性が過少評価されている可能性があると考えられ、実際に必要な強度に対して不十分な支保設計となるおそれがある。   However, the support characteristic curve obtained by performing the sequential excavation / sequential support analysis by the above-mentioned three-dimensional or quasi-three-dimensional model (axisymmetric model) shows the natural ground characteristics when the natural ground is assumed to be an elastic body. When the ground is assumed to be an elasto-plastic body at the point of intersection with the curve, and the yield / fracture behavior of the ground due to excavation is taken into account, the wall displacement and support reaction of the support characteristic curve are considered. The results showed that the force did not converge on the natural ground characteristic curve, and both the wall displacement and the supporting reaction force had large values. That is, when the natural ground model is an elasto-plastic body, the support characteristic curve obtained by the above analysis is not in a balanced state on the natural ground characteristic curve. In particular, under conditions using support by shotcrete that exhibits high rigidity in a short time to prevent the influence of excavation as much as possible at large depths where the earth pressure is large, wall displacement and support obtained from analysis by the conventional characteristic curve method There are reports that these values are clearly greater than reaction forces. For this reason, as in the conventional characteristic curve method, when the support design is performed by using the value of the intersection of the natural ground characteristic curve and the support characteristic curve, it is designed assuming a smaller load (support reaction force) than the actual one. May be done. Similarly, the wall displacement of the natural ground becomes a large value, and the deformation of the natural ground around the tunnel is evaluated small. In other words, it is considered that the stability of the natural ground and the stability of the support may be underestimated, and there is a possibility that the support design is insufficient for the actually required strength.

従って、特性曲線法に上記の逐次掘削・逐次支保解析の結果を適用する場合、地山や支保の安定性の判定を適切に行うことができるように、この安定性の指標を新たに設定する必要がある。   Therefore, when applying the results of the above-mentioned sequential excavation / sequential support analysis to the characteristic curve method, this stability index is newly set so that the stability of the ground and the support can be properly determined. There is a need.

本発明は、上記の点に鑑み、特性曲線法に上記の3次元あるいは準3次元モデル(軸対称モデル)による逐次掘削・逐次支保解析の解析結果を適用した場合に、地山と支保の安定性の判定精度を向上させることができるトンネル安定性の評価方法及びそのプログラムを提供することを目的とする。   In view of the above points, the present invention stabilizes the ground and the support when the analysis result of the sequential excavation / sequential support analysis by the above-described three-dimensional or quasi-three-dimensional model (axisymmetric model) is applied to the characteristic curve method. It is an object of the present invention to provide a tunnel stability evaluation method and a program thereof that can improve the determination accuracy of sex.

本発明の請求項1に係るトンネル安定性の評価方法は、所定長さの掘削及び支保の設置を行う掘進区間、及び、周辺地山及び支保の物性値を設定し、掘削部分、支保の設置部分及び周辺地山を有限要素に分割して解析モデルを作成する工程と、地山を弾塑性体として2次元無限体中の円孔モデルを想定し、周辺地山の物性値から地山特性曲線を得る工程と、i−1番目の掘進区間の支保の設置を行ったのち、i番目の掘進区間の掘削を行い、該i番目の掘削に伴い、安定性を評価する掘進区間における地山と支保との境界に位置する要素の節点変位と半径方向応力とを算出する処理を、iを1ずつ増加させてiが掘進区間の総数になるまで逐次繰り返す工程と、最終掘進区間の掘削が完了した時点での前記安定性を評価する掘進区間における地山と支保との境界に位置する各要素の節点変位の平均値を算出し、これを当該掘進区間における壁面変位uLとするとともに、最終掘進区間の掘削が完了した時点での前記安定性を評価する掘進区間における地山と支保との境界に位置する地山要素の半径方向応力と支保要素の半径方向応力との平均値を算出し、これを当該掘進区間における支保反力Pi Lとする工程と、地山について成り立つ許容壁面ひずみεθ,aを用いて算出される許容壁面変位uaと支保内圧Piとの関係から、許容地山ひずみ曲線を作成する工程と、支保内縁の接線方向応力σθが、支保材料の許容応力σaとなるときの支保反力Pi,maxの値から、許容作用地圧線を作成する工程と、横軸をトンネル壁面変位u、縦軸を支保内圧Piとしたu−Pi平面において、前記壁面変位uL及び前記支保反力Pi Lとで決まる終点が、前記許容地山ひずみ曲線、前記許容作用地圧線、及び、前記地山特性曲線とで囲まれた安定領域にあるか否かを判定する工程と、を有することを特徴とする。 In the tunnel stability evaluation method according to claim 1 of the present invention, the excavation section for excavation and support installation of a predetermined length, the surrounding ground and the physical property values of the support are set, and the excavation part and the support installation are set. The process of creating an analysis model by dividing a part and surrounding natural ground into finite elements, and a circular hole model in a two-dimensional infinite body with the natural ground as an elasto-plastic body, A step of obtaining a curve, and after installing the support of the ( i-1) excavation section, excavation of the i th excavation section, and the ground in the excavation section to evaluate the stability with the i th excavation The process of calculating the node displacement and radial stress of the element located at the boundary between the support and the support is sequentially repeated until i is increased by 1 until i becomes the total number of excavation sections, and excavation in the final excavation section is performed. In the excavation section to assess the stability at the time of completion The average value of the nodal displacement of each element located at the boundary between the natural ground and the support is calculated, and this is used as the wall displacement u L in the excavation section, and the stability when the excavation in the final excavation section is completed The average value of the radial stress of the natural ground element located at the boundary between the natural ground and the support in the excavation section and the radial stress of the support element is calculated, and this is calculated as the support reaction force P i L in the excavation section. and a step of, strain allowable wall holds for the natural ground epsilon theta, from the relationship between the permissible wall displacement u a and支保pressure P i which is calculated using a, a step of creating an acceptable land mountains strain curve支保inner edge From the value of the supporting reaction force P i, max when the tangential stress σ θ is the allowable stress σ a of the supporting material, and the horizontal axis is the tunnel wall displacement u, the vertical axis in u-P i plane was支保pressure P i the axis, the wall Position end point determined by the u L and the支保reaction force P i L is the permissible locations Mountain strain curve, the allowable working place pressure curve, and, whether the stable region surrounded by the natural ground characteristic curve And a step of determining.

また、本発明の請求項2に係るトンネル安定性の評価方法は、上記請求項1において、地山の状態ひずみから前記許容壁面変位uaを算出することを特徴とする。 The tunnel stability evaluation method according to claim 2 of the present invention is characterized in that, in the above-mentioned claim 1, the allowable wall surface displacement u a is calculated from a state strain of a natural ground.

また、本発明の請求項3に係るプログラムは、請求項1に記載のトンネル安定性の評価方法における各工程をコンピュータに実行させるものである。   A program according to a third aspect of the present invention causes a computer to execute each step in the tunnel stability evaluation method according to the first aspect.

本発明のトンネル安定性の評価方法及びそのプログラムによれば、大深度の高地圧下でトンネルを建設する際の支保及び周辺地山の安定性を適切に評価することが可能となる。その結果、地層処分施設における処分坑道等、建設実績の少ないトンネルを建設するにあたり、精度の高い支保設計を行うことが可能となるという効果を得る。   According to the tunnel stability evaluation method and the program thereof of the present invention, it is possible to appropriately evaluate the support and the stability of surrounding grounds when a tunnel is constructed under a high ground pressure at a deep depth. As a result, when constructing a tunnel with a low construction record, such as a disposal tunnel in a geological disposal facility, it is possible to perform an accurate support design.

以下に、添付図面を参照して、本発明に係るトンネル安定性の評価方法の好適な実施形態について詳細に説明する。   Exemplary embodiments of a tunnel stability evaluation method according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本実施の形態であるトンネル安定性の評価方法で適用する解析装置10の構成を示したブロック図である。ここで例示する解析装置10は、パーソナルコンピュータ等の数値演算装置にプログラムを読み込ませることによって具現化されるもので、支保特性曲線作成手段20と、地山特性曲線作成手段30、許容地山ひずみ曲線作成手段40、許容作用地圧線作成手段50、安定性判定手段60とを備えている。   FIG. 1 is a block diagram showing a configuration of an analysis apparatus 10 applied in the tunnel stability evaluation method according to the present embodiment. The analysis device 10 exemplified here is realized by reading a program into a numerical computing device such as a personal computer. The analysis device 10 includes a support characteristic curve creating unit 20, a ground characteristic curve creating unit 30, an allowable ground pattern strain. A curve creation means 40, an allowable action ground pressure line creation means 50, and a stability determination means 60 are provided.

支保特性曲線作成手段20は、解析モデル作成手段21と、逐次掘削・支保解析手段22と、節点変位・半径方向応力平均値算出手段23とを備えている。   The support characteristic curve creation means 20 includes an analysis model creation means 21, a sequential excavation / support analysis means 22, and a nodal displacement / radial stress average value calculation means 23.

解析モデル作成手段21は、キーボード等の入力装置70から入力された解析条件、具体的には、所定長さの掘削及び支保の設置を行う掘進区間や、周辺地山及び支保の物性値等のデータに基づいて、掘削部分、支保の設置部分及び周辺地山を要素に分割して解析モデルデータを作成するものである。なお、具体的な解析条件について後述する。   The analysis model creation means 21 includes analysis conditions input from an input device 70 such as a keyboard, specifically, excavation sections for excavation and support installation of a predetermined length, surrounding natural ground and support physical property values, etc. Based on the data, analysis model data is created by dividing the excavation part, the support installation part, and the surrounding natural ground into elements. Specific analysis conditions will be described later.

逐次掘削・支保解析手段22は、解析モデル作成手段21により作成された解析モデルを用いて、以下に示す逐次掘削・逐次支保解析を行うものである。解析手順の詳細について後述するが、以下、解析の概要について説明すると、i−1番目の掘進区間の支保の設置を行ったのち、i番目の掘進区間の掘削解析を行い、その解析結果に伴い、安定性を評価する掘進区間における地山と支保との境界に位置する要素の節点変位と半径方向応力とを算出する処理を行う。この処理を、iを1ずつ増加させてiが掘進区間の総数になるまで逐次繰り返す。なお、i=1(すなわち、最初の掘進区間)は、掘削解析のみが行われる。ここで、「安定性を評価する掘進区間」とは、安定性の評価の対象となる掘進区間を意味しており、切羽の影響がほぼなくなる切羽後方の位置におけるひとつの掘進区間が選択される。以下、これを「評価対象掘進区間」と呼ぶことにする。   The sequential excavation / support analysis means 22 performs the following sequential excavation / support support analysis using the analysis model created by the analysis model creation means 21. The details of the analysis procedure will be described later. The outline of the analysis will be described below. After installing the support for the i-1th excavation section, the excavation analysis of the ith excavation section is performed, and the analysis result is attached. Then, a process of calculating the nodal displacement and the radial stress of the element located at the boundary between the natural ground and the support in the excavation section for evaluating the stability is performed. This process is sequentially repeated until i is incremented by 1 until i reaches the total number of excavation sections. Note that only excavation analysis is performed for i = 1 (that is, the first excavation section). Here, “an excavation section for evaluating stability” means an excavation section to be evaluated for stability, and a single excavation section at a position behind the face where the influence of the face is almost eliminated is selected. . Hereinafter, this is referred to as “evaluation target excavation section”.

節点変位と半径方向応力(支保反力)の平均値算出手段23は、逐次掘削・支保解析手段22で各掘進区間の掘削解析に伴って算出した、評価対象掘進区間における地山と支保との境界に位置する各要素の節点変位及び半径方向応力を、掘削解析した各掘進区間ごとに平均する演算を行い、これら節点変位の平均値及び半径方向応力の平均値に基づいて、支保特性曲線を算出するものである。本実施の形態では、後述するように、掘削解析した各掘進区間に対応する上記節点変位の平均値を、各掘進区間の掘削が完了した時点での評価対象掘進区間の壁面変位uLとする。また、掘削解析した各掘進区間に対応する上記半径方向応力の平均値を、各掘進区間の掘削が完了した時点での評価対象掘進区間の支保反力P Lとする。そして、これらの壁面変位uL及び支保反力Pi Lを、横軸を壁面変位u、縦軸を支保内圧Piとしたu−Pi平面上にプロットすることによって、評価対象掘進区間における支保特性曲線を作成する。ここで、支保内圧Piとは、地山に作用するトンネルにおける内圧(支保が地山を支持する圧力)のことである。 The average value calculation means 23 of the nodal displacement and the radial stress (support reaction force) is calculated by the sequential excavation / support analysis means 22 along with the excavation analysis of each excavation section, and the ground and support in the evaluation target excavation section are calculated. The node displacement and radial stress of each element located at the boundary are averaged for each excavation section analyzed for excavation, and the support characteristic curve is calculated based on the average value of these node displacement and the average value of radial stress. Is to be calculated. In this embodiment, as will be described later, the average value of the nodal displacement corresponding to each excavation section analyzed for excavation is set as the wall displacement u L of the evaluation target excavation section at the time when excavation in each excavation section is completed. . Further, the average value of the radial stress for each excavation section excavated analyzed, and支保reaction force P i L evaluated excavation section at the time the excavation is completed for each excavation section. Then, these wall displacement u L and支保reaction force P i L, by plotting the horizontal axis parietal displacements u, a vertical axis on支保pressure P i and the u-P i plane, the evaluation excavation section Create a support characteristic curve. Here, the support internal pressure P i is an internal pressure in the tunnel acting on the natural ground (pressure at which the support supports the natural ground).

地山特性曲線作成手段30は、u−Pi平面上に地山特性曲線を作成するものである。本実施の形態では、地山を弾塑性体として2次元無限体中の円孔モデルを想定し、このモデルの所定条件での弾塑性理論に基づいて地山特性曲線を作成する。地山特性曲線における壁面変位uと支保内圧Piとの関係は、例えば、ジェオフロンテ研究会編纂,山岳トンネルの新技術,土木工学社,p.43などに記載された公知の計算式を用いて表すことができる。地山特性曲線の一例を図10に示す。なお、本実施の形態では、理論解により地山特性曲線を作成しているが、トンネルを2次元平面ひずみモデルとした有限要素法等の数値解析において、支保内圧Piを与条件として、トンネルの壁面変位uと支保内圧Pi算出し、これらをu−Pi平面上にプロットすることによって地山特性曲線を作成してもよい。 Natural ground characteristic curve creation unit 30 is adapted to create a natural ground characteristic curve on u-P i plane. In this embodiment, assuming a natural hole as an elastic-plastic body and assuming a circular hole model in a two-dimensional infinite body, a natural ground characteristic curve is created based on an elastic-plastic theory under a predetermined condition of this model. The relationship between the wall displacement u and the support pressure P i in the natural mountain characteristic curve is described in, for example, Geoffronte Study Group, New Mountain Tunnel Technology, Civil Engineering Company, p. It can be expressed using a known calculation formula described in No. 43 and the like. An example of a natural ground characteristic curve is shown in FIG. In this embodiment, a natural ground characteristic curve is created by a theoretical solution. In numerical analysis such as a finite element method in which the tunnel is a two-dimensional plane strain model, the tunnel internal pressure P i is used as a given condition. the calculated wall displacement u and支保pressure P i, they may be created natural ground characteristic curve by plotting on u-P i plane.

許容地山ひずみ曲線作成手段40は、u−Pi平面上に許容地山ひずみ曲線を作成するものである。許容地山ひずみ曲線の一例を図10に示す。許容地山ひずみ曲線は、地山の安定性が確保される許容壁面変位uaと支保内圧Piとの関係を示すものであり、トンネル周辺の地山・岩盤の安定性を判定する指標となるものである。ここで、トンネルの半径をaとする。地山ひずみ曲線の許容壁面変位uaと支保内圧Piとの間には、εθ≒ua/aで定義される円形トンネルの地山壁面の接線方向のひずみεθを導入すると、次の(数1)式で表される関係が成り立つ。

Figure 0005181272

ここに、εθ,a:許容壁面ひずみ,qu:一軸圧縮強度,ν:ポアソン比,κ:ダイレイタンシー係数,Pi:支保内圧,ηa:室内三軸試験の軸ひずみε1と限界ひずみε0との比である。ここで、限界ひずみとは、図11で示されるε0である。なお、ηaは、拘束圧=0である一軸圧縮試験を含めて室内三軸試験を残留応力状態まで実施した際の応力−ひずみ曲線から、限界ひずみと状態ひずみの定義に基づいて各ひずみε1、ε0を求めることにより算出される。 The allowable ground strain curve creating means 40 creates an allowable ground strain curve on the u- Pi plane. An example of an allowable ground strain curve is shown in FIG. The allowable ground strain curve shows the relationship between the allowable wall displacement u a and the internal pressure P i of the ground where the stability of the ground is ensured, and is an index for judging the stability of the ground and rock around the tunnel. It will be. Here, the radius of the tunnel is a. If a strain ε θ in the tangential direction of the ground wall of the circular tunnel defined by ε θ ≒ u a / a is introduced between the allowable wall displacement u a of the ground strain curve and the supporting internal pressure P i , The relationship expressed by Equation (1) is established.
Figure 0005181272

Where ε θ, a : allowable wall strain, q u : uniaxial compressive strength, ν: Poisson's ratio, κ: dilatancy coefficient, P i : support internal pressure, η a : axial strain ε 1 in the indoor triaxial test It is the ratio to the limit strain ε 0 . Here, the critical strain is ε 0 shown in FIG. Note that η a is a strain ε based on the definition of the limit strain and the state strain from the stress-strain curve when the indoor triaxial test including the uniaxial compression test where the constraint pressure = 0 is performed to the residual stress state. 1 and ε 0 are calculated.

また、(数1)式中のFは、トンネル壁面の応力による安定性評価指標であり次式で与えられる。

Figure 0005181272


ここに、P0:初期地圧である。 Further, F in the equation (1) is a stability evaluation index due to the stress of the tunnel wall surface and is given by the following equation.
Figure 0005181272


Here, P 0 is the initial ground pressure.

本実施の形態では、地山の許容ひずみとして状態ひずみを採用し、この状態ひずみから許容壁面変位uaを算出している。すなわち、許容ひずみとして限界ひずみ(支保内圧によらず一定)を採用した場合よりも、地山の安定性の評価基準が建設実績と整合するように緩和したものとなっている。ここで、地山の許容ひずみを状態ひずみとした理由を簡単に説明する。図11は、室内三軸試験で得られる応力〜ひずみ関係を示したものである。図11において横軸のε1は軸ひずみであり、縦軸のσ1−σ3は軸差応力(σ1は軸圧、σ3は拘束圧)である。また、図11における直線は、3つの曲線の原点における接線である。なお、図11では、σ3=0の場合、σ3=cの場合、σ3=dの場合の応力〜ひずみ関係を示している。この図に示すように、軟岩の場合には、拘束圧σ3が大きくなるに従いピーク応力でのひずみ(ε0peak,εcpeak,εdpeak,)も大きくなる。すなわち、拘束圧を考慮すると、許容ひずみ量も大きくすることが可能である。このため、図10の許容地山ひずみ線と支保内圧Piとの関係に示されるように、支保内圧Piが大きくなると周辺地山の許容壁面変位uaも大きくすることができる。従って、支保内圧Piが大きい場合には、許容ひずみを大きくしても地山の安定性が確保できる設計が可能になると考えられる。 In the present embodiment, the state strain is adopted as the allowable strain of the natural ground, and the allowable wall displacement u a is calculated from this state strain. That is, the evaluation criteria for the stability of the natural ground are relaxed so that they are consistent with the construction results, compared to the case where the limit strain (constant regardless of the support internal pressure) is adopted as the allowable strain. Here, the reason why the allowable strain of the ground is set as the state strain will be briefly described. FIG. 11 shows the stress-strain relationship obtained in the indoor triaxial test. Epsilon 1 of the horizontal axis in FIG. 11 is the strain axis, σ 13 of ordinate axis difference stress (sigma 1 is axial pressure, sigma 3 is confining pressure) it is. Moreover, the straight line in FIG. 11 is a tangent at the origin of three curves. FIG. 11 shows the stress-strain relationship when σ 3 = 0, σ 3 = c, and σ 3 = d. As shown in this figure, in the case of soft rock, the strain at the peak stress (ε 0 peak, ε c peak, ε d peak) increases as the restraining pressure σ 3 increases. That is, the allowable strain amount can be increased in consideration of the restraint pressure. Therefore, as shown in the relationship between the permissible locations Mountain strain curves and支保pressure P i in FIG. 10, it is possible to increase the allowable wall displacement u a near natural ground when支保pressure P i increases. Therefore, when the support internal pressure P i is large, it is considered that a design that can ensure the stability of the natural ground is possible even if the allowable strain is increased.

なお、(数1)式および(数2)式は、本発明者らによる論文(「トンネル建設実績と地山のひずみ比に基づく坑道の安定性評価に関する検討」トンネル工学研究論文・報告集第11巻2001年11月報告pp.257-260)に記載されている。   In addition, (Equation 1) and (Equation 2) are based on a paper by the present inventors ("Study on tunnel stability evaluation based on tunnel construction results and ground strain ratio"). 11 volume 2001 November report pp.257-260).

許容作用地圧線作成手段50は、u−Pi平面上に許容作用地圧線を算出するものである。許容作用地圧線の一例を図10に示す。許容作用地圧線は、トンネル内空側の支保接線方向応力σθ(最大圧縮応力)が、支保の許容応力σaと等しくなるときの、支保反力Pと支保外周の変位uとの関係を示したものであり、支保部材としての安定性を判定する指標となるものである。ここで、支保反力とは、支保に作用する地圧(作用地圧)である。また、トンネル内空側の支保接線方向応力σθ(最大圧縮応力)とは、図12において、θ方向の応力である。(なお、図12においてσrはトンネルの半径方向応力である。)本実施の形態では、この許容作用地圧線における支保反力Piを、支保外周の変位uによらず一定としており、この一定値をPi,maxと書くことにする。 Allowable working place pressure curve creating means 50 is for calculating the allowable working place pressure curve on u-P i plane. An example of the allowable action ground pressure line is shown in FIG. Allowable working place pressure line is支保tangential stress sigma theta of tunnel air side (maximum compressive stress), when equal to allowable stress sigma a of支保, between the displacement u of支保reaction force P i and支保periphery The relationship is shown and serves as an index for determining the stability as a support member. Here, the support reaction force is a ground pressure (acting ground pressure) acting on the support. Further, the supporting tangential direction stress σ θ (maximum compressive stress) on the air side in the tunnel is a stress in the θ direction in FIG. (In FIG. 12, σ r is the radial stress of the tunnel.) In the present embodiment, the support reaction force P i at the allowable action ground pressure line is constant regardless of the displacement u of the support outer periphery, This constant value is written as P i, max .

なお、支保の許容応力σaは、支保の形状、寸法、厚さ、強度等から予め算出されるものである。一方、例えば、厚肉円筒理論を用いると支保内縁の接線方向応力σθと、外周に作用する支保反力Pとの間には、以下の(数3)式の関係がある。従って、接線方向応力σθに支保材料の許容応力σaを代入すれば、支保反力Pi,maxを求めることができる。

Figure 0005181272

ここに、aはトンネルの半径、tは支保厚である。 The allowable stress σ a of the support is calculated in advance from the shape, dimensions, thickness, strength, and the like of the support. On the other hand, for example, the thickness and tangential stresses sigma theta of using the支保inner wall cylinder theory, between the支保reaction force P i acting on the outer periphery, the following equation (3) relationship with. Accordingly, the support reaction force P i, max can be obtained by substituting the allowable stress σ a of the support material into the tangential stress σ θ .
Figure 0005181272

Here, a is the radius of the tunnel, and t is the support thickness.

安定性判定手段60は、支保特性曲線作成手段20によって作成された支保特性曲線の終点が、地山特性曲線作成手段30により算出された地山特性曲線と、許容地山ひずみ線作成手段40により算出された許容地山ひずみ線と、許容作用地圧線作成手段50により算出された許容作用地圧線とで囲まれる領域内にあるか否かを判定するものである。なお、後述するように、支保特性曲線の終点とは、最後に支保を設置した掘進区間における壁面変位uLと支保反力Pi Lの値である。以下、地山特性曲線、許容地山ひずみ曲線及び許容作用地圧線とで囲まれる領域を「安定領域」とよぶことにする。支保特性曲線の終点が安定領域内にある場合、安定性判定手段60は、地山と支保がともに安定であると判定する。一方、支保特性曲線の終点が安定領域外にある場合、安定性判定手段60は、地山及び支保が不安定である、又は、地山と支保のいずれか一方が不安定であると判定する。 The stability determination means 60 uses the natural ground characteristic curve calculated by the natural ground characteristic curve creation means 30 and the allowable natural ground strain line creation means 40 at the end point of the support characteristic curve created by the support characteristic curve creation means 20. It is determined whether or not it is within a region surrounded by the calculated allowable ground strain line and the allowable action ground pressure line calculated by the allowable action pressure line creation means 50. As will be described later, the end point of the support characteristic curve is the value of the wall displacement u L and the support reaction force P i L in the excavation section in which the support was last installed. Hereinafter, a region surrounded by the natural ground characteristic curve, the allowable natural ground strain curve, and the allowable action pressure line is referred to as a “stable region”. When the end point of the support characteristic curve is within the stable region, the stability determination means 60 determines that both the natural ground and the support are stable. On the other hand, when the end point of the support characteristic curve is outside the stable region, the stability determination means 60 determines that the ground and the support are unstable, or one of the ground and the support is unstable. .

なお、上述した支保特性曲線、地山特性曲線、許容地山ひずみ曲線、許容作用地圧線、及び、逐次掘削・逐次支保解析の解析結果、安定性の判定結果等は、ディスプレイやプリンタ等の出力手段80を通じて出力を行うことが可能である。   Note that the above-mentioned support characteristic curve, natural ground characteristic curve, allowable ground strain curve, allowable action ground pressure line, analysis results of sequential excavation / sequential support analysis, stability determination results, etc. It is possible to output through the output means 80.

次に、逐次掘削・逐次支保解析により支保特性曲線を作成する一例について説明する。   Next, an example of creating a support characteristic curve by sequential excavation / sequential support analysis will be described.

(解析条件)
解析対象となる坑道は、断面形状を円形とし、内径を5m(掘削径6m)とする。支保は吹付けコンクリートのみを考慮し、吹付の厚さを0.5mとする。図4に解析対象とした実際の坑道の断面形状と寸法を示す。一掘進長(掘進区間の長さ)は1.5mに設定する。解析領域は100m×100mとし、掘削開始境界の影響を受けないよう、最終切羽位置を境界より60mとする。要素長は0.1m×0.25mに設定する。図5に解析領域と境界の拘束条件を示す。図5に示すように、本実施形態の解析モデルは、軸対称解析とすることにより、円形坑道の中心軸を対称軸とした軸対称モデルを用いている。
(Analysis conditions)
The mine shaft to be analyzed has a circular cross section and an inner diameter of 5 m (excavation diameter of 6 m). The support is only for shotcrete, and the spray thickness is 0.5m. FIG. 4 shows the cross-sectional shape and dimensions of an actual mine shaft to be analyzed. One excavation length (the length of the excavation section) is set to 1.5 m. The analysis area is 100 m × 100 m, and the final face position is 60 m from the boundary so as not to be affected by the excavation start boundary. The element length is set to 0.1 m × 0.25 m. FIG. 5 shows the constraint conditions between the analysis region and the boundary. As shown in FIG. 5, the analysis model of the present embodiment uses an axially symmetric model with the central axis of the circular mine shaft as the symmetric axis by performing axially symmetric analysis.

図6は、図5に示した解析モデルの坑道掘削部における切羽部分を示したものである。図6において、i,i−1,i−2・・・は、それぞれ掘進長1.5mの掘進区間を示している。図には示されていないが、坑道入口から最終切羽位置までの間に、40個の掘進区間を設定する。図6に示すように、ひとつの掘進区間は6列に分割され、掘削部分をa′〜f′、吹付けコンクリート設置部分をa〜fの要素に細分化してある。   FIG. 6 shows a face portion in a mine excavation part of the analysis model shown in FIG. In FIG. 6, i, i-1, i-2,... Each indicate an excavation section having an excavation length of 1.5 m. Although not shown in the figure, 40 excavation sections are set between the mine entrance and the final face position. As shown in FIG. 6, one excavation section is divided into six rows, and the excavation part is subdivided into elements a 'to f' and the shotcrete installation part is subdivided into elements a to f.

本実施形態では、ひとつの掘進区間で掘削及び吹付けコンクリート設置を行い、これを最初の掘進区間1からはじめて、最終の掘進区間40の掘削が完了するまで順次繰り返すことで計算を進める。すなわち、図6は、掘進区間i−1までの掘削と吹付けコンクリートの設置が終了し、次の掘進区間iの掘削を行う前の状況を示している。   In the present embodiment, excavation and shotcrete installation are performed in one excavation section, and this is repeated starting from the first excavation section 1 until the final excavation in the final excavation section 40 is completed. That is, FIG. 6 shows a situation before excavation up to the excavation section i-1 and installation of shotcrete are completed and excavation of the next excavation section i is performed.

(地山物性)
地山と吹付けコンクリートは弾性をもつものとする。地山物性は、地層処分施設の安定性の検討に用いられている軟岩系岩盤データセットの中から、強度が最大となるSR−Aと、最小となるSR−Eの中間で、深度500mで現実的に処分可能な限界の地山条件と判断したSR−Cを用いた。初期地圧は10.8MPa、深度は500mである。岩盤SR−Cの諸物性値等を表1に示す。

Figure 0005181272
(Physical properties of natural ground)
Natural ground and shotcrete shall be elastic. The physical properties of the rocks are between the softest rock mass data set used for studying the stability of geological disposal facilities, SR-A, which has the maximum strength, and SR-E, which has the minimum strength, at a depth of 500 m. SR-C, which was judged to be the limit ground condition that can be practically disposed of, was used. The initial ground pressure is 10.8 MPa and the depth is 500 m. Table 1 shows various physical property values of the bedrock SR-C.
Figure 0005181272

(解析ケースと吹付けコンクリートの物性及び地山のモデル)
解析ケースと吹付けコンクリートの物性及び地山のモデルを表2に示す。表2に示すように、吹付けコンクリートの弾性係数及び地山モデルに応じて、9種類の解析を行う。解析ケース01〜04は地山を弾性体とした場合のケースであり、解析ケース11〜14は地山を弾塑性体とした場合のケースである。なお、解析ケース00は吹付けコンクリートを設置しない無支保の場合の掘削解析である。この解析ケース00は、上述した掘進区間を設定せず、一括掘削による解析を行う。
(Analysis case and shotcrete physical properties and natural model)
Table 2 shows the physical properties of the analysis case, shotcrete, and natural ground model. As shown in Table 2, nine types of analysis are performed according to the elastic modulus of the shotcrete and the natural ground model. Analysis cases 01 to 04 are cases where the natural ground is an elastic body, and analysis cases 11 to 14 are cases where the natural ground is an elasto-plastic body. The analysis case 00 is an excavation analysis in the case of no support without installing shotcrete. In this analysis case 00, the above excavation section is not set, and analysis by collective excavation is performed.

また、上述したように、本実施の形態では地山と吹付けコンクリートを弾性をもつものとしており、且つ、切羽進行に伴う吹付けコンクリートの硬化は考慮しないこととした。表2に示すように、吹付けコンクリートの物性は、一般のトンネルにおいて特性曲線法を用いる場合に利用される弾性係数から5GPaと設定した。これを基準として10GPa,20GPa,40GPaを設定した。なお、弾性係数20GPaは、短時間(3時間)で高い剛性を発現する吹付けコンクリート、40GPaは、コンクリートセグメントの弾性係数をそれぞれ想定した弾性係数である。

Figure 0005181272


Further, as described above, in this embodiment, the natural ground and the shotcrete are made elastic, and the hardening of the shotcrete with the progress of the face is not considered. As shown in Table 2, the properties of shotcrete were set to 5 GPa from the elastic modulus used when using the characteristic curve method in a general tunnel. Based on this, 10 GPa, 20 GPa, and 40 GPa were set. The elastic modulus 20 GPa is a shotcrete that exhibits high rigidity in a short time (3 hours), and 40 GPa is an elastic coefficient that assumes the elastic modulus of the concrete segment.
Figure 0005181272


(逐次掘削・逐次支保解析の手順)
以下、図3のフローチャートを参照しながら、逐次掘削・逐次支保解析の手順を説明する。逐次掘削・逐次支保解析は、解析モデルを作成するステップS101と、逐次掘削・逐次支保解析を実行するステップS102〜S106と、この解析により算出される地山と支保との境界に位置する各要素の節点変位と半径方向応力を掘進区間内で平均する演算ステップS107を、最終掘進区間まで逐次繰り返す手順としている。なお、この逐次掘削・逐次支保解析は、例えば有限差分法のFLAC等を用いる。
(Procedure for sequential excavation and sequential support analysis)
Hereinafter, the procedure of sequential excavation and sequential support analysis will be described with reference to the flowchart of FIG. The sequential excavation / sequential support analysis includes steps S101 for creating an analysis model, steps S102 to S106 for executing the sequential excavation / sequential support analysis, and elements located at the boundary between the natural ground and the support calculated by this analysis. The calculation step S107 for averaging the nodal displacement and the radial stress in the excavation section is sequentially repeated until the final excavation section. The sequential excavation / sequential support analysis uses, for example, a finite difference method FLAC or the like.

上述した解析条件、地山物性、支保の物性、地山モデル等を入力し、解析モデル作成手段21によって解析モデルを作成した後(ステップ101)、逐次掘削・支保解析手段22により、坑道入口となる最初の掘進区間1の掘削を開始する(ステップS102)。ひとつの掘進区間の掘削は、図6に示すようにa′〜f′の順に0.25mごとに6回行う。なお、この時点では支保は設置されていない。   After inputting the above-mentioned analysis conditions, physical properties of the ground, physical properties of the support, natural ground model, etc., and generating the analysis model by the analysis model creation means 21 (step 101), the sequential excavation / support analysis means 22 The excavation of the first excavation section 1 is started (step S102). Excavation in one excavation section is performed 6 times every 0.25 m in the order of a ′ to f ′ as shown in FIG. 6. At this point, no support has been established.

iに2を入力し(ステップS103)、掘進区間i−1の支保要素を設置する(S104)。支保要素の設置はa〜f部分を一括して行う。   2 is input to i (step S103), and the support element of the excavation section i-1 is installed (S104). The support elements are installed at the same time from a to f.

次いで、掘進区間iの掘削を開始する(ステップS105)。掘進区間i−1〜掘進区間1の支保(吹付けコンクリート)の弾性係数と強度定数は表2に示すように一定値とする。なお、吹付けコンクリートの経時的な特性すなわち硬化特性を考慮して、掘進区間1から掘進区間iまでのそれぞれの経過時間により、吹付けコンクリートの材齢と物性との関係から設定して、掘削解析を実施することもできる。   Next, excavation in the excavation section i is started (step S105). The elastic modulus and strength constant of the support (sprayed concrete) in the excavation section i-1 to the excavation section 1 are set to constant values as shown in Table 2. In consideration of the time-lapse characteristics of the shotcrete, that is, the hardening characteristics, the excavation is set according to the elapsed time from the excavation section 1 to the excavation section i based on the relationship between the age and physical properties of the shotcrete. Analysis can also be performed.

掘進区間iのa′部分の掘削が完了した時点で、評価対象掘進区間の支保と地山との境界に位置する支保要素及び地山要素における節点変位と半径方向応力を算出する(ステップ106)。なお、評価対象掘進区間は、掘削を行っている区間をiとするとi−1〜1までのいずれでもよいが、掘削後の状態で地山と支保の安定性を評価する場合は切羽の影響がほぼなくなる位置(掘進区間)で検討することが望ましい。目安としては、切羽からトンネル径Dの3〜5倍の距離の位置である。本実施の形態では、掘進区間31を評価対象掘進区間とする。図6に示すように、掘進長1.5mの場合、1つの掘進区間における支保と地山との境界に位置する要素の数は12個である。図7は、地山と支保(吹付けコンクリート)との境界部分の地山要素と支保要素を拡大して示したものである。図7に示すように、地山と支保との境界に位置するひとつの要素の節点変位をuj,uj+1とする。また、地山と支保との境界に位置するひとつの支保要素における半径方向応力をσs、この支保要素に隣接する地山要素の半径方向応力をσgとする。 At the time when excavation of the a ′ portion of the excavation section i is completed, the nodal displacement and the radial stress in the support element and the natural ground element located at the boundary between the support of the evaluation target excavation section and the natural ground are calculated (step 106). . In addition, the evaluation target excavation section may be any of i-1 to 1 where i is the section where excavation is performed, but when evaluating the stability of natural ground and support in the state after excavation, the influence of the face It is desirable to consider at a position where there is almost no (digging section). As a guide, it is a position 3 to 5 times the tunnel diameter D from the face. In the present embodiment, the excavation section 31 is set as the evaluation target excavation section. As shown in FIG. 6, when the excavation length is 1.5 m, the number of elements located at the boundary between the support and the ground in one excavation section is twelve. FIG. 7 is an enlarged view of the natural ground element and the supporting element at the boundary portion between the natural ground and the support (sprayed concrete). As shown in FIG. 7, the nodal displacements of one element located at the boundary between the natural ground and the support are u j and u j + 1 . Further, σ s is a radial stress in one support element located at the boundary between the natural ground and the support, and σ g is a radial stress of a natural element adjacent to the support element.

次に、ステップS106で算出した値を節点変位・半径方向応力平均値算出手段23に送り、評価対象掘進区間31の支保と地山との境界に位置する12個の要素の半径方向応力と節点変位を掘進区間内でそれぞれ平均する(ステップS107)。ステップS107の処理は以下の2段階を経て実行される。まず、以下の(数4)式より、ステップS106で算出した要素の半径方向応力σs,σgの平均値を算出する。

Figure 0005181272
Next, the value calculated in step S106 is sent to the nodal displacement / radial stress average value calculating means 23, and the radial stresses and nodal points of the twelve elements located at the boundary between the support of the evaluation excavation section 31 and the natural ground. The displacements are averaged within the excavation section (step S107). The process of step S107 is executed through the following two stages. First, the average value of the radial stresses σ s and σ g of the elements calculated in step S106 is calculated from the following equation (4).
Figure 0005181272

同様にして、(数5)式により、ステップS106で算出した要素の節点変位uj,uj+1の平均値を算出する。

Figure 0005181272
Similarly, the average value of the nodal displacements u j and u j + 1 of the element calculated in step S106 is calculated by the equation (5).
Figure 0005181272

ここで、支保要素における半径方向応力σ s と地山要素における半径方向応力σ g との平均値を、地山要素と支保要素との境界に作用する応力、すなわち、地山要素と支保要素との境界における支保反力Pavとみなす。また、節点変位uj,uj+1の平均値を、地山要素と支保要素との境界における壁面変位uavとみなす。 Here, the average value of the radial stress σ s in the support element and the radial stress σ g in the ground element is defined as the stress acting on the boundary between the ground element and the support element, that is, the ground element and the support element The support reaction force P av at the boundary of The average value of the nodal displacements u j and u j + 1 is regarded as the wall surface displacement u av at the boundary between the natural ground element and the supporting element.

次に、地山要素と支保要素との境界における支保反力Pav及び壁面変位uavを、評価対象掘進区間31内(a〜f)で平均する。すなわち(数6)式により、評価対象掘進区間31内のa〜fの6箇所の支保反力Pavの平均値を算出する。同様にして、(数7)式により、評価対象掘進区間31内のa〜fの6箇所の壁面変位uavの平均値を算出する。ここで、評価対象掘進区間31での支保反力Pavの平均値を、掘進区間iのa′部分の掘削が完了した時点での評価対象掘進区間31における支保反力Pi Lとみなす。また、評価対象掘進区間31内の壁面変位uavの平均値を、掘進区間iのa′部分の掘削が完了した時点での評価対象掘進区間31における壁面変位uLとみなす。

Figure 0005181272

Figure 0005181272
Next, the support reaction force P av and the wall surface displacement u av at the boundary between the natural ground element and the support element are averaged within the evaluation target excavation section 31 (af). That is, the average value of the six supporting reaction forces P av of a to f in the evaluation target excavation section 31 is calculated by the equation (6). Similarly, an average value of six wall surface displacements u av of a to f in the evaluation target excavation section 31 is calculated by the equation (7). Here, the average value of the support reaction force P av in the evaluation target excavation section 31 is regarded as the support reaction force P i L in the evaluation target excavation section 31 when the excavation of the a ′ portion of the excavation section i is completed. Further, the average value of the wall displacement u av in the evaluation target excavation section 31 is regarded as the wall displacement u L in the evaluation target excavation section 31 at the time when excavation of the a ′ portion of the excavation section i is completed.
Figure 0005181272

Figure 0005181272

上記ステップS105〜ステップS107の処理を、掘進区間iのb′〜f´部分の掘削が完了する都度行う。 The processes in steps S105 to S107 are performed every time the excavation of the b ′ to f ′ portion of the excavation section i is completed.

上記ステップS104〜ステップS107の処理を最終掘進区間まで繰り返す(ステップS108)。掘進区間39の支保設置を行い、最終掘進区間40の掘削を行い、掘進区間40のf´部分の掘削が完了した時点での評価対象掘進区間31における壁面変位uLと支保反力Pi Lを算出して計算を終了する(ステップS109)。 The processes in steps S104 to S107 are repeated until the final excavation section (step S108). The excavation section 39 is supported, the final excavation section 40 is excavated, and the wall displacement u L and the supporting reaction force P i L in the evaluation target excavation section 31 at the time when the excavation of the f ′ portion of the excavation section 40 is completed. Is calculated and the calculation is terminated (step S109).

ステップS107で得られた評価対象掘進区間31の壁面変位uLと支保反力Pi Lの値を用いて、以下の手順により支保特性曲線を作成する。解析ケース00における無支保の場合の一括掘削解析で得られる壁面変位の収束値(最終壁面変位)をu0とし、ステップS101で設定した初期地圧をP0とする。無支保の掘削解析で得られる最終壁面変位u0に対する壁面変位uの比(u/u0)をx軸とし、初期地圧P0に対する支保反力Piの比(P/P0)をy軸として、ステップS107で得られた値を解析ケースごとにプロットしていく。プロットした点を最小二乗法により直線近似することにより、評価対象掘進区間31での壁面変位と支保反力の支保特性曲線が得られる。 Using the values of the wall displacement u L and the support reaction force P i L of the evaluation target excavation section 31 obtained in step S107, a support characteristic curve is created by the following procedure. The convergence value (final wall displacement) of the wall displacement obtained by the collective excavation analysis in the case of no support in the analysis case 00 is u 0, and the initial ground pressure set in step S101 is P 0 . The ratio (u / u 0 ) of wall displacement u to final wall displacement u 0 obtained by unsupported excavation analysis is x-axis, and the ratio (P / P 0 ) of support reaction force P i to initial ground pressure P 0 is As the y-axis, the values obtained in step S107 are plotted for each analysis case. A support characteristic curve of the wall displacement and the support reaction force in the evaluation target excavation section 31 is obtained by linearly approximating the plotted points by the least square method.

図8のグラフ(b)に、地山を弾性体とした場合の4種類の解析ケース01〜04における支保特性曲線を示す。また、グラフ(b)において、x軸及びy軸の1.0を通る直線は地山特性曲線である。この地山特性曲線は、表1に示した地山物性と弾性地山の円孔の理論解により求めたものである。弾性地山の場合、地山特性曲線は直線となることが分かっている。図8(b)に示すように、地山を弾性体とした場合、支保特性曲線の終点は(最終変位)は、地山特性曲線との交点上にあり、地山特性曲線との交点上で釣合状態となる。従って、地山を弾性体と仮定した場合、特性曲線を用いた2次元解析で得られる結果と整合する。   The graph (b) in FIG. 8 shows support characteristic curves in four types of analysis cases 01 to 04 when the natural ground is an elastic body. In the graph (b), straight lines passing through 1.0 on the x-axis and the y-axis are natural ground characteristic curves. This natural ground characteristic curve is obtained by the theoretical solution of the natural ground physical properties and the circular hole of the elastic natural ground shown in Table 1. In the case of an elastic natural ground, it is known that the natural ground characteristic curve is a straight line. As shown in FIG. 8B, when the natural ground is an elastic body, the end point of the support characteristic curve (final displacement) is on the intersection with the natural ground characteristic curve, and on the intersection with the natural ground characteristic curve. It will be in a balanced state. Therefore, when the natural ground is assumed to be an elastic body, it matches the result obtained by the two-dimensional analysis using the characteristic curve.

なお、各支保特性曲線とx軸との交点(x軸切片)は先行変位率である。弾性地山の場合、先行変位率と応力解放率が等しくなるため、支保特性曲線とx軸との交点が応力解放率となる。ここで、応力解放率とは、特性曲線法を用いて計算する上で重要なパラメータのひとつであり、切羽あるいは支保設置位置での、初期地圧とトンネル壁面から地山に作用する支保反力又は掘削直前の地山の反力との差の、初期地圧に対する比である。   Note that the intersection (x-axis intercept) between each support characteristic curve and the x-axis is the preceding displacement rate. In the case of an elastic natural ground, since the preceding displacement rate and the stress release rate are equal, the intersection of the support characteristic curve and the x axis is the stress release rate. Here, the stress release rate is one of the important parameters for the calculation using the characteristic curve method. The initial reaction pressure at the face or support installation position and the support reaction force acting on the ground from the tunnel wall surface. Or it is the ratio of the difference from the reaction force of the natural ground just before excavation to the initial ground pressure.

一方、図9は、地山を弾塑性体とした場合の4種類の解析ケース11〜14における支保特性曲線を示すグラフである。図中の曲線Aは、地山特性曲線作成手段30によって作成された地山特性曲線である。この地山特性曲線は、表1に示した地山物性と弾塑性地山の円孔の理論解により得られる地山特性曲線であり、弾性地山の場合のような直線ではなく、曲線となる。図9に示すように、地山を弾塑性と仮定した場合、上記の弾性地山の解析ケースと異なり、支保特性曲線の壁面変位と支保反力は地山特性曲線上に収束せず、壁面変位と支保反力ともに弾性地山の場合よりも大きな値をとることがわかる。すなわち、地山モデルを弾塑性体とした場合、支保特性曲線は、地山特性曲線上で釣合状態とならない。   On the other hand, FIG. 9 is a graph showing support characteristic curves in four types of analysis cases 11 to 14 when the natural ground is made of an elastoplastic material. A curve A in the figure is a natural ground characteristic curve created by the natural ground characteristic curve creating means 30. This natural ground characteristic curve is a natural ground characteristic curve obtained by the theoretical solution of the natural ground physical properties and elasto-plastic natural ground shown in Table 1, and is not a straight line as in the case of an elastic natural ground. Become. As shown in FIG. 9, when the natural ground is assumed to be elasto-plastic, unlike the analysis case of the elastic natural ground described above, the wall displacement and the support reaction force of the support characteristic curve do not converge on the natural ground characteristic curve. It can be seen that both the displacement and the supporting reaction force are larger than those of the elastic ground. That is, when the natural ground model is an elasto-plastic body, the support characteristic curve is not balanced on the natural ground characteristic curve.

(トンネル安定性判定の手順)
上述したように、地山モデルを弾塑性体とした場合、逐次掘削・逐次支保解析により求めた支保特性曲線は、地山特性曲線上で釣合状態とならない。従って、従来のように、地山特性曲線と支保特性曲線の交点における支保内圧Piと壁面変位uを採用して支保設計を行う場合、実際よりも小さな荷重を想定して設計を行うことになるため、実際に必要な強度に対して不十分な支保設計となる可能性がある。本実施の形態では、上述した許容地山ひずみ曲線、許容作用地圧線、地山特性曲線とで囲まれた安定領域を設定し、この安定領域に支保特性曲線の終点が入るか否かを判定することによって、トンネル安定性の評価を行う。以下、図2のフローチャート及び図10のグラフを参照しながら、本実施の形態のトンネル安定性の評価方法における手順について説明する。
(Tunnel stability determination procedure)
As described above, when the natural ground model is an elasto-plastic body, the support characteristic curve obtained by the sequential excavation / sequential support analysis is not in a balanced state on the natural ground characteristic curve. Therefore, as in the prior art, when performing adopted by支保designed支保pressure P i and the wall displacement u at the intersection of the natural ground characteristic curve and支保characteristic curve, to be performed actually designed for smaller loads than Therefore, there is a possibility that the support design is insufficient for the actually required strength. In the present embodiment, a stable region surrounded by the above-described allowable ground strain curve, allowable action ground pressure line, and natural ground characteristic curve is set, and whether or not the end point of the support characteristic curve enters this stable region. By judging, the tunnel stability is evaluated. The procedure in the tunnel stability evaluation method of the present embodiment will be described below with reference to the flowchart of FIG. 2 and the graph of FIG.

まず、上記で説明したように、地山を弾塑性体と仮定した場合の解析モデルを作成して逐次掘削・逐次支保解析を行う。各掘進区間の掘削解析に伴い、評価対象掘進区間の壁面変位uLと支保反力Pi Lの値を算出する。算出された値を図10に示すようにu−Pi平面上にプロットし、支保特性曲線を作成する(ステップS100)。 First, as explained above, an analysis model in which the natural ground is assumed to be an elasto-plastic body is created, and sequential excavation and sequential support analysis are performed. Along with the excavation analysis of each excavation section, values of the wall displacement u L and the supporting reaction force P i L of the evaluation excavation section are calculated. The calculated values are plotted on the u- Pi plane as shown in FIG. 10, and a support characteristic curve is created (step S100).

次いで、地山特性曲線作成手段30により、表1に示した地山物性と弾塑性地山の円孔の理論解による地山特性曲線を作成する(ステップS111)。次いで、許容地山ひずみ曲線作成手段40により、上述した許容地山ひずみ曲線をu−Pi平面上に作成する(ステップS112)。次いで、許容作用地圧線作成手段50により、上述した許容作用地圧線をu−Pi平面上に作成する(ステップS113)。ステップS111〜S113を実行することにより、図10に示すように、地山特性曲線、許容地山ひずみ曲線及び許容作用地圧線とで囲まれた安定領域が作成される。 Next, the natural ground characteristic curve creating means 30 creates natural ground characteristic curves based on the theoretical solution of the natural ground physical properties and the elasto-plastic natural ground shown in Table 1 (step S111). Next, the allowable ground strain curve creating means 40 creates the above-described allowable ground strain curve on the u- Pi plane (step S112). Then, the allowable working place pressure curve creating means 50 creates an allowable action land pressure curve mentioned above on u-P i plane (step S113). By executing steps S111 to S113, as shown in FIG. 10, a stable region surrounded by a natural ground characteristic curve, an allowable natural ground strain curve, and an allowable action ground pressure line is created.

次いで、支保特性曲線の終点が安定領域にあるか否かを判定する(ステップS114)。ここで、支保特性曲線の終点とは、掘進区間40のf´部分の掘削が完了した時点での、評価対象掘進区間31における壁面変位uLと支保反力Pi Lの値である。図10に示すように支保特性曲線の終点が安定領域にある場合(ステップS114:Yes)、安定性判定手段60は、地山と支保がともに安定であると判定し、解析モデルを採用する(ステップS115)。安定性判定手段60によって安定と判定された場合、支保特性曲線の終点の値に基づいて支保設計が行われることになる。 Next, it is determined whether or not the end point of the support characteristic curve is in the stable region (step S114). Here, the end point of the support characteristic curve is the value of the wall displacement u L and the support reaction force P i L in the evaluation target excavation section 31 when excavation of the f ′ portion of the excavation section 40 is completed. As shown in FIG. 10, when the end point of the support characteristic curve is in the stable region (step S114: Yes), the stability determination means 60 determines that both the ground and the support are stable, and adopts the analysis model ( Step S115). When it is determined that the stability determination means 60 is stable, the support design is performed based on the end point value of the support characteristic curve.

一方、図示は省略するが、支保特性曲線の終点が安定領域外にある場合には(ステップS114:No)、安定性判定手段60は、支保及び周辺地山が不安定であると判定し、トンネルが安定した状態を確保できていないと判断する。例えば、支保特性曲線の終点が、許容地山ひずみ曲線の右側に位置する場合、安定性判定手段60は、周辺地山が不安定であると判定する。すなわち、この状態は、壁面変位が許容壁面変位uaを超えた状態であるから、安定領域にある場合と比べて、地山が大きな変形を起こす可能性があるといえる。 On the other hand, although illustration is omitted, when the end point of the support characteristic curve is outside the stable region (step S114: No), the stability determination means 60 determines that the support and the surrounding ground are unstable, Judge that the tunnel is not stable. For example, when the end point of the support characteristic curve is located on the right side of the allowable ground strain curve, the stability determination unit 60 determines that the surrounding ground is unstable. That is, in this state, since the wall surface displacement exceeds the allowable wall surface displacement u a , it can be said that there is a possibility that the natural ground may be greatly deformed compared to the case where it is in the stable region.

また、支保特性曲線の終点が、許容作用地圧線の上側に位置する場合、安定性判定手段60は、支保が不安定であると判定する。すなわち、この状態は、支保反力が許容作用地圧Pi,maxを超えた状態であるから、安定領域にある場合と比べて、支保に大きな荷重がかかる可能性があり、支保の構造体の安定性を確保できないと判断する。 In addition, when the end point of the support characteristic curve is located above the allowable action pressure line, the stability determination unit 60 determines that the support is unstable. That is, in this state, since the support reaction force exceeds the allowable working ground pressure Pi, max , there is a possibility that a greater load may be applied to the support than in the stable region. It is judged that the stability of the system cannot be secured.

また、支保特性曲線の終点が、許容地圧ひずみ曲線の右側且つ許容作用地圧線の上側を満たす位置にある場合、安定性判定手段60は、周辺地山及び支保の両方が不安定であると判定する。すなわち、この状態は、壁面変位及び支保反力がともに許容値を超えた状態であるから、安定領域にある場合と比べて、地山が大きく変形し、支保に大きな地圧がかかる可能性があるといえる。 In addition, when the end point of the support characteristic curve is at a position satisfying the right side of the allowable ground pressure strain curve and the upper side of the allowable action ground pressure line , the stability determination means 60 is unstable in both the surrounding ground and the support. Is determined. That is, in this state, the wall displacement and the support reaction force both exceed the allowable values, so that the natural ground may be greatly deformed and a large ground pressure may be applied to the support as compared to the stable region. It can be said that there is.

また、支保特性曲線の終点が、地山特性曲線の左側且つ許容作用地圧線の上側を満たす位置にある場合、安定性判定手段60は、支保に過大な地圧が作用していると判定する。また、支保特性曲線の終点が、地山特性曲線よりも下側に位置する場合、判定としては安定領域と考えられるが、解析上はここに支保特性曲線の終点がくることはこれまでの解析事例では存在しないため、実際には起こりえないと考えられる。   In addition, when the end point of the support characteristic curve is at a position satisfying the left side of the natural ground characteristic curve and the upper side of the allowable action pressure line, the stability determination means 60 determines that an excessive ground pressure is acting on the support. To do. In addition, when the end point of the support characteristic curve is located below the natural ground characteristic curve, it is considered to be a stable region as a judgment, but for the analysis, the end point of the support characteristic curve comes here. Since it does not exist in the case, it is unlikely to actually occur.

なお、ステップS114でNoとなった場合には、例えば解析モデルの設定をやり直して再度解析を行う等、安定性の判定結果をフィードバックさせる。   In addition, when it becomes No in step S114, the determination result of stability is fed back, for example, the analysis model is set again and the analysis is performed again.

以上のステップS100〜S115は、コンピュータと、そのコンピュータに実行させるプログラムによって実現することができ、そのプログラムは、コンピュータが読み取り可能な磁気ディスク、光ディスク、半導体メモリ等の記録媒体に格納することができる。この場合、解析装置10は、記録媒体から読み込まれたプログラムにより、ステップS100〜S115を実行する。   The above steps S100 to S115 can be realized by a computer and a program executed by the computer, and the program can be stored in a computer-readable recording medium such as a magnetic disk, an optical disk, or a semiconductor memory. . In this case, the analysis apparatus 10 executes steps S100 to S115 by a program read from the recording medium.

以上説明したように、本実施の形態であるトンネル安定性の評価方法及びそのプログラムによれば、大深度の高地圧下でトンネルを建設する際の支保及び周辺地山の安定性を適切に評価することが可能となる。その結果、地層処分施設における処分坑道等、建設実績の少ないトンネルを建設するにあたり、精度の高い支保設計を行うことが可能となる。   As described above, according to the tunnel stability evaluation method and the program thereof according to the present embodiment, the support and the stability of surrounding ground are appropriately evaluated when a tunnel is constructed under a deep deep ground pressure. It becomes possible. As a result, it is possible to carry out a highly accurate support design when constructing a tunnel with few construction results, such as a disposal tunnel in a geological disposal facility.

また、本実施の形態であるトンネル安定性の評価方法及びそのプログラムは、従来の特性曲線法による評価方法を準用しているため、特性曲線法によりトンネル安定性の評価を行ってきた支保設計者にとっても理解しやすいという効果を奏する。   In addition, since the tunnel stability evaluation method and the program according to the present embodiment apply the evaluation method based on the conventional characteristic curve method, the support designer who has evaluated the tunnel stability by the characteristic curve method. The effect is easy to understand.

また、本実施の形態であるトンネル安定性の評価方法では、地山の状態ひずみから許容壁面変位uaを算出し、この許容壁面変位uaと支保内圧Piとの関係から許容地山ひずみ曲線を作成した。上述したように、支保内圧が大きくなると(すなわち支保効果が大きくなると)、周辺地山の許容壁面変位uaも大きくなる。つまり、許容ひずみを限界ひずみ(支保内圧によらず一定)とした場合に比べて、支保の支持性能の違いをより実際に近い形で評価することができる。その結果、支保内圧Pが大きい場合には、許容壁面変位uaを大きくしても安定性が確保できる効果を支保設計で反映させることができる。 Moreover, in the tunnel stability evaluation method which is the embodiment calculates the allowable wall displacement u a from strain state of the natural ground, the strain allowable locations mountain relationship between the allowable wall displacement u a and支保pressure P i A curve was created. As described above, when the support internal pressure increases (that is, when the support effect increases), the allowable wall surface displacement u a of the surrounding natural ground also increases. That is, compared to the case where the allowable strain is the limit strain (constant regardless of the support internal pressure), the difference in support performance of the support can be evaluated in a form closer to the actual situation. As a result, when支保internal pressure P i is large, it is possible to reflect the effect that even by increasing the permissible wall displacement u a can be ensured stability in支保design.

なお、上記実施の形態で適用した逐次掘削・逐次支保解析における要素数、掘進区間数、掘進区間における掘削列(a´〜f´)の数等は一例であり、これらに限定されないのはもちろんである。また、上記の逐次掘削・逐次支保解析では、評価対象掘進区間を掘進区間31としたが、これに限定されるものではなく、切羽から充分離れた位置であれば、他の掘進区間を評価対象掘進区間としてもよい。また、上記実施の形態では、逐次掘削・支保解析手段22で算出される地山要素と支保要素の節点変位と半径方向応力を掘進区間内で平均する演算処理までを最終掘進区間まで逐次繰り返す手順、すなわち、ステップS104からステップS109までの処理を逐次繰り返した後にステップS110に進む手順としたが、この処理の流れは一例であり以下のような手順とすることもできる。   The number of elements, the number of excavation sections, the number of excavation rows (a ′ to f ′) in the excavation sections, etc. are examples, and are not limited to these. It is. Further, in the above-described sequential excavation / sequential support analysis, the evaluation target excavation section is the excavation section 31, but the present invention is not limited to this, and other excavation sections may be evaluated if the position is sufficiently away from the face. It may be a digging section. Further, in the above embodiment, a procedure for sequentially repeating the calculation process of averaging the ground displacement element and the nodal displacement and the radial stress of the support element calculated in the sequential excavation / support analysis means 22 in the excavation section until the final excavation section. In other words, although the procedure from step S104 to step S109 is sequentially repeated and then the procedure proceeds to step S110, the flow of this process is an example, and the following procedure may be used.

例えば、逐次掘削・支保解析を最終掘進区間まで実行した後に、算出された各要素の節点変位と半径方向応力の値を節点変位・半径方向応力平均値算出手段23に一括して送り、掘進区間1〜掘進区間39での各平均値を算出する手順としてもよい。すなわち、ステップS104からステップS106までを最終掘進区間まで繰り返した後に、ステップS107に進んで各掘進区間の平均値を算出する手順としてもよい。   For example, after the sequential excavation / support analysis is executed up to the final excavation section, the calculated nodal displacement and radial stress values of each element are collectively sent to the nodal displacement / radial stress average value calculation means 23, and the excavation section It is good also as a procedure which calculates each average value in 1-digging section 39. That is, after repeating step S104 to step S106 to the last excavation section, it is good also as a procedure which progresses to step S107 and calculates the average value of each excavation section.

また、逐次掘削・支保解析、掘進区間内の平均値の演算処理及び平均値のプロット処理までを、最終掘進区間まで逐次繰り返し行う手順としてもよい。すなわち、ステップS104からステップS110までを最終掘進区間まで逐次繰り返す手順としてもよい   Further, the sequential excavation / support analysis, the calculation process of the average value in the excavation section and the plot processing of the average value may be sequentially repeated until the final excavation section. In other words, steps S104 to S110 may be sequentially repeated until the final excavation section.

また、上記実施の形態におけるトンネル安定性の判定では、支保特性曲線の終点が安定領域にあるか否かを判定している。つまり、安定性の判定には、最後に支保を設置した掘進区間39での壁面変位uLと支保反力Pi Lの値のみを使用している。従って、必ずしも支保特性曲線を作成する必要はなく、u−Pi平面上に終点のみをプロットするだけでもよい。 In the tunnel stability determination in the above embodiment, it is determined whether or not the end point of the support characteristic curve is in the stable region. That is, for the stability determination, only the values of the wall displacement u L and the support reaction force P i L in the excavation section 39 where the support was last installed are used. Therefore, it is not always necessary to create a support characteristic curve, and only the end point may be plotted on the u- Pi plane.

さらに、上記実施の形態では、逐次掘削・逐次支保解析により支保特性曲線を作成した後、地山特性曲線、許容地山ひずみ曲線、許容作用地圧線を作成する手順としたが、地山特性曲線、許容地山ひずみ曲線、許容作用地圧線は、逐次掘削・逐次支保解析とは独立に得られるものである。従って、逐次掘削・逐次支保解析を行う前に、予めこれらの3本の線を作成する手順としてもよい。   Furthermore, in the above embodiment, the support characteristic curve is created by the sequential excavation / sequential support analysis, and then the natural ground characteristic curve, the allowable natural ground strain curve, and the allowable action ground pressure line are created. Curves, allowable ground strain curves, and allowable action pressure lines are obtained independently of sequential excavation and sequential support analysis. Therefore, it is good also as a procedure which produces these three lines beforehand, before performing sequential excavation and sequential support analysis.

本実施の形態で適用する解析装置の構成を示すブロック図である。It is a block diagram which shows the structure of the analyzer applied in this Embodiment. 図1で示した解析装置が実施する処理の手順を示したフローチャートである。It is the flowchart which showed the procedure of the process which the analyzer shown in FIG. 1 implements. 図1で示した解析装置が実施する処理の手順を示したフローチャートである。It is the flowchart which showed the procedure of the process which the analyzer shown in FIG. 1 implements. 本実施の形態で適用する解析モデルの坑道の断面図である。It is sectional drawing of the mine shaft of the analysis model applied in this Embodiment. 本実施の形態で適用する解析モデルの解析領域を示す概念図である。It is a conceptual diagram which shows the analysis area | region of the analysis model applied in this Embodiment. 本実施の形態で適用する解析モデルの要素分割状況を示す概念図である。It is a conceptual diagram which shows the element division | segmentation condition of the analysis model applied in this Embodiment. 本実施の形態で適用する解析モデルの地山と支保との境界を拡大して示した図である。It is the figure which expanded and showed the boundary of the natural ground and support of the analysis model applied in this Embodiment. 逐次掘削・逐次支保解析において、地山を弾性体とした場合の切羽からの距離と壁面変位比との関係を示すグラフ、及び、地山特性曲線と支保特性曲線を示すグラフである。In sequential excavation and sequential support analysis, it is a graph which shows the relationship between the distance from a face and a wall surface displacement ratio when a natural ground is made into an elastic body, and a graph which shows a natural ground characteristic curve and a support characteristic curve. 逐次掘削・逐次支保解析において、地山を弾塑性体とした場合における地山特性曲線及び支保特性曲線を示すグラフである。It is a graph which shows a natural ground characteristic curve and a supporting characteristic curve when a natural ground is made into an elasto-plastic body in sequential excavation and sequential support analysis. 本実施の形態におけるトンネル安定性の判定を説明するためのグラフである。It is a graph for demonstrating determination of the tunnel stability in this Embodiment. 室内三軸試験で得られる応力とひずみとの関係を示すグラフである。It is a graph which shows the relationship between the stress obtained by an indoor triaxial test, and distortion. トンネル内空側の支保接線方向応力を説明するための図である。It is a figure for demonstrating the support tangential direction stress of the sky side in a tunnel. 地層処分施設の概略図である。It is the schematic of a geological disposal facility. 従来の特性曲線法における地山特性曲線と支保特性曲線の一例を示すグラフである。It is a graph which shows an example of the natural ground characteristic curve and support characteristic curve in the conventional characteristic curve method. 支保内圧と壁面変位を説明するための図である。It is a figure for demonstrating support internal pressure and wall surface displacement. 支保反力と壁面変位を説明するための図である。It is a figure for demonstrating support reaction force and wall surface displacement.

符号の説明Explanation of symbols

10 解析装置
20 支保特性曲線作成手段
21 解析モデル作成手段
22 逐次掘削・支保解析手段
23 節点変位・半径方向応力平均値算出手段
30 地山特性曲線作成手段
40 許容地山ひずみ曲線作成手段
50 許容作用地圧線作成手段
60 安定性判定手段
70 入力装置
80 出力装置
DESCRIPTION OF SYMBOLS 10 Analyzing device 20 Support characteristic curve creation means 21 Analytical model creation means 22 Sequential excavation / support analysis means 23 Nodal displacement / radial direction stress average calculation means 30 Ground rock characteristic curve creation means 40 Allowable ground strain curve creation means 50 Allowable action Ground pressure line creation means 60 Stability judgment means 70 Input device 80 Output device

Claims (3)

所定長さの掘削及び支保の設置を行う掘進区間、及び、周辺地山及び支保の物性値を設定し、掘削部分、支保の設置部分及び周辺地山を有限要素に分割して解析モデルを作成する工程と、
地山を弾塑性体として2次元無限体中の円孔モデルを想定し、周辺地山の物性値から地山特性曲線を得る工程と、
i−1番目の掘進区間の支保の設置を行ったのち、i番目の掘進区間の掘削を行い、該i番目の掘削に伴い、安定性を評価する掘進区間における地山と支保との境界に位置する要素の節点変位と半径方向応力とを算出する処理を、iを1ずつ増加させてiが掘進区間の総数になるまで逐次繰り返す工程と、
最終掘進区間の掘削が完了した時点での前記安定性を評価する掘進区間における地山と支保との境界に位置する各要素の節点変位の平均値を算出し、これを当該掘進区間における壁面変位uLとするとともに、最終掘進区間の掘削が完了した時点での前記安定性を評価する掘進区間における地山と支保との境界に位置する地山要素の半径方向応力と支保要素の半径方向応力との平均値を算出し、これを当該掘進区間における支保反力Pi Lとする工程と、
地山について成り立つ許容壁面ひずみεθ,aを用いて算出される許容壁面変位uaと支保内圧Piとの関係から、許容地山ひずみ曲線を作成する工程と、
支保内縁の接線方向応力σθが、支保材料の許容応力σaとなるときの支保反力Pi,maxの値から、許容作用地圧線を作成する工程と、
横軸をトンネル壁面変位u、縦軸を支保内圧Piとしたu− i 平面において、前記壁面変位uL及び前記支保反力Pi Lとで決まる終点が、前記許容地山ひずみ曲線、前記許容作用地圧線、及び、前記地山特性曲線とで囲まれた安定領域にあるか否かを判定する工程と、
を有することを特徴とするトンネル安定性の評価方法。
Set the excavation section for excavation and support installation of a predetermined length, and the physical properties of surrounding ground and support, and divide the excavation part, support installation and surrounding ground into finite elements to create an analysis model And a process of
Assuming a circular hole model in a two-dimensional infinite body with the natural ground as an elasto-plastic body, obtaining a natural ground characteristic curve from the physical values of the surrounding natural ground,
After installing the support for the i-1 th excavation section, excavation for the i th excavation section, and with the i th excavation, at the boundary between the natural ground and the support in the excavation section to evaluate the stability Repeating the process of calculating the nodal displacement and the radial stress of the located element by increasing i by 1 until i becomes the total number of excavation sections;
Calculate the average value of the nodal displacement of each element located at the boundary between the natural ground and the support in the excavation section to evaluate the stability at the time when excavation in the final excavation section is completed, and calculate the wall displacement in the excavation section u L and the radial stress of the ground element and the radial stress of the support element at the boundary between the natural ground and the support in the excavation section to evaluate the stability when the excavation of the final excavation section is completed And calculating this average value as the support reaction force P i L in the excavation section,
Creating a permissible ground strain curve from the relationship between the permissible wall displacement u a calculated using the permissible wall strain ε θ, a established for the natural ground and the support internal pressure Pi;
Creating an allowable working pressure line from the value of the supporting reaction force P i, max when the tangential stress σ θ of the supporting inner edge becomes the allowable stress σ a of the supporting material;
The horizontal axis tunnel wall displacement u, a vertical axis u- P i plane was支保pressure P i, the end point determined by said wall displacement u L and the支保reaction force P i L is the permissible locations Mountain strain curve, Determining whether it is in a stable region surrounded by the allowable action ground pressure line and the natural ground characteristic curve;
A method for evaluating tunnel stability, comprising:
地山の状態ひずみから前記許容壁面変位uaを算出することを特徴とする請求項1に記載のトンネル安定性の評価方法。 The tunnel stability evaluation method according to claim 1, wherein the allowable wall displacement u a is calculated from a state strain of a natural ground. 請求項1に記載のトンネル安定性の評価方法における各工程を、コンピュータに実行させるためのプログラム。   A program for causing a computer to execute each step in the tunnel stability evaluation method according to claim 1.
JP2007287578A 2007-11-05 2007-11-05 Tunnel stability evaluation method and program thereof Active JP5181272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007287578A JP5181272B2 (en) 2007-11-05 2007-11-05 Tunnel stability evaluation method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287578A JP5181272B2 (en) 2007-11-05 2007-11-05 Tunnel stability evaluation method and program thereof

Publications (2)

Publication Number Publication Date
JP2009114697A JP2009114697A (en) 2009-05-28
JP5181272B2 true JP5181272B2 (en) 2013-04-10

Family

ID=40782140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287578A Active JP5181272B2 (en) 2007-11-05 2007-11-05 Tunnel stability evaluation method and program thereof

Country Status (1)

Country Link
JP (1) JP5181272B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545346A (en) * 2016-12-08 2017-03-29 中国地质大学(武汉) A kind of push pipe tunnel section optimization method
TWI683063B (en) 2017-09-07 2020-01-21 日商Smc股份有限公司 Fluid pressure cylinder
CN111027129A (en) * 2019-12-30 2020-04-17 石家庄铁道大学 Design method of extruded surrounding rock tunnel structure

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737557B2 (en) * 2010-11-22 2015-06-17 清水建設株式会社 Stability evaluation method and stability evaluation apparatus
JP5738081B2 (en) * 2011-06-10 2015-06-17 鹿島建設株式会社 Tunnel optimum support selection device and tunnel optimum support selection program
JP6730884B2 (en) * 2016-08-31 2020-07-29 大成建設株式会社 How to design a structure
JP7045952B2 (en) * 2018-07-23 2022-04-01 大成建設株式会社 Tunnel construction method and tunnel support structure
CN110346213B (en) * 2019-08-07 2021-09-10 安徽建筑大学 Stability evaluation method for surrounding rock of tunnel underpass gob
CN111259486B (en) * 2020-02-24 2023-01-24 中铁第六勘察设计院集团有限公司 Method for evaluating overall stability of oversized cross-rock tunnel
CN112307547B (en) * 2020-11-02 2023-05-05 武汉理工大学 Method for designing supporting pressure of tunnel face
CN112613108A (en) * 2020-12-30 2021-04-06 中交上海三航科学研究院有限公司 Tunnel deformation simulation calculation method and device
CN113153373B (en) * 2021-05-24 2024-04-16 辽宁工程技术大学 Reactive resin thin-spraying material coal mine tunnel surface supporting method
CN113267364B (en) * 2021-07-14 2021-11-09 四川藏区高速公路有限责任公司 Model simulation test device for tunnel under-passing existing tunnel
CN114417479B (en) * 2021-10-09 2024-07-16 苏州大学 Method for calculating residual supporting pressure of partial open-cabin working face of rectangular tunnel boring machine
CN117993089B (en) * 2024-04-07 2024-06-07 华东交通大学 Tunnel lining displacement calculation method and system based on shell model

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914973A1 (en) * 1999-04-01 1999-11-18 Tachus Gmbh Process for determination of the earlier forces acting on an area or mountain or earth prior to boring of a tunnel or similar
JP3856392B2 (en) * 2003-09-30 2006-12-13 睦人 川原 Evaluation method of natural ground in front of ground excavation part

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545346A (en) * 2016-12-08 2017-03-29 中国地质大学(武汉) A kind of push pipe tunnel section optimization method
CN106545346B (en) * 2016-12-08 2017-08-25 中国地质大学(武汉) A kind of push pipe tunnel section optimization method
TWI683063B (en) 2017-09-07 2020-01-21 日商Smc股份有限公司 Fluid pressure cylinder
CN111027129A (en) * 2019-12-30 2020-04-17 石家庄铁道大学 Design method of extruded surrounding rock tunnel structure
CN111027129B (en) * 2019-12-30 2022-09-16 石家庄铁道大学 Design method of extruded surrounding rock tunnel structure

Also Published As

Publication number Publication date
JP2009114697A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5181272B2 (en) Tunnel stability evaluation method and program thereof
Zhu et al. 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution
Zhao et al. Considerations of rock dilation on modeling failure and deformation of hard rocks—a case study of the mine-by test tunnel in Canada
Qiu et al. Estimation of rockburst wall-rock velocity invoked by slab flexure sources in deep tunnels
Walton et al. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States
Li et al. Efficient 3-D reliability analysis of the 530 m high abutment slope at Jinping I Hydropower Station during construction
CN111159949A (en) Calculation method and system for small-clear-distance tunnel excavation damage area
Jiang et al. Analysis of stress evolution characteristics during TBM excavation in deep buried tunnels
Spyridis et al. Performance indicator of tunnel linings under geotechnical uncertainty
CN116611262A (en) Correction method for grading tunnel surrounding rock and related equipment
Vakili et al. The influence of the soil constitutive model on the numerical assessment of mechanized tunneling
Vitali et al. Progressive failure due to tunnel misalignment with geostatic principal stresses
Fan et al. An analytical solution for stresses and deformations of tunnels in a non-uniform stress field based on strain-softening model and Mogi-Coulomb criterion
JP4650768B2 (en) Calculation method and program of stress release rate used for tunnel design
Tu et al. Probability analysis of deep tunnels based on Monte Carlo simulation: case study of diversion tunnels at jinping II hydropower station, southwest China
CN111062087B (en) Anchor length design method based on displacement difference/gradient in underground engineering
Chen et al. Three dimensional analysis of earth pressure balance (EPB) shield tunneling in soft bedrock
Alruwaili et al. Initiation of stimulation treatments depends on wellbore mechanical responses during drilling
Ekeberg et al. A quantitative approach to predict tunnel overbreak based on the Q-system
Cheng et al. Plastic hardening model II: Calibration and validation
Gharsallaoui et al. Cavity expansion analysis in elastic–brittle plastic rock mass
Wang A Simple Solution and Dilatancy Characterization for a Circular Tunnel Excavated in the Nonlinear Strain‐Softening and Nonlinear Dilatancy Rock Mass
Ghiasi et al. Analysis of shotcrete lining of underground tunnels
Anguiano et al. Evaluation of Tunnel Elastic and Elasto-Plastic Deformations with Approximations Obtained from 3D-FEM Simulations
Marto et al. Effects of tunnel depth and relative density of sand on surface settlement induced by tunneling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5181272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3