JP2002034175A - Solar power generating equipment - Google Patents

Solar power generating equipment

Info

Publication number
JP2002034175A
JP2002034175A JP2000214310A JP2000214310A JP2002034175A JP 2002034175 A JP2002034175 A JP 2002034175A JP 2000214310 A JP2000214310 A JP 2000214310A JP 2000214310 A JP2000214310 A JP 2000214310A JP 2002034175 A JP2002034175 A JP 2002034175A
Authority
JP
Japan
Prior art keywords
power
voltage
storage battery
solar cell
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000214310A
Other languages
Japanese (ja)
Other versions
JP3656113B2 (en
Inventor
Yoshio Eguchi
吉雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000214310A priority Critical patent/JP3656113B2/en
Publication of JP2002034175A publication Critical patent/JP2002034175A/en
Application granted granted Critical
Publication of JP3656113B2 publication Critical patent/JP3656113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide solar power generating equipment operable of operating with a battery and a solar battery or with only a solar battery without troublesome changeover. SOLUTION: The equipment is provided with a battery 3 connected in parallel with the solar battery 1 through a charging and discharging means 30, a power converter 4 which interconnects the output power of the solar battery with another AC power source 8, a maximum power follow-up control means 21 which changes operation command in the increasing direction of the output of the solar battery, and DC constant voltage control means 22, 23, 24 for controlling the voltage of the solar battery to a constant, means 25, 29 for performing control by power commands from the outside, and a change-over switch 26. The voltage of the battery is set so smaller than a DC constant voltage of the solar battery, and discharging of the battery is prevented when the voltage of the battery is lower than the voltage of the solar battery. Maximum power follow-up control or DC constant voltage control of the solar battery is performed when power is not supplied from the battery. Control by the power commands from the outside is performed when power is supplied from the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統あるいは
他の発電設備と連系運転を行う太陽光発電装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generator which operates in connection with a power system or other power generation equipment.

【0002】[0002]

【従来の技術】太陽光発電システムとしては、太陽電池
の直流電力を交流に変換し、既存の電力系統に連系して
運転するシステムが実用化されている。この種システム
の中には、災害時や系統事故時にも運転が可能なよう
に、太陽電池に並列に蓄電池を設置したシステムがあ
る。このようなシステムの構成例としては、例えば図2
に示す特開平9−46925号公報に記載のシステムが
ある。図2において、太陽電池1は、電力変換器4に接
続されるとともに、切替回路(スイッチ2a,2c,2
e、整流器2b、抵抗2dからなる)2を介して蓄電池
3に接続されている。電力変換器4は、直流電力を交流
電力に変換し、連系装置5Aを介して系統8と連系運転
を行い、一般負荷6に電力を供給している。負荷として
は一般負荷6の他に連系装置5Bを介して自立運転負荷
7が接続されている。自立運転負荷7は、通常時には一
般負荷6と同様に系統8と電力変換器4の両方から電力
供給を受けるが、系統事故などにより、系統8から電力
供給が不可能な場合には蓄電池3を使用して電力供給が
行われる。上記の太陽光発電システムの運転方法は、系
統8が正常な場合には切替回路2のスイッチ2c、2e
が開放されており、電力変換器4は太陽電池1からのみ
電力供給をうけ、最大電力追従制御を行い、太陽電池1
からの発電電力が最大となるように運転し、系統8へ電
力供給を行っている。系統8が何らかの異常で停電した
場合には、電力変換器4の運転を一旦停止し、切替回路
2のスイッチ2e、2cの順番に投入し、連系装置5A
を開放、連系装置5Bを投入し、再度運転し、自立運転
負荷7に太陽電池1と蓄電池3から電力を供給する。と
ころで、このような蓄電池3を設置した自立運転機能付
きのシステムでは、蓄電池3が使用されるのは、系統停
電などの事態の時だけであり、その他の殆どの時は利用
されず、蓄電池3の利用率が非常に低い。そのため、蓄
電池3を有効利用することを目的に、蓄電池3の貯蔵電
力の一部を一般負荷6の電力供給にも使用する利用方法
が考えられている。この利用方法の一例として、負荷電
力のピ−クカット運転があるが、これを図3を用いて説
明する。図2のシステムで系統8から受電している電力
トレンドが図3(a)の受電電力PLとする。図2では
負荷に太陽電池1から電力供給を行っているため、受電
電力は減少しているが、それでもPLのような電力を受
電している状態とする。この時、電力制限値Pdに受電
電力PLを抑制したいとすると、電力変換器4からさら
に図3(b)に示す電力を供給すれば良い。つまり、切
替回路2で時刻t1〜t2にわたって蓄電池3を太陽電
池1に並列に接続し、図3(b)のピ−クカット電力出
力指令Pcを電力変換器4に与えることによりに、ピ−
クカット運転が可能となる。このような運転を行うこと
により、蓄電池3の貯蔵電力の一部を有効利用しなが
ら、非常時の自立運転も可能なシステムを達成すること
ができる。なお、ピ−クカット運転のために、蓄電池3
から放電された電力は、太陽電池1が発電できない夜間
に電力変換器4を整流器運転し、系統電力によって充電
される。
2. Description of the Related Art As a photovoltaic power generation system, a system that converts DC power of a solar cell into AC and operates in connection with an existing power system has been put to practical use. Among such systems, there is a system in which a storage battery is installed in parallel with a solar cell so that operation is possible even in the event of a disaster or a system accident. As an example of the configuration of such a system, for example, FIG.
There is a system described in JP-A-9-46925. In FIG. 2, a solar cell 1 is connected to a power converter 4 and a switching circuit (switches 2a, 2c, 2).
e, a rectifier 2b, and a resistor 2d) 2). The power converter 4 converts DC power into AC power, performs a connection operation with the system 8 via the connection device 5A, and supplies power to the general load 6. As the load, in addition to the general load 6, an independent operation load 7 is connected via the interconnection device 5B. The autonomous operation load 7 normally receives power supply from both the system 8 and the power converter 4 like the general load 6. However, when power supply from the system 8 is impossible due to a system accident or the like, the storage battery 3 is used. Power supply. The above-described method of operating the photovoltaic power generation system uses the switches 2c and 2e of the switching circuit 2 when the system 8 is normal.
Are open, the power converter 4 receives power supply only from the solar cell 1 and performs maximum power tracking control,
The system is operated so that the power generated from the system becomes maximum, and power is supplied to the system 8. If the system 8 fails due to any abnormality, the operation of the power converter 4 is temporarily stopped, and the switches 2e and 2c of the switching circuit 2 are turned on in this order to connect the interconnection device 5A.
Is released, the interconnection device 5B is turned on, the operation is performed again, and power is supplied to the independent operation load 7 from the solar cell 1 and the storage battery 3. By the way, in such a system with the self-sustaining operation function in which the storage battery 3 is installed, the storage battery 3 is used only in the event of a system power failure or the like, and is not used in most other cases. Very low utilization. Therefore, in order to use the storage battery 3 effectively, a method of using a part of the storage power of the storage battery 3 to supply power to the general load 6 has been considered. One example of this utilization method is a peak cut operation of load power, which will be described with reference to FIG. The power trend received from the grid 8 in the system of FIG. 2 is the received power PL of FIG. In FIG. 2, the power is supplied from the solar cell 1 to the load, so the received power is reduced. However, it is assumed that power such as PL is still received. At this time, if it is desired to suppress the received power PL to the power limit value Pd, the power shown in FIG. That is, the storage circuit 3 is connected in parallel to the solar cell 1 by the switching circuit 2 from time t1 to time t2, and the peak cut power output command Pc in FIG.
Kukat operation becomes possible. By performing such an operation, it is possible to achieve a system capable of performing an independent operation in an emergency while effectively utilizing a part of the storage power of the storage battery 3. In addition, the storage battery 3 is used for the peak cut operation.
The power discharged from is operated by the rectifier of the power converter 4 at night when the solar cell 1 cannot generate power, and is charged by the system power.

【0003】[0003]

【発明が解決しようとする課題】上記の従来システムに
おいては、先に説明したように、太陽電池1だけ接続さ
れた時には、太陽電池1から最大電力を取り出すため
に、最大電力追従制御を行う。しかし、蓄電池3を接続
した場合には、蓄電池3の内部インピ−ダンスが非常に
小さく、直流電圧は蓄電池3で決まってしまうので、最
大電力制御を行うことができない。したがって、従来シ
ステムではピ−クカット運転を行う場合には、一旦電力
変換器4を停止し、切替回路2で蓄電池3を接続し、制
御方式も切り替えた後に再度電力変換器4を立ち上げ、
系統8に接続後、ピ−クカット運転を開始するなどの非
常に煩わしい手段を採っていた。また、運転切替時に
は、切替回路2のスイッチを投入、開放するため、これ
らスイッチの寿命の問題もあった。
In the above-described conventional system, as described above, when only the solar cell 1 is connected, the maximum power follow-up control is performed to extract the maximum electric power from the solar cell 1. However, when the storage battery 3 is connected, since the internal impedance of the storage battery 3 is very small and the DC voltage is determined by the storage battery 3, the maximum power control cannot be performed. Therefore, in the conventional system, when the peak cut operation is performed, the power converter 4 is temporarily stopped, the storage battery 3 is connected by the switching circuit 2, the control method is also switched, and then the power converter 4 is started again.
After connecting to the system 8, a very troublesome means such as starting a peak cut operation was employed. Further, when the operation is switched, the switches of the switching circuit 2 are turned on and off, so that there is a problem of the life of these switches.

【0004】本発明の課題は、蓄電池が並列に接続され
た太陽光発電設備において、蓄電池併用運転と太陽電池
のみの運転を煩雑な切替操作なしに運転可能な太陽光発
電装置を提供することにある。
[0004] It is an object of the present invention to provide a photovoltaic power generation system in which a storage battery is connected in parallel and which can be operated without complicated switching operation between the combined operation of the storage battery and the operation of only the solar cell. is there.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、太陽電池と充放電手段を介して並列に接続された蓄
電池と、太陽電池の出力電力を交流電力に変換し、他の
交流電源と連系する電力変換器と、太陽電池の出力が増
加する方向へ動作指令を変化させる最大電力追従制御手
段と、太陽電池の電圧を一定に制御する直流定電圧制御
手段と、外部からの電力指令による制御を行う手段を備
えた太陽光発電装置であって、蓄電池の電圧を太陽電池
の直流定電圧より小さい値とするように設定し、蓄電池
の電圧が太陽電池の電圧よりも小さいときに、蓄電池の
放電を阻止する。ここで、蓄電池から電力供給を行わな
い場合には、太陽電池の最大電力追従制御または直流定
電圧制御を行い、蓄電池から電力供給を行う場合には、
外部からの電力指令にしたがって制御を行う。また、蓄
電池に電流検出器を設け、最大電力追従制御時あるいは
直流定電圧制御時に蓄電池の放電電流を検出したとき、
直流回路電圧の設定値を変更する補正手段を備える。ま
た、蓄電池に電流検出器および直流−直流変換器を接続
し、電流検出器によって検出された蓄電池出力電圧を直
流回路電圧の設定値より低くするように直流−直流変換
器を制御する直流電圧調整手段を備える。
In order to solve the above-mentioned problems, a storage battery connected in parallel with a solar cell via charging / discharging means and an output power of the solar cell are converted into AC power, and another AC power supply is provided. A power converter interconnected with the power supply, a maximum power follow-up control means for changing an operation command in a direction to increase the output of the solar cell, a DC constant voltage control means for controlling the voltage of the solar cell to be constant, and an external power supply. A solar power generation device comprising means for performing control by a command, wherein the voltage of the storage battery is set to a value smaller than the DC constant voltage of the solar cell, and the voltage of the storage battery is lower than the voltage of the solar cell. To prevent the storage battery from discharging. Here, when power is not supplied from the storage battery, maximum power follow-up control or DC constant voltage control of the solar cell is performed, and when power is supplied from the storage battery,
Control is performed according to an external power command. Also, a current detector is provided in the storage battery, and when the discharge current of the storage battery is detected during the maximum power follow-up control or the DC constant voltage control,
A correction means for changing a set value of the DC circuit voltage is provided. A DC voltage controller for connecting a current detector and a DC-DC converter to the storage battery and controlling the DC-DC converter so that the output voltage of the storage battery detected by the current detector is lower than a set value of the DC circuit voltage. Means.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。図1は、本発明の太陽光発電装置で
ある第一の実施形態を示す。図2で説明した従来技術と
同一番号の構成は図2と同一の機能を有する。図1にお
いて、太陽電池1は、充電ブロック回路30を介して蓄
電池3と並列に接続され、電力変換器4に電力を供給す
る。充電ブロック回路30内のスイッチ30Sは通常開
放され、後で説明する蓄電池3の充電時の時のみ接続さ
れる。ここで、蓄電池3の直流電圧は、以下で説明する
直流定電圧設定回路22によって指示される電圧以下に
設定されている。このため、太陽電池1の方が蓄電池電
圧より高いので、充電ブロック回路30内のダイオード
30dは逆方向にバイアスされ、蓄電池3からの電力放
電はない。したがって、電力変換器4への電力の入力は
太陽電池1の出力だけとなる。太陽電池1の出力は電力
変換器4で交流に変換され、連系スイッチ5を介して電
力系統8に接続され、一般負荷6に電力が供給される。
一方、太陽電池1で発電された電圧、電流は電流検出器
9、電圧検出器10を介して電力検出回路20に送ら
れ、太陽電池1の出力電力が演算される。電力検出回路
20の出力は、最大電力追従回路21に送られ、ここで
太陽電池1の最大電力が得られる直流電圧指令が出力さ
れる。最大電力追従制御は、日射強度が強いときには太
陽電池1の直流電圧を変えることにより、有効に電力を
取り出すことができるが、日射強度が弱いときには直流
定電圧で太陽電池1を制御しても効果は変わらなくな
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment which is a photovoltaic power generator of the present invention. 2 have the same functions as those of FIG. In FIG. 1, a solar cell 1 is connected in parallel with a storage battery 3 via a charging block circuit 30, and supplies power to a power converter 4. The switch 30S in the charging block circuit 30 is normally opened, and is connected only when the storage battery 3 described later is charged. Here, the DC voltage of the storage battery 3 is set to be equal to or lower than the voltage specified by the DC constant voltage setting circuit 22 described below. For this reason, since the solar cell 1 is higher than the storage battery voltage, the diode 30d in the charging block circuit 30 is biased in the reverse direction, and no power is discharged from the storage battery 3. Therefore, the power input to the power converter 4 is only the output of the solar cell 1. The output of the solar cell 1 is converted into AC by the power converter 4, connected to the power system 8 via the interconnection switch 5, and supplied with power to the general load 6.
On the other hand, the voltage and current generated by the solar cell 1 are sent to the power detection circuit 20 via the current detector 9 and the voltage detector 10, and the output power of the solar cell 1 is calculated. The output of the power detection circuit 20 is sent to a maximum power follow-up circuit 21, where a DC voltage command for obtaining the maximum power of the solar cell 1 is output. The maximum power tracking control can effectively extract power by changing the DC voltage of the solar cell 1 when the solar irradiance is strong. However, when the solar irradiance is weak, it is effective to control the solar cell 1 with a constant DC voltage. Will not change.

【0007】図4は、上記の理由を説明するための太陽
電池特性図であり、太陽電池の出力特性について、日射
強度を11>12>13の3ケースとした場合の太陽電
池の電圧−電流特性L1〜L3およびで電圧−電力特性
P1〜P3を示したものである。この特性図から分かる
ように、太陽電池の最大電力は、日射強度11が十分に
ある場合には直流電圧を制御することにより、大きく変
化するが、日射強度13が小さくなると、最大電力を得
る直流電圧が低下するとともにピークが平坦となり、直
流電圧によって電力は大きく変化しない特性となる。あ
る日射強度以下の場合には、直流電圧一定制御しても効
果は殆ど変わらなくなる。そのため、最大電力追従制御
の結果、直流電圧が一定値以下になった場合には、その
電圧で直流定電圧制御を行うことが多い。このため、図
1では最大電力追従運転から直流定電圧制御の移行電圧
値Vdを直流定電圧設定回路22によって設定してお
く。
FIG. 4 is a graph showing the characteristics of a solar cell for explaining the above-mentioned reasons. As for the output characteristics of the solar cell, the voltage-current of the solar cell when the solar radiation intensity is in three cases of 11>12> 13 The characteristics L1 to L3 and the voltage-power characteristics P1 to P3 are shown. As can be seen from the characteristic diagram, the maximum power of the solar cell changes greatly by controlling the DC voltage when the solar radiation intensity 11 is sufficient, but when the solar radiation intensity 13 decreases, the DC power for obtaining the maximum power increases. As the voltage decreases, the peak becomes flat, and the power does not greatly change due to the DC voltage. When the solar radiation intensity is lower than a certain value, the effect hardly changes even if the DC voltage is controlled to be constant. Therefore, when the DC voltage falls below a certain value as a result of the maximum power follow-up control, the DC constant voltage control is often performed at that voltage. For this reason, in FIG. 1, the transition voltage value Vd of the DC constant voltage control from the maximum power following operation is set by the DC constant voltage setting circuit 22.

【0008】高電圧選定回路23は、最大電力追従回路
21の出力値と定電圧設定回路22の出力とを比較し、
どちらか高い方の電圧を優先的に選択する回路であり、
日射強度が強い状態では最大電力追従回路21の方が大
きいので、こちらを選択するが、夕暮れ時や天候が悪く
出力がでない場合などは、最大電力追従回路21の出力
が定電圧設定回路22の出力以下になり、定電圧設定回
路22の出力を選択する。以上により、通常運転制御
は、太陽電池1の最大電力追従制御となるため、高電圧
選定回路23は最大電力追従回路21の信号を選択し、
直流電圧制御回路24に信号を送る。直流電圧制御回路
24の出力信号24aは、切替器26に送られる。切替
器26は、外部電力指令回路25の電力指令25aと、
直流電圧制御回路24の出力を切り替え選択し、通常運
転時は直流電圧制御回路24の出力信号24aが選択さ
れる。直流制御回路24の出力信号24aは電流制御回
路27に入力され、また、電流検出器11によって検出
された電力変換器4の出力電流を電流制御回路27に入
力し、ゲート回路28を介して電流制御回路27の出力
によって電力変換器4を制御し、太陽電池1の直流電圧
を最大電力値となるように運転を行う。このように、外
部からの電力指令25aがない状態では、従来と同様太
陽電池1の最大電力追従制御が実施される。
The high voltage selection circuit 23 compares the output value of the maximum power tracking circuit 21 with the output of the constant voltage setting circuit 22,
This is a circuit that preferentially selects the higher voltage,
The maximum power follow-up circuit 21 is selected when the solar radiation intensity is high because the maximum power follow-up circuit 21 is larger. However, at dusk or when the weather is bad and the output is not available, the output of the maximum power follow-up circuit 21 The output becomes equal to or less than the output, and the output of the constant voltage setting circuit 22 is selected. As described above, since the normal operation control is the maximum power tracking control of the solar cell 1, the high voltage selection circuit 23 selects the signal of the maximum power tracking circuit 21,
A signal is sent to the DC voltage control circuit 24. The output signal 24a of the DC voltage control circuit 24 is sent to the switch 26. The switch 26 includes a power command 25a of the external power command circuit 25,
The output of the DC voltage control circuit 24 is switched and selected, and during normal operation, the output signal 24a of the DC voltage control circuit 24 is selected. The output signal 24a of the DC control circuit 24 is input to the current control circuit 27, and the output current of the power converter 4 detected by the current detector 11 is input to the current control circuit 27. The power converter 4 is controlled by the output of the control circuit 27, and operation is performed so that the DC voltage of the solar cell 1 becomes the maximum power value. As described above, when there is no external power command 25a, the maximum power tracking control of the solar cell 1 is performed as in the related art.

【0009】さて、上記の運転中に、図3(b)に示す
ように、時刻t1〜t2にかけて負荷のピークカット運
転を行う場合には、外部電力指令回路25から図3
(b)に示すピークカット電力出力指令Pcを出力して
おき、タイマー回路29により切替器26を外部電力指
令回路25の電力指令25aを選択するように切り替え
る。このように制御指令が外部からの電力指令25aに
切り替わると、電力変換器4の制御は今まで述べてきた
最大電力追従制御から、外部電力指令による電力指令に
切り替わる。つまり、太陽電池1の直流電圧制御が開放
され、電力変換器4の出力が外部電力指令回路25の電
力指令25aと一致するように動作する電力制御とな
る。一方、外部電力指令回路25の指令値は現状の出力
にさらにPc分の電力を出力する指令となるので、太陽
電池1の最大電力値よりも大きい値となり、太陽電池は
この電力を負担できない。このため、太陽電池1の出力
電圧は低下し、蓄電池電圧Vbの値まで低下し、蓄電池
3から不足電力を供給するように動作する。つまり、図
5に示すように、VmaxのA点で太陽電池1が運転し
ていたときに、タイマー回路29から切替指令が出力さ
れ、切替器26が外部電力指令回路25を選択すると、
図3(b)の電力指令Pcが出力され、この電力指令P
cは太陽電池1の最大電力値以上のため、直流電流が増
大し、太陽電池1はVmax電圧を維持できなく、電圧
−電流特性にしたがって電圧が低下する。太陽電池電圧
が蓄電池電圧VbのB点まで低下すると、今まで通電が
阻止されていた充電ブロック回路30のダイオード30
dが導通し、蓄電池3からの電力供給が開始される。蓄
電池3は、内部インピーダンスが低いため、外部電力指
令回路25の指令値の電力を十分供給可能なため、直流
電圧は蓄電池電圧Vbに維持され、電力供給と見合う電
流のC点で運転を行うことになる。したがって、ピーク
カット運転時間内のt1〜t2までの時間帯は、外部電
力指令回路25の指令値の電力が電力変換器4から出力
される。ピークカット運転が終了する時刻t2に達する
と、タイマー回路29は切替器26の選択を直流制御回
路24の出力側に切り替える。この時、切り替える前の
直流電圧は蓄電池電圧Vbとなっており、直流定電圧設
定回路22の設定値Vdよりも低い値となっている。こ
のため、高電圧選択回路23では直流定電圧設定回路2
2の指令値Vdを選択するので、直流電圧制御回路24
はこの電圧値となるように電力変換器4を制御する。こ
の結果、直流回路電圧はVdとなるが、Vdは蓄電池電
圧Vbより高いので、充電ブロック回路30のダイオー
ド30dは再び逆方向にバイアスされ、導通が阻止され
る。このため、蓄電池3からの電力供給はなくなり、太
陽電池1からのみの電力供給に自動的に戻ることにな
る。したがって、以後太陽電池1の最大電力追従制御が
再び可能となる。
During the above operation, as shown in FIG. 3 (b), when the peak cut operation of the load is performed from time t1 to time t2, the external power command circuit 25 outputs
The peak cut power output command Pc shown in (b) is output, and the switch 26 is switched by the timer circuit 29 so as to select the power command 25a of the external power command circuit 25. When the control command is switched to the power command 25a from the outside in this way, the control of the power converter 4 is switched from the maximum power tracking control described so far to a power command based on the external power command. That is, the DC voltage control of the solar cell 1 is released, and the power control is operated such that the output of the power converter 4 matches the power command 25a of the external power command circuit 25. On the other hand, since the command value of the external power command circuit 25 is a command to output power of Pc in addition to the current output, the command value becomes larger than the maximum power value of the solar cell 1, and the solar cell cannot bear this power. For this reason, the output voltage of the solar cell 1 decreases, decreases to the value of the storage battery voltage Vb, and operates to supply insufficient power from the storage battery 3. That is, as shown in FIG. 5, when the solar cell 1 is operating at the point A of Vmax, a switching command is output from the timer circuit 29, and when the switch 26 selects the external power command circuit 25,
The power command Pc shown in FIG.
Since c is equal to or greater than the maximum power value of the solar cell 1, the DC current increases, the solar cell 1 cannot maintain the Vmax voltage, and the voltage decreases according to the voltage-current characteristics. When the solar cell voltage drops to the point B of the storage battery voltage Vb, the diode 30 of the charging block circuit 30 which has been blocked from being energized up to now.
d conducts, and power supply from the storage battery 3 is started. Since the storage battery 3 has a low internal impedance and can sufficiently supply the power of the command value of the external power command circuit 25, the DC voltage is maintained at the storage battery voltage Vb, and the operation is performed at the point C of the current corresponding to the power supply. become. Therefore, the power of the command value of the external power command circuit 25 is output from the power converter 4 during the time period from t1 to t2 within the peak cut operation time. When the time t2 at which the peak cut operation ends is reached, the timer circuit 29 switches the selection of the switch 26 to the output side of the DC control circuit 24. At this time, the DC voltage before switching is the storage battery voltage Vb, which is lower than the set value Vd of the DC constant voltage setting circuit 22. Therefore, in the high voltage selection circuit 23, the DC constant voltage setting circuit 2
2 is selected, so that the DC voltage control circuit 24
Controls the power converter 4 to have this voltage value. As a result, the DC circuit voltage becomes Vd, but since Vd is higher than the storage battery voltage Vb, the diode 30d of the charging block circuit 30 is again biased in the reverse direction, and conduction is prevented. Therefore, the power supply from the storage battery 3 is stopped, and the power supply from the solar cell 1 alone is automatically returned to. Therefore, the maximum power follow-up control of the solar cell 1 becomes possible again thereafter.

【0010】以上で説明したように、本実施形態では、
蓄電池3の電圧Vbを直流定電圧設定回路22の設定電
圧Vdより低い電圧になるように設定し、また、蓄電池
3と直列に充電ブロック回路30を設けることにより、
煩雑な切替操作をなくして自動的に太陽電池1の最大電
力追従制御およびピークカット運転が可能となる。な
お、充電ブロック回路30のスイッチ30Sは常時は開
放されており、夜太陽電池が発電できなくなる時間帯に
投入し、電力変換器4によって系統8の電力を使用して
日中に放電した電力を充電する。充電を完了した時点で
スイッチ30Sは再び開放される。
As described above, in the present embodiment,
By setting the voltage Vb of the storage battery 3 to be lower than the set voltage Vd of the DC constant voltage setting circuit 22, and providing the charging block circuit 30 in series with the storage battery 3,
It is possible to automatically perform the maximum power follow-up control and the peak cut operation of the solar cell 1 without complicated switching operation. The switch 30S of the charging block circuit 30 is always open, and is turned on at a time when the solar cell cannot generate power at night, and the power discharged during the day by using the power of the system 8 by the power converter 4 is used. Charge. When the charging is completed, the switch 30S is opened again.

【0011】図6は、本発明の第二の実施形態を示す。
図1の第一の実施形態と異なる点は、蓄電池3に電流検
出器40を設置し、最大電力追従回路21および直流定
電圧設定回路22にそれぞれ電圧補正回路41、42を
接続することにある。蓄電池3の電流検出器40は蓄電
池3の放電電流を監視し、太陽電池1の最大電力追従運
転時、あるいは、直流定電圧運転時に電流検出器40に
よって蓄電池3の放電電流が検出された場合には、電圧
補正回路41、42により電圧指令値を上昇させ、電流
検出器40の電流が検出されなくなるまで電圧の設定値
の補正を自動的に行う。これにより、太陽電池1の最大
電力追従運転あるいは直流定電圧運転を有効に行うこと
ができ、太陽電池1の電力利用率を向上させることがで
きる。
FIG. 6 shows a second embodiment of the present invention.
The difference from the first embodiment in FIG. 1 is that a current detector 40 is provided in the storage battery 3 and voltage correction circuits 41 and 42 are connected to the maximum power tracking circuit 21 and the DC constant voltage setting circuit 22, respectively. . The current detector 40 of the storage battery 3 monitors the discharge current of the storage battery 3, and when the discharge current of the storage battery 3 is detected by the current detector 40 during the maximum power following operation of the solar cell 1 or the DC constant voltage operation. Increases the voltage command value by the voltage correction circuits 41 and 42, and automatically corrects the set value of the voltage until the current of the current detector 40 is no longer detected. Thereby, the maximum power following operation or the DC constant voltage operation of the solar cell 1 can be effectively performed, and the power utilization rate of the solar cell 1 can be improved.

【0012】図7は、本発明の第三の実施形態を示す。
図1の第一の実施形態と異なる点は、蓄電池3に電流検
出器40および直流−直流変換器50を接続し、この直
流−直流変換器50と直流定電圧設定回路22の間に直
流電圧調整回路52および電圧バイアス設定回路53を
設けることにある。直流−直流変換器50は、蓄電池3
の電圧を可変し、直流定電圧設定回路22の設定電圧よ
り低い電圧に蓄電池出力電圧を制御する。電圧バイアス
設定回路53は、直流定電圧設定回路22の設定電圧に
対してある一定値分だけ常に低い電圧を出力する。直流
電圧調整回路52は、電圧バイアス設定回路53の信号
を指令値とし、電流検出器51によって検出された蓄電
池出力電圧が電圧バイアス設定回路53の出力と同じく
なるように直流−直流変換器50を制御する。直流定電
圧設定回路22の設定電圧は電圧バイアス設定回路53
に入力され、電圧バイアス設定回路53から直流定電圧
設定回路22の設定電圧より常に低い電圧が出力され
る。直流電圧調整回路52では、電流検出器51によっ
て検出された蓄電池出力電圧と電圧バイアス設定回路5
3の出力電圧に基づいて蓄電池出力電圧が直流定電圧設
定回路22の設定電圧より低い電圧になるように直流−
直流変換器50を制御する。これにより、蓄電池3の電
圧が太陽電池運転電圧よりも高くとも、直流−直流変換
器50によって蓄電池3の出力電圧を直流定電圧設定回
路22の設定電圧より低くすることができ、図1と同じ
効果が得られる。
FIG. 7 shows a third embodiment of the present invention.
The difference from the first embodiment of FIG. 1 is that a current detector 40 and a DC-DC converter 50 are connected to the storage battery 3, and a DC voltage is applied between the DC-DC converter 50 and the DC constant voltage setting circuit 22. An adjustment circuit 52 and a voltage bias setting circuit 53 are provided. The DC-DC converter 50 includes the storage battery 3
And the output voltage of the storage battery is controlled to a voltage lower than the voltage set by the DC constant voltage setting circuit 22. The voltage bias setting circuit 53 outputs a voltage that is always lower by a certain value than the set voltage of the DC constant voltage setting circuit 22. The DC voltage adjustment circuit 52 uses the signal of the voltage bias setting circuit 53 as a command value, and controls the DC-DC converter 50 so that the storage battery output voltage detected by the current detector 51 becomes the same as the output of the voltage bias setting circuit 53. Control. The set voltage of the DC constant voltage setting circuit 22 is a voltage bias setting circuit 53.
, And a voltage that is always lower than the set voltage of the DC constant voltage setting circuit 22 is output from the voltage bias setting circuit 53. In the DC voltage adjusting circuit 52, the storage battery output voltage detected by the current detector 51 and the voltage bias setting circuit 5
3 so that the output voltage of the storage battery becomes lower than the voltage set by the DC constant voltage setting circuit 22 based on the output voltage of
The DC converter 50 is controlled. Thereby, even if the voltage of the storage battery 3 is higher than the solar cell operation voltage, the output voltage of the storage battery 3 can be made lower than the set voltage of the DC constant voltage setting circuit 22 by the DC-DC converter 50, and the same as FIG. The effect is obtained.

【0013】[0013]

【発明の効果】以上説明したように、本発明によれば、
太陽電池だけを使用した最大電力追従運転から蓄電池の
貯蔵電力を使用した運転への切替あるいはその反対の切
替操作も煩雑な操作を行うことなく、自動的に切り替え
ることが可能となる。また、蓄電池の電圧を太陽電池の
直流定電圧より小さい値とするように設定するので、太
陽電池だけからの電力供給モードでも蓄電池からの電力
供給モードにおいても、電力変換器停止操作、切替操作
の煩わしさがを伴わず、運転が可能となり、また、太陽
電池の電力利用率を上げることができる。また、電力供
給モードの運転切替時に用いる切替用のスイッチの省設
備化により、メンテナンスが容易になり、低コスト化を
図ることができる。また、太陽電池の最大電力追従運転
時あるいは直流定電圧運転時に蓄電池の放電電流が検出
された場合には、蓄電池の出力電圧より直流回路の電圧
指令値を上昇させるように自動的に補正するので、太陽
電池の最大電力追従運転あるいは直流定電圧運転を有効
に行うことができ、太陽電池の電力利用率を向上させる
ことができる。また、太陽電池の最大電力追従運転時あ
るいは直流定電圧運転時に蓄電池の放電電流が検出され
た場合には、蓄電池の出力電圧を直流定電圧制御の設定
電圧より低くするので、太陽電池の最大電力追従運転あ
るいは直流定電圧運転を有効に行うことができ、太陽電
池の電力利用率を向上させることができる。
As described above, according to the present invention,
The switching from the maximum power following operation using only the solar cell to the operation using the stored power of the storage battery or the opposite switching operation can be automatically performed without performing a complicated operation. Further, since the voltage of the storage battery is set to a value smaller than the DC constant voltage of the solar battery, the power converter stop operation and the switching operation can be performed in the power supply mode from the solar battery alone or in the power supply mode from the storage battery. Operation can be performed without any inconvenience, and the power utilization rate of the solar cell can be increased. In addition, maintenance can be facilitated and cost can be reduced by reducing the number of switches used for switching operation in the power supply mode. In addition, when the discharge current of the storage battery is detected during the maximum power following operation of the solar cell or the DC constant voltage operation, the voltage command value of the DC circuit is automatically corrected to be higher than the output voltage of the storage battery. In addition, the maximum power following operation or the DC constant voltage operation of the solar cell can be effectively performed, and the power utilization rate of the solar cell can be improved. When the discharge current of the storage battery is detected during the maximum power following operation of the solar cell or the DC constant voltage operation, the output voltage of the storage battery is set lower than the set voltage of the DC constant voltage control. The follow-up operation or the DC constant voltage operation can be effectively performed, and the power utilization rate of the solar cell can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽光発電装置である第一の実施形態
を示す構成図
FIG. 1 is a configuration diagram showing a first embodiment which is a solar power generation device of the present invention.

【図2】従来例による太陽光発電システムFIG. 2 shows a conventional solar power generation system.

【図3】ピークカット電力を説明する図FIG. 3 is a diagram illustrating peak cut power.

【図4】太陽電池の出力特性を説明する図FIG. 4 illustrates output characteristics of a solar cell.

【図5】本発明の第一の実施形態の太陽電池の動作を説
明する図
FIG. 5 is a diagram illustrating the operation of the solar cell according to the first embodiment of the present invention.

【図6】本発明の第二の実施形態を示す構成図FIG. 6 is a configuration diagram showing a second embodiment of the present invention.

【図7】本発明の第三の実施形態を示す構成図FIG. 7 is a configuration diagram showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…太陽電池、2…切替装置、3…蓄電池、4…電力変
換器、5,5A,5B…連系装置、6…一般負荷、7…
自立運転負荷、8…系統、9…電流検出器、10…電圧
検出器、11…電流検出器、20…電力検出器、21…
最大電力追従回路、22…直流定電圧設定回路、23…
高電圧選定回路、24…直流電圧制御回路、25…外部
電力指令回路、26…切替器、27…定電流制御回路、
28…ゲート回路、29…タイマー回路、30…充電ブ
ロック回路、40…電流検出回路、41…電圧補正回
路、42…電圧補正回路、50…電圧−電圧変換器、5
1…電圧検出器、52…直流電圧調整回路、53…電圧
バイアス設定回路
DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... Switching device, 3 ... Storage battery, 4 ... Power converter, 5, 5A, 5B ... Interconnection device, 6 ... General load, 7 ...
Autonomous operation load, 8 ... system, 9 ... current detector, 10 ... voltage detector, 11 ... current detector, 20 ... power detector, 21 ...
Maximum power follow-up circuit, 22 ... DC constant voltage setting circuit, 23 ...
High voltage selection circuit, 24 DC voltage control circuit, 25 external power command circuit, 26 switch, 27 constant current control circuit,
28 gate circuit, 29 timer circuit, 30 charging block circuit, 40 current detection circuit, 41 voltage correction circuit, 42 voltage correction circuit, 50 voltage-voltage converter, 5
DESCRIPTION OF SYMBOLS 1 ... Voltage detector, 52 ... DC voltage adjustment circuit, 53 ... Voltage bias setting circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池と、前記太陽電池と充放電手段
を介して並列に接続された蓄電池と、前記太陽電池の出
力電力を交流電力に変換し、他の交流電源と連系する電
力変換器と、前記太陽電池の出力が増加する方向へ動作
指令を変化させる最大電力追従制御手段と、前記太陽電
池の電圧を一定に制御する直流定電圧制御手段と、外部
からの電力指令による制御を行う手段を備えた太陽光発
電装置であって、前記蓄電池の電圧を前記太陽電池の直
流定電圧より小さい値とするように設定し、前記蓄電池
の電圧が前記太陽電池の電圧よりも小さいときに、前記
蓄電池の放電を阻止することを特徴とするする太陽光発
電装置。
1. A solar cell, a storage battery connected in parallel with the solar cell via charging / discharging means, and a power converter for converting output power of the solar cell into AC power and interconnecting with another AC power supply. Device, maximum power follow-up control means for changing the operation command in the direction in which the output of the solar cell increases, DC constant voltage control means for controlling the voltage of the solar cell to be constant, and control by an external power command. A photovoltaic power generation device comprising means for performing, when the voltage of the storage battery is set to a value smaller than the DC constant voltage of the solar cell, when the voltage of the storage battery is smaller than the voltage of the solar cell A solar power generation device for preventing discharge of the storage battery.
【請求項2】 請求項1において、前記蓄電池から電力
供給を行わない場合には、前記太陽電池の最大電力追従
制御または直流定電圧制御を行い、前記蓄電池から電力
供給を行う場合には、前記外部からの電力指令にしたが
って制御を行うことを特徴とするする太陽光発電装置。
2. The method according to claim 1, wherein when power is not supplied from the storage battery, maximum power follow-up control or DC constant voltage control of the solar cell is performed, and when power is supplied from the storage battery, A photovoltaic power generator characterized by performing control according to an external power command.
【請求項3】 請求項1または請求項2において、前記
蓄電池に電流検出器を設け、前記最大電力追従制御時あ
るいは前記直流定電圧制御時に前記蓄電池の放電電流を
検出したとき、直流回路電圧の設定値を変更する補正手
段を備えたことを特徴とする太陽光発電装置。
3. The battery circuit according to claim 1, wherein a current detector is provided in the storage battery, and when a discharge current of the storage battery is detected during the maximum power follow-up control or the DC constant voltage control, a DC circuit voltage is reduced. A photovoltaic power generator comprising a correction unit for changing a set value.
【請求項4】 請求項1または請求項2において、前記
蓄電池に電流検出器および直流−直流変換器を接続し、
前記電流検出器によって検出された蓄電池出力電圧を直
流回路電圧の設定値より低くするように前記直流−直流
変換器を制御する直流電圧調整手段を備えたことを特徴
とする太陽光発電装置。
4. The battery according to claim 1, wherein a current detector and a DC-DC converter are connected to the storage battery.
A photovoltaic power generator, comprising: DC voltage adjusting means for controlling the DC / DC converter so that a storage battery output voltage detected by the current detector is lower than a set value of a DC circuit voltage.
JP2000214310A 2000-07-14 2000-07-14 Solar power plant Expired - Fee Related JP3656113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000214310A JP3656113B2 (en) 2000-07-14 2000-07-14 Solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000214310A JP3656113B2 (en) 2000-07-14 2000-07-14 Solar power plant

Publications (2)

Publication Number Publication Date
JP2002034175A true JP2002034175A (en) 2002-01-31
JP3656113B2 JP3656113B2 (en) 2005-06-08

Family

ID=18709909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000214310A Expired - Fee Related JP3656113B2 (en) 2000-07-14 2000-07-14 Solar power plant

Country Status (1)

Country Link
JP (1) JP3656113B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986306A1 (en) * 2006-01-27 2008-10-29 Sharp Kabushiki Kaisha Power supply system
WO2013125425A1 (en) * 2012-02-22 2013-08-29 シャープ株式会社 Power conversion device and direct-current system
JP2018098952A (en) * 2016-12-14 2018-06-21 新電元工業株式会社 Power storage system and photovoltaic power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986306A1 (en) * 2006-01-27 2008-10-29 Sharp Kabushiki Kaisha Power supply system
EP1986306A4 (en) * 2006-01-27 2012-05-09 Sharp Kk Power supply system
US8310094B2 (en) 2006-01-27 2012-11-13 Sharp Kabushiki Kaisha Power supply system
WO2013125425A1 (en) * 2012-02-22 2013-08-29 シャープ株式会社 Power conversion device and direct-current system
JP2018098952A (en) * 2016-12-14 2018-06-21 新電元工業株式会社 Power storage system and photovoltaic power generation system

Also Published As

Publication number Publication date
JP3656113B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
JP3687464B2 (en) Solar power plant
US5751133A (en) Charge/discharge control method, charge/discharge controller, and power generation system with charge/discharge controller
US6262900B1 (en) Modular power supply system with control command verification
JP3254839B2 (en) Parallel operation control method of grid connection inverter
JP3622343B2 (en) Inverter
JPH06266458A (en) Photovoltaic power generating equipment capable of jointly using battery
JPH1023671A (en) Power conditioner and dispersed power supplying system
JPH09191565A (en) Dc distribution system
JP3181423B2 (en) Photovoltaic power generation equipment with battery
JPH06266457A (en) Photovoltaic power generating equipment capable of jointly using battery
JPH07123609A (en) Feeding system for fuel cell
JP2011160610A (en) Photovoltaic power generation device
JPH0946924A (en) Uninterruptible power supply with solar battery
JP3656113B2 (en) Solar power plant
JPH0965582A (en) Power supply system utilizing solar cell
JP2000323365A (en) Dc supplying device
JPH10243575A (en) Solar battery power unit and its operating method
JPH06266455A (en) Photovoltaic power generating equipment capable of jointly using battery
JP7272897B2 (en) Charge/discharge control device and battery and DC power supply system equipped with the same
JPH0946925A (en) Distributed power unit
JPH07322529A (en) Solar cell power supply
Abdelmoaty et al. A single-step, single-inductor energy-harvestingbased power supply platform with a regulated battery charger for mobile applications
JPH08251832A (en) Method and apparatus for charging by using solar cell
JPH07170677A (en) Charging circuit of storage battery for uninterruptible power-supply apparatus
JP2000245074A (en) Method for avoiding capacity decrease of battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees