JP2002043472A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP2002043472A
JP2002043472A JP2000228246A JP2000228246A JP2002043472A JP 2002043472 A JP2002043472 A JP 2002043472A JP 2000228246 A JP2000228246 A JP 2000228246A JP 2000228246 A JP2000228246 A JP 2000228246A JP 2002043472 A JP2002043472 A JP 2002043472A
Authority
JP
Japan
Prior art keywords
resin
linear expansion
expansion coefficient
resin case
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000228246A
Other languages
Japanese (ja)
Inventor
Kazunori Saito
和典 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000228246A priority Critical patent/JP2002043472A/en
Publication of JP2002043472A publication Critical patent/JP2002043472A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the environmental resistance of a semiconductor sensor or the like to a semiconductor device. SOLUTION: In a semiconductor device wherein a semiconductor chip is incorporated in a resin case insert-molding a lead terminal for outside leading- out and a coating resin is filled into a resin case to be sealed, the resin case comprises a thermoplastic resin injection molding. The linear expansion coefficient of the molding material is near the linear expansion coefficient of a lead terminal material, and the resin wherein the ratio (fluidity direction/orthogonal direction) of the linear expansion coefficient of the fluidity direction of the resin oriented from injection molding and the linear expansion coefficient of the fluidity direction and orthogonal direction is within 1.0-3.0 is used to mold the resin case. Thereby a gap between the resin case and the lead terminal occurs, the bubble occurrence of the case caused thereby is effectively suppressed, and stress transmitted from the resin case to the semiconductor chip is lowered to improve the reliability of environmental resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用, 民生用
に広く用いている半導体圧力センサ,半導体加速度セン
サなどのなどの半導体式センサをはじめとし、半導体チ
ップを樹脂ケース内にマウントして気密封止した半導体
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device such as a semiconductor pressure sensor and a semiconductor acceleration sensor widely used for automobiles and consumer use, and a semiconductor chip mounted in a resin case. The present invention relates to a hermetically sealed semiconductor device.

【0002】[0002]

【従来の技術】まず、本発明の実施対象となる半導体式
センサとして、表面加圧型半導体圧力センサの構造を図
2に示す。図において、1はシリコンチップの表面に半
導体歪ゲージを含む測定回路を形成した感圧センサチッ
プ、2は感圧センサチップ1を搭載して陽極接合したガ
ラス台座(スペーサ)、3は樹脂ケース、4は樹脂ケー
ス3と一体にインサート成形したリン青銅などで作られ
た外部導出用のリード端子、5は感圧センサチップ1の
回路とリード端子4との間を接続したボンディングワイ
ヤ、6は感圧センサチップ1,およびボンデイングワイ
ヤ5を汚染物質,湿気から保護するように封止したシリ
コーンゲルなどの軟質なコーティング樹脂、7は前記樹
脂ケース3に結合した導圧ポート付きキャップである。
2. Description of the Related Art FIG. 2 shows a structure of a surface pressure type semiconductor pressure sensor as a semiconductor sensor to which the present invention is applied. In the figure, 1 is a pressure-sensitive sensor chip having a measurement circuit including a semiconductor strain gauge formed on the surface of a silicon chip, 2 is a glass pedestal (spacer) on which the pressure-sensitive sensor chip 1 is mounted and anodically bonded, 3 is a resin case, Reference numeral 4 denotes a lead terminal for external derivation made of phosphor bronze or the like integrally molded with the resin case 3, 5 denotes a bonding wire connecting the circuit of the pressure-sensitive sensor chip 1 and the lead terminal 4, and 6 denotes a sensing wire. A soft coating resin such as silicone gel sealed to protect the pressure sensor chip 1 and the bonding wire 5 from contaminants and moisture, and 7 is a cap with a pressure guiding port connected to the resin case 3.

【0003】かかる半導体圧力センサの動作原理は周知
であり、被測定圧がキャップ7の導圧ポートを通じて感
圧センサチップ1の表面に加わると、感圧センサチップ
1に形成した肉薄なダイヤフラム部1aが変形して半導
体歪ゲージのゲージ抵抗値が変化し、被測定圧力に相応
した電気信号がリード端子4より外部回路に取り出され
る。
The operating principle of such a semiconductor pressure sensor is well known. When a measured pressure is applied to the surface of the pressure-sensitive sensor chip 1 through the pressure-guiding port of the cap 7, the thin diaphragm portion 1a formed on the pressure-sensitive sensor chip 1 is formed. Is deformed, the gauge resistance of the semiconductor strain gauge changes, and an electric signal corresponding to the measured pressure is taken out from the lead terminal 4 to an external circuit.

【0004】次に、半導体式センサの別な例として、半
導体加速度センサの構成を図3に示す。図において、8
はセンサチップであり、該シリコンチップにはカンチレ
バー部8a,梁部8bが作られ、梁部8bには半導体歪
ゲージ8cが形成されている。このセンサチップ8は、
その上下面にガラスカバー9,ガラス台座10を陽極接
合してセンサユニットを構成しており、センサユニット
は樹脂ケース11に収容し、さらに樹脂ケース11にイ
ンサート成形された外部導出用リード端子12とセンサ
チップ8との間をボンデイングワイヤ13により接続し
ている。なお、センサチップ8,およびボンデイングワ
イヤ13はその周域に充填したJCR(Junction Coati
ng Regin) などのコーティング樹脂14で封止, 保護さ
れている。また、樹脂ケース11の上面には樹脂キャッ
プ15を被着している。
FIG. 3 shows a configuration of a semiconductor acceleration sensor as another example of a semiconductor sensor. In the figure, 8
Is a sensor chip, a cantilever portion 8a and a beam portion 8b are formed on the silicon chip, and a semiconductor strain gauge 8c is formed on the beam portion 8b. This sensor chip 8
A glass cover 9 and a glass pedestal 10 are anodically bonded to the upper and lower surfaces to form a sensor unit. The sensor unit is housed in a resin case 11, and is further connected to an external lead-out lead terminal 12 insert-molded in the resin case 11. The connection with the sensor chip 8 is made by a bonding wire 13. The sensor chip 8 and the bonding wire 13 are filled with a JCR (Junction Coati
(ng Regin) and the like. A resin cap 15 is attached to the upper surface of the resin case 11.

【0005】かかる構成でセンサチップ8に加速度が加
わると、歪ゲージ8cのゲージ抵抗値が変化して加速度
に相当する電気信号を検出することは周知の通りであ
る。ここで、前記した樹脂ケース3,11は、PPS
(ポリフェニレンサルファイド),PBT(ポリブチレ
ンテレフタレート)等の熱可塑性樹脂を成形材料とした
射出成形品として作られている。
It is well known that when acceleration is applied to the sensor chip 8 in such a configuration, the gauge resistance of the strain gauge 8c changes to detect an electric signal corresponding to the acceleration. Here, the resin cases 3 and 11 are made of PPS.
(Polyphenylene sulfide), PBT (polybutylene terephthalate) and other thermoplastic resins are used as injection molding products.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記した半
導体式センサについて、従来の製品では耐使用環境性,
信頼性の面で次に記すような問題点がある。すなわち、 (1) 高,低温の温度サイクルが繰り返し加わると、樹脂
ケース3,11自身の成形収縮,および樹脂ケースとリ
ード端子4,12との間の線膨張係数差に起因して両者
間の接合界面が剥離して微小な隙間が発生する。このた
めに、図2に示した半導体圧力センサにおいては、加
圧,減圧を繰り返すサイクル試験などで負圧が加わる
と、図示のように樹脂ケース3とリード端子4との間に
生じた前記の微小隙間を通じて外部から空気,湿気が吸
引されて樹脂ケース内に侵入し、ゲル状コーティング樹
脂6の層内に気泡が発生する。しかも、コーティング樹
脂層に発生した気泡は、被測定圧変化の繰り返しに伴い
次第に成長してボンデイングワイヤ5を断線させたりす
るほか、圧力センサに導入した被測定圧力が正しく感圧
センサチップ1に伝達されなくなって圧力センサの測定
特性にも悪影響を及ぼす。また、空気と一緒に侵入した
湿気が原因でボンディングワイヤ(アルミワイヤ)5が
腐食,断線するといった問題も発生する。
By the way, with respect to the above-mentioned semiconductor type sensor, the conventional product has a high resistance to use environment,
There are the following problems in terms of reliability. (1) When the high and low temperature cycles are repeatedly applied, the resin cases 3 and 11 themselves shrink during molding and the difference in linear expansion coefficient between the resin cases and the lead terminals 4 and 12 causes a difference between the two. The bonding interface peels off and a minute gap is generated. For this reason, in the semiconductor pressure sensor shown in FIG. 2, when a negative pressure is applied in a cycle test in which pressurization and depressurization are repeated, the above described pressure generated between the resin case 3 and the lead terminal 4 as shown in FIG. Air and moisture are sucked from the outside through the minute gap and enter the resin case, and bubbles are generated in the layer of the gel-like coating resin 6. In addition, the bubbles generated in the coating resin layer gradually grow with the repetition of the change in the measured pressure, causing the bonding wire 5 to break, and the measured pressure introduced into the pressure sensor is correctly transmitted to the pressure-sensitive sensor chip 1. And the measurement characteristics of the pressure sensor are adversely affected. Further, there is also a problem that the bonding wire (aluminum wire) 5 is corroded or disconnected due to the moisture that has entered together with the air.

【0007】また、半導体加速度センサにおいても、周
囲温度の変化などに伴うヒートサイクルにより樹脂ケー
ス11とリード端子12との間の界面に残る隙間を通じ
て外部から湿気が侵入し、これが原因で前記と同様にリ
ード端子12,ボンディングワイヤ13を腐食させた
り,ボンディングワイヤを断線させるといった問題が生
じる。
Also, in a semiconductor acceleration sensor, moisture enters from the outside through a gap remaining at the interface between the resin case 11 and the lead terminal 12 due to a heat cycle accompanying a change in ambient temperature or the like. This causes problems such as corrosion of the lead terminals 12 and the bonding wires 13 and disconnection of the bonding wires.

【0008】(2) また、高,低温の温度サイクルが繰り
返し加わった場合に、樹脂ケース3,11自身の樹脂に
異方性があると樹脂ケースに発生したストレスが樹脂ケ
ースにマウントしたセンサチップ1,8に加わり、この
ためにセンサ特性が不安定となる。本発明は上記の点に
鑑みなされたものであり、先記した半導体式の圧力セン
サ,加速度センサなどを対象に、樹脂ケースとリード端
子との間の界面に隙間が発生するのを抑えて樹脂ケース
内への空気,湿気の侵入,およびコーティング樹脂層内
の気泡発生を効果的に抑止し、また、樹脂ケースからセ
ンサチップに伝わるストレスを低下させて厳しい使用環
境下の使用にも十分耐える信頼性の高い半導体装置を提
供することを目的とする。
(2) When high and low temperature cycles are repeatedly applied, when the resin of the resin cases 3 and 11 has anisotropy, the stress generated in the resin case causes the sensor chip mounted on the resin case. In addition, the sensor characteristics become unstable. SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and is intended for a semiconductor type pressure sensor, acceleration sensor, or the like described above, by suppressing generation of a gap at an interface between a resin case and a lead terminal. Effectively suppresses the intrusion of air and moisture into the case and the generation of bubbles in the coating resin layer, and reduces the stress transmitted from the resin case to the sensor chip, and withstands use in harsh operating environments. It is an object to provide a highly reliable semiconductor device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、外部導出用リード端子をインサー
ト成形した樹脂ケースに半導体チップを組み込み、該半
導体チップとリード端子との間を電気的に接続するとと
もに、樹脂ケース内にコーティング樹脂を充填して封止
した半導体装置において、 (1) 前記樹脂ケースの成形樹脂を熱可塑性樹脂とし、か
つ前記リード端子の線膨張係数と前記成形樹脂の線膨張
係数との比(成形樹脂/リード端子)を0.7〜2.5
に設定する(請求項1)。
According to the present invention, a semiconductor chip is incorporated into a resin case in which an external lead terminal is insert-molded, and a space between the semiconductor chip and the lead terminal is provided. In a semiconductor device which is electrically connected and filled with a coating resin in a resin case and sealed, (1) the molding resin of the resin case is a thermoplastic resin, and the linear expansion coefficient of the lead terminal and the molding The ratio to the linear expansion coefficient of the resin (molded resin / lead terminal) is 0.7 to 2.5
(Claim 1).

【0010】(2)前記樹脂ケースの成形樹脂を熱可塑性
樹脂とし、かつ射出成形により配向した前記成形樹脂の
流れ方向(流動方向)の線膨張係数とこの流動方向に直
交する方向(直角方向)の線膨張係数との比(直角方向
/流動方向)を1.0〜3.0に設定する(請求項
2)。 (3) 前項(1) と(2) に記載の構成を併用して半導体装置
を構成する (請求項3)。
(2) The molding resin of the resin case is a thermoplastic resin, and the linear expansion coefficient in the flow direction (flow direction) of the molding resin oriented by injection molding and the direction perpendicular to the flow direction (perpendicular direction). The ratio (perpendicular direction / flow direction) to the linear expansion coefficient is set to 1.0 to 3.0 (Claim 2). (3) A semiconductor device is configured by using the configurations described in the above (1) and (2) together (Claim 3).

【0011】(4) また、前項(1) 〜(3) のいずれかに記
載の構成で半導体式センサを構成する(請求項4)。す
なわち、発明者は樹脂封止型半導体装置の性能評価を確
認するために、成形樹脂/リード端子の線膨張係数の比
と樹脂ケース内の気泡発生率との関係を温度サイクル試
験を通じて調べたところ次のようなことが明らかになっ
た。
(4) Further, a semiconductor sensor is constituted by the constitution described in any one of the above items (1) to (3). That is, in order to confirm the performance evaluation of the resin-encapsulated semiconductor device, the inventors examined the relationship between the ratio of the linear expansion coefficient of the molded resin / lead terminal and the bubble generation rate in the resin case through a temperature cycle test. The following became clear.

【0012】すなわち、リード端子にリン青銅,樹脂ケ
ースの成形樹脂にPPS(ポリフェニレンサルファイ
ド)を用いた場合には、図1(a) で表すように、リード
端子の線膨張係数と成形樹脂の線膨張係数との比(成形
樹脂/リード端子)が2.5を超えると、温度サイクル
に伴いリード端子と樹脂ケースとの接合界面が剥離して
微小な隙間が生じ、これが原因で樹脂ケース内に空気,
湿気が侵入して気泡発生率が急激に増加することが判明
した。これに対して、成形樹脂の線膨張係数がリード端
子の線膨張係数に近く、両者の線膨張係数比が0.7〜
2.5以内であれば温度サイクルを加わえても樹脂ケー
スに充填したコーティング樹脂層に気泡が殆ど発生しな
いことが確認できた。
That is, when phosphor bronze is used for the lead terminal and PPS (polyphenylene sulfide) is used for the molding resin of the resin case, as shown in FIG. When the ratio to the expansion coefficient (molded resin / lead terminal) exceeds 2.5, the bonding interface between the lead terminal and the resin case is separated due to the temperature cycle, and a minute gap is generated. air,
It was found that the rate of bubble generation increased rapidly due to the penetration of moisture. On the other hand, the coefficient of linear expansion of the molding resin is close to the coefficient of linear expansion of the lead terminal, and the ratio of the coefficients of linear expansion is 0.7 to 0.7.
When it was within 2.5, it was confirmed that even when a temperature cycle was applied, almost no bubbles were generated in the coating resin layer filled in the resin case.

【0013】また、樹脂ケースの射出成形は、金型のゲ
ートを通じて成形樹脂を高圧でキャビティ内に注入する
成形法であり、この成形法により成形樹脂の分子は流れ
方向に配向し、樹脂の分子鎖が定方向に配列するように
なる。このために、成形品(樹脂ケース)の物性に異方
性が生じ、樹脂の流れ方向(流動方向)の線膨張係数と
これに直交する方向(直角方向)の線膨張係数とが異な
るようになる。
The injection molding of the resin case is a molding method in which the molding resin is injected into the cavity at a high pressure through the gate of the mold. By this molding method, the molecules of the molding resin are oriented in the flow direction, and the molecules of the resin are formed. The chains become oriented in a fixed direction. For this reason, anisotropy occurs in the physical properties of the molded product (resin case), and the linear expansion coefficient in the resin flow direction (flow direction) differs from the linear expansion coefficient in the direction perpendicular to the resin flow direction (perpendicular direction). Become.

【0014】そこで、発明者は、成形樹脂の流動方向の
線膨張係数とこの流動方向と直角方向の線膨張係数との
比(直角方向/流動方向)が様々に異なる樹脂を用いて
射出成形した樹脂ケースを供試試料として前記と同様な
試験を行った。この試験結果から、図1(b) で表すよう
に、成形樹脂の線膨張係数比(直角方向/流動方向)が
3.0を超えると気泡発生率が急激に増加することが認
められたほか、前記した成形樹脂の異方性に起因して温
度サイクルにより生じた樹脂ケースの歪みが樹脂ケース
にマウントした半導体チップにストレスとして加わって
特性に悪影響を及ぼす。特に半導体センサチップの場合
はセンサ特性に悪影響を及ぼすことが判明した。これに
対して、成形樹脂の流動方向と流動方向と直角方向との
線膨張係数比(直角方向/流動方向)が1.0〜3.0
以内に収まるように組成配合を調整した樹脂ケースは、
図1(b) で表すように温度サイクルを加えてもケース内
に充填したコーティング樹脂層に気泡が殆ど発生しない
ことが確認できた。
Therefore, the inventor of the present invention injection-molded a resin having various ratios of the linear expansion coefficient in the flow direction of the molding resin and the linear expansion coefficient in the direction perpendicular to the flow direction (perpendicular direction / flow direction). The same test as above was performed using a resin case as a test sample. From this test result, as shown in FIG. 1 (b), it was confirmed that when the linear expansion coefficient ratio (perpendicular direction / flow direction) of the molding resin exceeds 3.0, the bubble generation rate sharply increased. In addition, the distortion of the resin case caused by the temperature cycle due to the anisotropy of the molding resin is applied as stress to the semiconductor chip mounted on the resin case, which adversely affects the characteristics. In particular, it has been found that a semiconductor sensor chip adversely affects sensor characteristics. On the other hand, the linear expansion coefficient ratio (perpendicular / perpendicular) of the flow direction of the molding resin and the direction perpendicular to the direction of flow is 1.0 to 3.0.
The resin case whose composition has been adjusted to fit within
As shown in FIG. 1 (b), it was confirmed that almost no bubbles were generated in the coating resin layer filled in the case even when the temperature cycle was applied.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て述べる。すなわち、図2の半導体圧力センサ,および
図3の半導体加速度センサにおいて、リード端子4,1
2と一体成形した樹脂ケース3,11は、例えばPPS
(ポリフェニレンサルファイド)を成形樹脂として射出
成形法により形成するものとし、ここで、成形樹脂はそ
の線膨張係数がリード端子4,12の線膨張係数に近
く、かつ成形樹脂の流動方向と直角方向の線膨張係数の
差が小さい異方性の少ない樹脂を用いるものとする。
Embodiments of the present invention will be described below. That is, in the semiconductor pressure sensor of FIG. 2 and the semiconductor acceleration sensor of FIG.
The resin cases 3 and 11 integrally molded with 2 are made of, for example, PPS
(Polyphenylene sulfide) is formed by injection molding as a molding resin, wherein the molding resin has a coefficient of linear expansion close to that of the lead terminals 4 and 12 and a direction perpendicular to the flow direction of the molding resin. A resin having a small difference in linear expansion coefficient and a small anisotropy is used.

【0016】具体的には、リード端子4,12がリン青
銅(線膨張係数は1.78×10-5/℃)である場合に
は、樹脂ケースの成形材料として、図1(a),(b) で述べ
たように線膨張係数がリン青銅の線膨張係数の0.7〜
2.5以内で、しかも樹脂の流動方向の線膨張係数とこ
の流動方向と直角方向の線膨張係数との比(直角方向/
流動方向)が1.0〜3.0以内となるように調製した
成形樹脂を用いて樹脂ケース3,11を成形する。
More specifically, when the lead terminals 4 and 12 are made of phosphor bronze (linear expansion coefficient is 1.78 × 10 -5 / ° C.), as a molding material for the resin case, as shown in FIG. As described in (b), the linear expansion coefficient is 0.7 to 0.7 of the linear expansion coefficient of phosphor bronze.
2.5 or less, and the ratio of the coefficient of linear expansion in the flow direction of the resin to the coefficient of linear expansion in the direction perpendicular to the flow direction (perpendicular /
The resin cases 3 and 11 are molded using a molding resin prepared such that the flow direction) is within 1.0 to 3.0.

【0017】これにより、実使用状態で高温,低温の温
度サイクルが繰り返し加わっても、線膨張係数差に起因
するリード端子/樹脂ケース間の接合界面の剥離,およ
びコーティング樹脂層6,14での気泡の発生が効果的
に抑止され、この気泡が原因で発生するボンディングワ
イヤ5,13の腐食,断線、およびセンサ特性への悪影
響を効果的に防ぐことができる。
As a result, even if a high-temperature and low-temperature cycle is repeatedly applied in an actual use state, the bonding interface between the lead terminal and the resin case is peeled off due to the difference in linear expansion coefficient, and the coating resin layers 6 and 14 are not used. The generation of bubbles is effectively suppressed, and corrosion and disconnection of the bonding wires 5 and 13 caused by the bubbles and adverse effects on sensor characteristics can be effectively prevented.

【0018】また、温度サイクルに伴う熱膨張,収縮に
よって樹脂に発生するストレスσは、次式で与えられ
る。
The stress σ generated in the resin due to thermal expansion and contraction due to the temperature cycle is given by the following equation.

【0019】[0019]

【数式1】σ=∫E・α・dt 但し、E:ヤング率,α:線膨張係数 したがって、樹脂ケース3,11の成形樹脂として、前
記のようにリード端子との線膨張係数の比が小さく、か
つ成形樹脂の流動方向と直角方向の線膨張係数比(直角
方向/流動方向)が小さくて異方性の少ない樹脂を用い
ることで、樹脂ケースにマウントしたセンサチップ1,
8に加わるストレスが低減して安定したセンサ特性を確
保することができる。
Σ = ∫E · α · dt where E: Young's modulus, α: Linear expansion coefficient Therefore, as the molding resin for the resin cases 3 and 11, the ratio of the linear expansion coefficient to the lead terminal is as described above. By using a resin that is small and has a small linear expansion coefficient ratio (perpendicular direction / flow direction) in the direction perpendicular to the flow direction of the molding resin and low anisotropy, the sensor chip 1 mounted on the resin case can be used.
8 can reduce the stress applied thereto and secure stable sensor characteristics.

【0020】なお、以上は半導体圧力センサ,半導体加
速度センサについて述べたが、これら半導体式センサ以
外の各種半導体装置についても本発明を実施することに
より同様な効果の得られることは勿論である。
Although the semiconductor pressure sensor and the semiconductor acceleration sensor have been described above, it goes without saying that similar effects can be obtained by implementing the present invention for various semiconductor devices other than these semiconductor sensors.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、外
部導出用リード端子と一体成形した樹脂ケースが熱可塑
性樹脂の射出成形品からなる半導体装置において、その
成形材料として、線膨張係数がリード端子材料の線膨張
係数に近いこと、また射出成形により配向した樹脂の流
動方向の線膨張係数とこの流動方向と直角方向の線膨張
係数との比(直角方向/流動方向)が1.0〜3.0以
内の樹脂を用いたことにより、樹脂ケースとリード端子
との間の接合界面の剥離を防止し、周囲からの空気,湿
気の侵入によりケース内に充填したコーティング樹脂層
内に気泡が発生するのを効果的に抑止し、さらに樹脂ケ
ースにマウントした半導体チップに与えるストレスも低
減することができ、これにより厳しい環境で使用可能な
高信頼性の半導体装置が得られる。
As described above, according to the present invention, in a semiconductor device in which a resin case integrally formed with an external lead-out terminal is formed by injection molding of a thermoplastic resin, a linear expansion coefficient is used as a molding material. Is close to the linear expansion coefficient of the lead terminal material, and the ratio of the linear expansion coefficient in the flow direction of the resin oriented by injection molding to the linear expansion coefficient in the direction perpendicular to the flow direction (perpendicular direction / flow direction) is 1. By using a resin within a range of 0 to 3.0, peeling of the bonding interface between the resin case and the lead terminal is prevented, and the inside of the coating resin layer filled in the case by invasion of air and moisture from the surroundings is prevented. This effectively suppresses the generation of air bubbles and reduces the stress applied to the semiconductor chip mounted on the resin case. Location can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明よる半導体装置の性能試験で得た特性図
であり、(a) 成形樹脂/リード端子との線膨張係数比と
樹脂ケース内の気泡発生率との関係を表す図、(b) は成
形樹脂の直角方向/流動方向の線膨張係数比と樹脂ケー
ス内の気泡発生率との関係を表す図
FIG. 1 is a characteristic diagram obtained by a performance test of a semiconductor device according to the present invention, and (a) a diagram showing a relationship between a linear expansion coefficient ratio between a molded resin / lead terminal and a bubble generation rate in a resin case; b) is a diagram showing the relationship between the ratio of the linear expansion coefficient of the molding resin in the perpendicular direction / flow direction and the bubble generation rate in the resin case.

【図2】本発明の実施対象となる半導体圧力センサの構
成断面図
FIG. 2 is a configuration sectional view of a semiconductor pressure sensor to which the present invention is applied;

【図3】本発明の実施対象となる半導体加速度センサの
構成断面図
FIG. 3 is a configuration sectional view of a semiconductor acceleration sensor to which the present invention is applied;

【符号の説明】[Explanation of symbols]

1,8 センサチップ 3,11 樹脂ケース 4,12 リード端子 5,13 ボンディングワイヤ 6,14 コーティング樹脂 1,8 Sensor chip 3,11 Resin case 4,12 Lead terminal 5,13 Bonding wire 6,14 Coating resin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】外部導出用リード端子をインサート成形し
た樹脂ケースに半導体チップを組み込み、該半導体チッ
プとリード端子との間を電気的に接続するとともに、樹
脂ケース内にコーティング樹脂を充填して封止した半導
体装置において、前記樹脂ケースの成形樹脂は熱可塑性
樹脂からなり、前記リード端子の線膨張係数と前記成形
樹脂の線膨張係数との比(成形樹脂/リード端子)が
0.7〜2.5であることを特徴とする半導体装置。
1. A semiconductor chip is incorporated in a resin case in which lead terminals for external lead-out are insert-molded, an electrical connection is made between the semiconductor chip and the lead terminals, and a coating resin is filled in the resin case and sealed. In the stopped semiconductor device, the molding resin of the resin case is made of a thermoplastic resin, and the ratio of the linear expansion coefficient of the lead terminal to the linear expansion coefficient of the molding resin (molding resin / lead terminal) is 0.7 to 2; 5. The semiconductor device according to claim 5, wherein
【請求項2】外部導出用リード端子をインサート成形し
た樹脂ケースに半導体チップを組み込み、該半導体チッ
プとリード端子との間を電気的に接続するとともに、樹
脂ケース内にコーティング樹脂を充填して封止した半導
体装置において、前記樹脂ケースの成形樹脂は熱可塑性
樹脂からなり、射出成形により配向した前記成形樹脂の
流れ方向(流動方向)の線膨張係数とこの流動方向に直
交する方向(直角方向)の線膨張係数との比(直角方向
/流動方向)が1.0〜3.0であることを特徴とする
半導体装置。
2. A semiconductor chip is incorporated in a resin case in which lead terminals for external lead-out are insert-molded to electrically connect the semiconductor chip and the lead terminals, and the resin case is filled with a coating resin and sealed. In the stopped semiconductor device, the molding resin of the resin case is made of a thermoplastic resin, and has a linear expansion coefficient in a flow direction (flow direction) of the molding resin oriented by injection molding and a direction perpendicular to the flow direction (perpendicular direction). Wherein the ratio (perpendicular direction / flow direction) to the linear expansion coefficient is 1.0 to 3.0.
【請求項3】請求項1と2の各項に記載の構成を併用し
て構成したことを特徴とする半導体装置。
3. A semiconductor device comprising a combination of the constitutions of claim 1 and 2.
【請求項4】請求項1ないし3のいずれかに記載の半導
体装置は半導体式センサであることを特徴とする半導体
装置。
4. The semiconductor device according to claim 1, wherein the semiconductor device is a semiconductor sensor.
JP2000228246A 2000-07-28 2000-07-28 Semiconductor device Withdrawn JP2002043472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228246A JP2002043472A (en) 2000-07-28 2000-07-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228246A JP2002043472A (en) 2000-07-28 2000-07-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2002043472A true JP2002043472A (en) 2002-02-08

Family

ID=18721574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228246A Withdrawn JP2002043472A (en) 2000-07-28 2000-07-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2002043472A (en)

Similar Documents

Publication Publication Date Title
US7900521B2 (en) Exposed pad backside pressure sensor package
US7216546B2 (en) Pressure sensor having integrated temperature sensor
US4295117A (en) Pressure sensor assembly
US7412895B2 (en) Semiconductor pressure sensor and die for molding a semiconductor pressure sensor
US5948991A (en) Semiconductor physical quantity sensor device having semiconductor sensor chip integrated with semiconductor circuit chip
US8359927B2 (en) Molded differential PRT pressure sensor
JP4550364B2 (en) Semiconductor pressure sensor
US6805010B2 (en) Pressure sensor module
JPH01431A (en) semiconductor pressure sensor
JP2000356561A (en) Semiconductor strain sensor
JPH10170380A (en) Semiconductor sensor device
CN110174209A (en) Media-isolated pressure sensor
KR20050076590A (en) Pressure sensor contained in casing
WO2003062779A1 (en) Pressure sensor, flowmeter electronic component, and method for manufacturing the same
JP4968179B2 (en) Temperature sensor integrated pressure sensor device
JP2002043472A (en) Semiconductor device
JP2001116639A (en) Semiconductor pressure sensor and manufacturing method therefor
JP4717088B2 (en) Manufacturing method of semiconductor pressure sensor device
JP2004354294A (en) Pressure sensor
JP2001330530A (en) Manufacturing method of pressure sensor
JP2001116644A (en) Semiconductor type sensor
JPH0979928A (en) Semiconductor pressure sensor device
JP2002310829A (en) Semiconductor pressure sensor
JP2695643B2 (en) Manufacturing method of pressure sensor unit
JP3149678B2 (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091130