JP2002028872A - Abrasive grain tool and its manufacturing method - Google Patents

Abrasive grain tool and its manufacturing method

Info

Publication number
JP2002028872A
JP2002028872A JP2000216291A JP2000216291A JP2002028872A JP 2002028872 A JP2002028872 A JP 2002028872A JP 2000216291 A JP2000216291 A JP 2000216291A JP 2000216291 A JP2000216291 A JP 2000216291A JP 2002028872 A JP2002028872 A JP 2002028872A
Authority
JP
Japan
Prior art keywords
microcapsules
abrasive tool
abrasive
based oil
tool according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000216291A
Other languages
Japanese (ja)
Inventor
Toshiyuki Enomoto
俊之 榎本
Yasuhiro Tani
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000216291A priority Critical patent/JP2002028872A/en
Publication of JP2002028872A publication Critical patent/JP2002028872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive grain tool and its manufacturing method having high efficiency and high quality by feeding a capsule-contained oil to a machining point, and superimposing a chemical action and a mechanical action to a work. SOLUTION: Microcapsules 3 containing one of fluorine oil, chlorine oil, and nitrogen oil applying the chemical action to the work and abrasive grains 2 are dispersively added to a binder 1 to form this abrasive grain tool. When the abrasive grain tool is molded by a baking method, the average grain size of the microcapsules 3 is set to 1-20 μm, and the wall thickness of the capsules is set to 1/1000-1/10 of the grain size. When the abrasive grain tool is molded by an electrodeposition method, the average grain size of the microcapsules 3 is set to 1-200 μm, and the wall thickness of the capsules is set to 1/1000-1/10 of the grain size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン、ガラス
などの硬脆材料や、鉄鋼、アルミニウムなどの金属材料
を、高能率、高品位に研削研磨加工するための砥粒工具
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive tool for grinding and polishing hard and brittle materials such as silicon and glass, and metallic materials such as steel and aluminum with high efficiency and high quality, and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】従来、単なる機械加工に比較し、メカノ
ケミカル加工やケミカルメカニカル加工においては、工
作物に対し機械的な除去作用を与えるだけでなく、化学
的な除去作用を重畳させることにより、加工能率や加工
品位を飛躍的に向上できることが知られている。
2. Description of the Related Art Conventionally, in comparison with mere machining, in mechanochemical machining and chemical mechanical machining, not only a mechanical removal action is given to a workpiece but also a chemical removal action is superimposed. It is known that processing efficiency and processing quality can be dramatically improved.

【0003】そこで、工作物に対し化学的作用を生じる
物質(不安定な酸化物または還元性のある物質)を、砥
粒あるいは添加物として用いる技術が提案されている
(特開平4−336949号公報、特公昭55−288
29号公報、特開平5−4171号公報など)。また、
加工液により、工作物に対し化学的作用を及ぼす技術も
開発されており、この種の加工液として、アルミニウム
などの金属材料やシリコンなどの硬脆材料とトライボケ
ミカル反応を生じる、フッ素系オイルや塩素系オイル、
窒素系オイルが挙げられる。
Therefore, a technique has been proposed in which a substance (an unstable oxide or a substance having a reducing property) which causes a chemical action on a workpiece is used as an abrasive or an additive (Japanese Patent Application Laid-Open No. 4-336949). Gazette, Japanese Patent Publication No. 55-288
No. 29, JP-A-5-4171, etc.). Also,
Technology has also been developed to apply a chemical action to a workpiece by using a machining fluid, such as a fluorine-based oil that causes a tribochemical reaction with a metal material such as aluminum or a hard brittle material such as silicon. Chlorinated oil,
And nitrogen-based oils.

【0004】ところが、これらのオイルは、潤滑性が極
めて高く、加工液として加工点に供給すると、砥石や研
磨パッド、研磨フィルム、研磨布紙といった工具が、工
作物上を上滑りしてしまい、トライボケミカル作用が生
じないばかりか、工作物の除去が行われなくなる、とい
う問題がある。そこで、フッ素系オイルをマイクロカプ
セルに内包することによって、前記フッ素系オイルを加
工点に確実に供給する技術が開発された(特願平10−
246686号、特願平11−194380号など)。
However, these oils have extremely high lubricity, and when supplied as a working fluid to a working point, a tool such as a grindstone, a polishing pad, a polishing film, or a polishing cloth slips on the workpiece, causing a tribo-drain. There is a problem that not only the chemical action does not occur, but also the removal of the workpiece is not performed. Therefore, a technique has been developed in which the fluorinated oil is encapsulated in the microcapsules so that the fluorinated oil is reliably supplied to the processing point (Japanese Patent Application No. 10-108).
246686, Japanese Patent Application No. 11-194380, etc.).

【0005】[0005]

【発明が解決しようとする課題】前記従来の技術では、
フッ素系オイルなどをマイクロカプセルに内包している
が、このマイクロカプセルを砥石あるいは研磨布や研磨
布紙(研磨フィルムを含む)などの工具に添加する場
合、その工具の材質、製造方法、加工形態に伴い、求め
られる機械的特性(耐圧性、耐熱性など)が大きく異な
る。マイクロカプセルの強度は、カプセル直径、壁厚、
壁材の弾性率などによって変化するため、工具に応じて
これらの値を適宜選択する必要がある。
In the above prior art,
Fluorine-based oils and the like are encapsulated in microcapsules, but when these microcapsules are added to a tool such as a grindstone or a polishing cloth or a polishing cloth (including a polishing film), the material, manufacturing method, and processing form of the tool As a result, required mechanical characteristics (pressure resistance, heat resistance, etc.) are greatly different. The strength of the microcapsule depends on the capsule diameter, wall thickness,
Since these values change depending on the elastic modulus of the wall material, it is necessary to appropriately select these values according to the tool.

【0006】本発明は、加工点にカプセル内包オイルを
供給し、工作物に対して化学的作用と機械的作用を重畳
させるようにして高能率化および高品位化を図ることが
可能な砥粒工具およびその製造方法を提供することを目
的とする。
[0006] The present invention provides an abrasive grain capable of achieving high efficiency and high quality by supplying an oil contained in a capsule to a processing point and superimposing a chemical action and a mechanical action on a workpiece. It is an object to provide a tool and a method for manufacturing the tool.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
工作物に対して化学的作用を及ぼすフッ素系オイル、塩
素系オイル、窒素系オイルのいずれかを内包したマイク
ロカプセルと、砥粒とを結合剤中に分散添加してなるこ
とに特徴がある。
The invention according to claim 1 is
It is characterized in that microcapsules enclosing any one of fluorine-based oil, chlorine-based oil, and nitrogen-based oil having a chemical action on a workpiece and abrasive grains are dispersed and added in a binder.

【0008】前記マイクロカプセルを分散添加した砥粒
工具(砥石)が、加工時に工作物や砥粒と接触すること
によって、マイクロカプセル壁が破壊され、このカプセ
ルに内包した、潤滑性を有すると共に化学的作用を及ぼ
す液状物質が極微少量放出され、工作物と砥粒工具の潤
滑剤として作用すると共に、工作物に対して化学的作用
を生じさせる。この結果、工作物は砥粒工具上を上滑り
することなく加工がなされ、同時に工作物の表面を除去
しやすい物質に変化させると共に、その変質層を逐次除
去することができるため、工作物の加工精度、加工能率
および加工面品位の向上を図ることができる。
[0008] When the abrasive tool (grinding stone) to which the microcapsules are dispersed and added comes into contact with a workpiece or abrasive grains during processing, the microcapsule wall is broken, and the capsule has a lubricating and chemical property. A very small amount of liquid material that exerts an action acts as a lubricant for the workpiece and the abrasive tool and causes a chemical action on the workpiece. As a result, the workpiece is processed without slipping on the abrasive tool, and at the same time, the surface of the workpiece is changed to a material that is easy to remove, and the deteriorated layer can be removed successively. Accuracy, machining efficiency and machining surface quality can be improved.

【0009】請求項2に係る発明は、請求項1におい
て、前記マイクロカプセルの平均粒径が1〜20μm、
カプセル壁厚が粒径の1/1000〜1/10に設定さ
れることに特徴がある。
According to a second aspect of the present invention, in the first aspect, the microcapsules have an average particle size of 1 to 20 μm,
It is characterized in that the capsule wall thickness is set to 1/1000 to 1/10 of the particle size.

【0010】例えば、結合剤が高分子材料またはセラミ
ックス材料からなり、焼成法により製造される研削砥石
では、分散添加する前記マイクロカプセルの大きさが平
均粒径1μm未満であると、加工時に破壊困難で、含有
物質が放出されにくく、平均粒径20μmを超えると、
砥石成形時、すなわち高圧・高温雰囲気となる焼成時
(加工前)に破壊され、含有物質が放出されてしまう恐
れがある。また、前記マイクロカプセルの壁厚が粒径の
1/1000未満であると、砥石成形時、すなわち焼成
時といった加工前に破壊し含有物質が放出されてしま
い、前記壁厚が粒径の1/10を超えると、加工時に極
めて破壊困難となり、含有物質が放出されない恐れがあ
る。
For example, in a grinding wheel manufactured by a firing method in which the binder is made of a polymer material or a ceramic material, if the size of the microcapsules to be dispersed and added is less than 1 μm, it is difficult to break during processing. In, when the contained material is hard to be released and the average particle size exceeds 20 μm,
There is a possibility that the material may be released during the grinding of the grindstone, that is, at the time of firing (before processing) in a high-pressure / high-temperature atmosphere, and the contained substance may be released. If the wall thickness of the microcapsules is less than 1/1000 of the particle size, the material is destroyed and released before processing such as whetstone molding, that is, during firing, and the wall thickness is reduced to 1 / 1,000 of the particle size. If it exceeds 10, it will be extremely difficult to break down during processing, and the contained substance may not be released.

【0011】請求項3に係る発明は、請求項1におい
て、前記マイクロカプセルの平均粒径が1〜200μ
m、カプセル壁厚が粒径の1/1000〜1/10に設
定されることに特徴がある。
According to a third aspect of the present invention, in the first aspect, the microcapsules have an average particle size of 1 to 200 μm.
m, the capsule wall thickness is set to 1/1000 to 1/10 of the particle size.

【0012】電着法により製造される研削砥石では、前
記マイクロカプセルの大きさが平均粒径1μm未満であ
ると、加工時に破壊困難で、含有物質が放出されにく
く、平均粒径200μmを超えると、砥石成形時(電着
時)、めっき応力により加工前に前記マイクロカプセル
が破壊され、含有物質が放出されてしまう恐れがある。
また、前記マイクロカプセルの壁厚が粒径の1/100
0未満であると、砥石成形時(電着時)に前記マイクロ
カプセルが破壊され、加工前に含有物質が放出されてし
まい、前記壁厚が粒径の1/10を超えると、加工時に
極めて破壊困難となり、含有物質が放出されない恐れが
ある。
In a grinding wheel manufactured by the electrodeposition method, if the size of the microcapsules is less than 1 μm, the microcapsules are difficult to break at the time of processing, the contained material is hardly released, and if the average particle size exceeds 200 μm. At the time of forming a grindstone (at the time of electrodeposition), the microcapsules may be broken before processing due to plating stress, and the contained substance may be released.
Further, the wall thickness of the microcapsules is 1/100 of the particle size.
If it is less than 0, the microcapsules are broken at the time of forming a grindstone (at the time of electrodeposition), and the contained material is released before processing. Destruction becomes difficult, and the contained substance may not be released.

【0013】請求項4に係る発明は、請求項1におい
て、前記マイクロカプセルの壁物質が、主に熱硬化性樹
脂からなることに特徴がある。
According to a fourth aspect of the present invention, in the first aspect, the wall material of the microcapsules is mainly made of a thermosetting resin.

【0014】例えば、結合剤が高分子材料あるいはセラ
ミックス材料からなり、焼成法により製造される研削砥
石では、前記マイクロカプセルの壁物質が、エラストマ
やポリ塩化ビニルなどの軟質樹脂やポリアミド樹脂など
の硬質熱可塑性樹脂であると、砥石成形時、すなわち焼
成時に破壊し、含有物質が放出されてしまう恐れがあ
る。これに対し、カプセル壁にメラミン樹脂などの熱硬
化性樹脂を用いることにより、焼成時の成形圧力や成形
熱がマイクロカプセルを破壊することを防止できる。
For example, in a grinding wheel manufactured by a firing method in which a binder is made of a polymer material or a ceramic material, the wall material of the microcapsules is made of a soft resin such as an elastomer or polyvinyl chloride or a hard resin such as a polyamide resin. If it is a thermoplastic resin, it may be broken at the time of grindstone forming, that is, at the time of firing, and the contained substance may be released. On the other hand, by using a thermosetting resin such as a melamine resin for the capsule wall, it is possible to prevent the molding pressure and molding heat during firing from breaking the microcapsules.

【0015】請求項5に係る発明は、請求項1に記載の
砥粒工具の製造方法であって、前記フッ素系オイル、塩
素系オイル、窒素系オイルのいずれかをマイクロカプセ
ルに内包させる内包工程と、前記マイクロカプセルと砥
粒とを結合剤に分散添加して成形する添加・成形工程と
からなることに特徴がある。
According to a fifth aspect of the present invention, there is provided the method for producing an abrasive tool according to the first aspect, wherein any one of the fluorine-based oil, the chlorine-based oil, and the nitrogen-based oil is encapsulated in a microcapsule. And an addition / molding step of dispersing and adding the microcapsules and abrasive grains to a binder and molding.

【0016】こうすることにより、工作物に対して化学
的作用と機械的作用を重畳させて高能率化および高品位
化を図ることができる。
By doing so, the chemical action and the mechanical action can be superimposed on the workpiece to achieve higher efficiency and higher quality.

【0017】請求項6に係る発明は、請求項5におい
て、前記内包工程が、界面重合法、in situ重合
法、コアセルベーション法、液中硬化被覆法、液中乾燥
法のいずれかの工程からなることに特徴がある。
According to a sixth aspect of the present invention, in the fifth aspect, the encapsulation step is any one of an interfacial polymerization method, an in situ polymerization method, a coacervation method, a curing-in-liquid coating method, and a drying method in liquid. It is characterized by consisting of

【0018】こうすることにより、液状物質をマイクロ
カプセルに確実に内包させることができる。
By doing so, the liquid substance can be reliably contained in the microcapsules.

【0019】請求項7に係る発明は、請求項5におい
て、前記添加・成形工程が、焼成法の工程からなること
に特徴がある。
A seventh aspect of the present invention is characterized in that, in the fifth aspect, the adding / forming step comprises a firing step.

【0020】請求項8に係る発明は、請求項5におい
て、前記添加・成形工程が、電着法の工程からなること
に特徴がある。
An eighth aspect of the present invention is characterized in that, in the fifth aspect, the adding / forming step comprises a step of an electrodeposition method.

【0021】砥粒工具成形法として電着法を用いると、
焼成法を用いた場合の成形圧力や成形熱により、容易に
破壊してしまうようなマイクロカプセルについても、工
具内に添加することが可能となる。
When the electrodeposition method is used as the abrasive tool forming method,
Microcapsules that are easily broken by molding pressure or molding heat when using the firing method can be added to the tool.

【0022】[0022]

【発明の実施の形態】以下、本発明の一実施形態を説明
する。本実施形態の砥粒工具は、内包工程と添加・成形
工程によって製造される。内包工程では、パーフルオロ
ポリエーテル(以下、PFPEと略称する)などのフッ
素系オイル、あるいは塩素系オイルや窒素系オイルな
ど、工作物に対して化学的作用を及ぼす液状物質をマイ
クロカプセルに内包する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. The abrasive tool of the present embodiment is manufactured by an encapsulation process and an addition / forming process. In the encapsulation step, a liquid substance having a chemical action on the workpiece, such as a fluorine-based oil such as perfluoropolyether (hereinafter abbreviated as PFPE), or a chlorine-based oil or a nitrogen-based oil, is encapsulated in the microcapsules. .

【0023】この際、カプセル条件、例えば、界面重合
法やin situ重合法であれば、オイルのエマルション化
における溶液の攪拌速度を調整することで、平均粒径1
〜20μm内の所定の大きさに、そしてカプセル壁厚に
ついても、平均粒径の1/1000〜1/10内の所定
の厚みになるように、マイクロカプセルを作製する。
At this time, if the capsule conditions, for example, in the case of the interfacial polymerization method or the in situ polymerization method, the average particle diameter is adjusted by adjusting the stirring speed of the solution in the emulsion of the oil.
Microcapsules are prepared so as to have a predetermined size within 2020 μm and a predetermined thickness within the range of 1/1000 to 1/10 of the average particle diameter with respect to the capsule wall thickness.

【0024】また、カプセル壁材については、例えばin
situ重合法であれば、芯物質の外相より適当なモノマ
重合触媒を供給し、芯物質の表層で壁を形成、重合する
ことで、メラミン樹脂等の材質からなる壁材を形成す
る。また、内包工程としては、界面重合法、in si
tu重合法、コアセルベーション法、液中硬化被覆法、
液中乾燥法のいずれかの工程を用いてもよい。
As for the capsule wall material, for example, in
In the case of the in situ polymerization method, an appropriate monomer polymerization catalyst is supplied from the outer phase of the core substance, and a wall is formed on the surface layer of the core substance and polymerized to form a wall material made of a material such as a melamine resin. The encapsulation process includes an interfacial polymerization method,
tu polymerization method, coacervation method, liquid curing coating method,
Any step of the in-liquid drying method may be used.

【0025】この内包工程が終了したら、添加・成形工
程に進む。この添加・成形工程としては、焼成法、電着
法のいずれかの工程を用いてよい。焼成法による場合
は、マイクロカプセルを砥粒と必要に応じて骨材と共に
結合剤樹脂(例えば、フェノール樹脂など)に添加す
る。このとき、結合剤中のマイクロカプセルの添加率を
5〜40vol%の間に設定する。次いで、前記マイク
ロカプセルと砥粒と必要に応じて骨材と結合剤樹脂との
混合物を攪拌混合した後、その混合物を加熱・成形し、
研削研磨用の砥粒工具を得る。
When the encapsulation process is completed, the process proceeds to the addition / molding process. As the addition / forming step, any one of a firing method and an electrodeposition method may be used. In the case of the firing method, the microcapsules are added to a binder resin (for example, a phenol resin) together with the abrasive grains and, if necessary, the aggregate. At this time, the addition rate of the microcapsules in the binder is set between 5 and 40 vol%. Next, after stirring and mixing the mixture of the microcapsules, the abrasive grains, and the aggregate and the binder resin as necessary, the mixture is heated and molded,
Obtain an abrasive tool for grinding and polishing.

【0026】なお、添加物としては、骨剤の代わりに固
体潤滑剤などの添加物を添加してもよい。また、砥粒と
しては、ダイヤモンド、CBN、アルミナ、炭化珪素な
どの硬質研磨粒子を使用する。また、結合剤としては、
樹脂に限らず、セラミックス材料または/および金属材
料を用いてもよい。
As an additive, an additive such as a solid lubricant may be added in place of the aggregate. Hard abrasive particles such as diamond, CBN, alumina, and silicon carbide are used as abrasive grains. Also, as a binder,
Not limited to resin, a ceramic material and / or a metal material may be used.

【0027】また、添加・成形工程において、電着法に
より電着砥石を製造する場合には、電着めっき液(電解
液)中にマイクロカプセルを添加し、めっき層を析出す
ると共にマイクロカプセルをめっき層内に固定する。例
えば、前記マイクロカプセルと砥粒と必要に応じて骨材
とをめっき液中で混合、攪拌した混合液を、予め電解槽
に所定量収容し、この電解槽中に陽極と陰極とを対向配
置する。この陰極は、ラップ工具を形成する導電性の金
属基体であり、前記陽極/陰極間に所定の電圧を印加し
て電解することにより、陰極上に前記マイクロカプセル
および砥粒を含むめっき層が析出する。前記電解液に
は、帯電したマイクロカプセルおよび砥粒が分散されて
いる。なお、めっき液としては、例えばを硫酸銅めっき
液やスルファミン酸ニッケルめっき液を用い、砥粒とし
ては、ダイヤモンド、CBN、アルミナ、炭化珪素など
の硬質研磨粒子を用いる。
In the case of producing an electrodeposited whetstone by an electrodeposition method in the addition / forming step, microcapsules are added to an electrodeposition plating solution (electrolyte solution) to deposit a plating layer and to remove the microcapsules. Fix in the plating layer. For example, the microcapsules, abrasive grains and, if necessary, an aggregate are mixed in a plating solution, and a mixed solution obtained by stirring is previously stored in a predetermined amount in an electrolytic cell, and an anode and a cathode are opposed to each other in the electrolytic cell. I do. The cathode is a conductive metal substrate forming a lap tool, and by applying a predetermined voltage between the anode and the cathode to perform electrolysis, a plating layer containing the microcapsules and abrasive grains is deposited on the cathode. I do. In the electrolytic solution, charged microcapsules and abrasive grains are dispersed. As the plating solution, for example, a copper sulfate plating solution or a nickel sulfamate plating solution is used, and as abrasive grains, hard abrasive particles such as diamond, CBN, alumina, and silicon carbide are used.

【0028】[0028]

【実施例】以下、本発明に係る実施例として、焼成法に
よりレジンボンド砥石を製造する場合を説明する。ま
ず、フッ素系オイル(PFPE)を、前記界面重合法、
in situ重合法、コアセルベーション法、液中硬化被覆
法、液中乾燥法のいずれかの方法でマイクロカプセル化
する。この際、カプセル条件、例えば界面重合法やin s
itu重合法であれば、オイルのエマルション化における
溶液の攪拌速度を調整することで、平均粒径3μm、カ
プセル壁厚0.05μmとなるように作製する。またカ
プセル壁材については、例えばin situ重合法であれ
ば、芯物質の外相より適当なモノマや重合触媒を供給
し、芯物質の表層で壁を形成、重合することで、メラミ
ン樹脂などの熱硬化性樹脂からなる壁材を形成する。
EXAMPLES Hereinafter, as an example according to the present invention, a case in which a resin bond grindstone is manufactured by a firing method will be described. First, a fluorine-based oil (PFPE) is mixed with the above-mentioned interfacial polymerization method,
Microencapsulation is performed by any of the in situ polymerization method, coacervation method, liquid curing coating method, and liquid drying method. At this time, capsule conditions such as interfacial polymerization method and in s
In the case of the itu polymerization method, the production is performed so that the average particle diameter is 3 μm and the capsule wall thickness is 0.05 μm by adjusting the stirring speed of the solution in the emulsion of the oil. For the capsule wall material, for example, in the case of an in situ polymerization method, a suitable monomer or polymerization catalyst is supplied from the external phase of the core substance, and a wall is formed and polymerized on the surface layer of the core substance, thereby forming a thermo-melamine resin or the like. A wall material made of a curable resin is formed.

【0029】次に、前述のように作製した平均粒径3μ
m、カプセル壁厚0.05μmのマイクロカプセルと、
砥粒(1〜3μmのダイヤモンド)とを結合剤樹脂(フ
ェノール樹脂)に添加し、混合攪拌する。このとき、結
合剤中のマイクロカプセルの添加率を5〜40vol%
の間に設定する。次いで、前記マイクロカプセルと砥粒
と結合剤樹脂との混合物を加熱・成形し、研削研磨用の
砥粒工具を得た。この砥粒工具の断面を図1に示す。図
1に示すように、フェノール樹脂1中にフッ素系オイル
3aを内包したマイクロカプセル3とダインモンド砥粒
2とが分散添加されている。
Next, the average particle size of 3 μm prepared as described above was used.
m, a microcapsule having a capsule wall thickness of 0.05 μm;
Abrasive grains (1 to 3 μm diamond) are added to a binder resin (phenol resin) and mixed and stirred. At this time, the addition rate of the microcapsules in the binder was 5 to 40 vol%.
Set between. Next, the mixture of the microcapsules, abrasive grains, and binder resin was heated and molded to obtain an abrasive tool for grinding and polishing. FIG. 1 shows a cross section of the abrasive tool. As shown in FIG. 1, microcapsules 3 in which a fluorinated oil 3 a is encapsulated in phenolic resin 1 and Dynemond abrasive grains 2 are dispersed and added.

【0030】こうして製作した研削研磨用砥石により、
アルミニウム合金ディスクの加工を実施した。その結
果、フッ素系オイルを内包したマイクロカプセルを添加
した砥石においては、フッ素系オイルによる化学的作用
が重畳したために、カプセル無添加の砥石およびシリコ
ーン系オイルを内包したマイクロカプセルを添加した砥
石に比べ、5〜20倍もの加工量を得ている。また加工
面粗さについても、フッ素系オイルを内包したマイクロ
カプセルを添加した砥石においてのみ、70nmRy程
度の鏡面を得ることができた。このように、フッ素系オ
イルを内包したマイクロカプセルを添加した研削砥石を
用いることにより、化学的除去作用が発現され、加工能
率、加工面品位とも向上させることができた。
With the grinding and polishing whetstone thus manufactured,
The processing of the aluminum alloy disk was performed. As a result, the grindstone with microcapsules containing fluorine-based oil was compared with the grindstone without capsules and the grindstone with microcapsules containing silicone oil because the chemical action of the fluorine-based oil was superimposed. , 5 to 20 times the processing amount. Regarding the processed surface roughness, a mirror surface of about 70 nmRy could be obtained only with a grindstone to which microcapsules containing fluorine-based oil were added. As described above, by using the grinding wheel to which microcapsules containing fluorine-based oil were added, a chemical removing action was exhibited, and both the processing efficiency and the processed surface quality could be improved.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
加工点にカプセル内包オイルを供給し、工作物に対して
化学的作用と機械的作用を重畳させるようにして高能率
化および高品位化を図ることが可能な砥粒工具およびそ
の製造方法を提供することができる。
As described above, according to the present invention,
Provided is an abrasive tool capable of achieving high efficiency and high quality by supplying an encapsulated oil to a processing point and superimposing a chemical action and a mechanical action on a workpiece, and a method of manufacturing the same. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態を示す砥粒工具の断面図
である。
FIG. 1 is a cross-sectional view of an abrasive tool showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 フェノール樹脂(結合剤) 2 砥粒 3 マイクロカプセル 3a フッ素系オイル DESCRIPTION OF SYMBOLS 1 Phenol resin (binder) 2 Abrasive particles 3 Microcapsule 3a Fluorine-based oil

フロントページの続き Fターム(参考) 3C063 AA02 AB01 BB02 BC02 BC03 BD01 BD05 CC02 CC12 FF23 FF30 Continuation of the front page F term (reference) 3C063 AA02 AB01 BB02 BC02 BC03 BD01 BD05 CC02 CC12 FF23 FF30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】工作物に対して化学的作用を及ぼすフッ素
系オイル、塩素系オイル、窒素系オイルのいずれかを内
包したマイクロカプセルと、砥粒とを結合剤中に分散添
加してなることを特徴とする砥粒工具。
1. A microcapsule enclosing any one of a fluorine-based oil, a chlorine-based oil, and a nitrogen-based oil having a chemical action on a workpiece, and abrasive grains dispersed and added in a binder. An abrasive tool characterized by the following:
【請求項2】前記マイクロカプセルの平均粒径が1〜2
0μm、カプセル壁厚が粒径の1/1000〜1/10
に設定されることを特徴とする請求項1に記載の砥粒工
具。
2. The microcapsules having an average particle size of 1 to 2
0 μm, capsule wall thickness is 1/1000 to 1/10 of particle size
The abrasive tool according to claim 1, wherein the abrasive tool is set to:
【請求項3】前記マイクロカプセルの平均粒径が1〜2
00μm、カプセル壁厚が粒径の1/1000〜1/1
0に設定されることを特徴とする請求項1に記載の砥粒
工具。
3. The microcapsules having an average particle size of 1 to 2
00 μm, capsule wall thickness is 1/1000 to 1/1 of particle size
The abrasive tool according to claim 1, wherein the tool is set to zero.
【請求項4】前記マイクロカプセルの壁物質が、主に熱
硬化性樹脂からなることを特徴とする請求項1に記載の
砥粒工具。
4. The abrasive tool according to claim 1, wherein the wall material of the microcapsules mainly comprises a thermosetting resin.
【請求項5】請求項1に記載の砥粒工具の製造方法であ
って、前記フッ素系オイル、塩素系オイル、窒素系オイ
ルのいずれかをマイクロカプセルに内包させる内包工程
と、前記マイクロカプセルと砥粒とを結合剤に分散添加
して成形する添加・成形工程とからなることを特徴とす
る砥粒工具の製造方法。
5. The method for producing an abrasive tool according to claim 1, wherein an encapsulating step of encapsulating any one of the fluorine-based oil, the chlorine-based oil, and the nitrogen-based oil in a microcapsule; A method for producing an abrasive tool, comprising: an addition / forming step of forming by dispersing and adding abrasive grains to a binder.
【請求項6】前記内包工程が、界面重合法、in si
tu重合法、コアセルベーション法、液中硬化被覆法、
液中乾燥法のいずれかの工程からなることを特徴とする
請求項5に記載の砥粒工具の製造方法。
6. The method according to claim 1, wherein the encapsulating step is performed by an interfacial polymerization method.
tu polymerization method, coacervation method, liquid curing coating method,
The method for producing an abrasive tool according to claim 5, comprising any one of the steps of a submerged drying method.
【請求項7】前記添加・成形工程が、焼成法の工程から
なることを特徴とする請求項5に記載の砥粒工具の製造
方法。
7. The method for manufacturing an abrasive tool according to claim 5, wherein said adding / forming step comprises a firing step.
【請求項8】前記添加・成形工程が、電着法の工程から
なることを特徴とする請求項5に記載の砥粒工具の製造
方法。
8. The method for producing an abrasive tool according to claim 5, wherein said adding / forming step comprises a step of an electrodeposition method.
JP2000216291A 2000-07-17 2000-07-17 Abrasive grain tool and its manufacturing method Pending JP2002028872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216291A JP2002028872A (en) 2000-07-17 2000-07-17 Abrasive grain tool and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216291A JP2002028872A (en) 2000-07-17 2000-07-17 Abrasive grain tool and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002028872A true JP2002028872A (en) 2002-01-29

Family

ID=18711577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216291A Pending JP2002028872A (en) 2000-07-17 2000-07-17 Abrasive grain tool and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002028872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004041477A1 (en) * 2002-11-06 2006-03-02 株式会社野村鍍金 Surface treatment method for vacuum member
JP2006212763A (en) * 2005-02-07 2006-08-17 Disco Abrasive Syst Ltd Electrodeposition grinding wheel and method of manufacturing electrodeposition grinding wheel
WO2020089129A1 (en) * 2018-10-31 2020-05-07 Solvay Specialty Polymers Italy S.P.A. Self-lubricating coating composition
JP2022509404A (en) * 2018-10-31 2022-01-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Elastomer curable composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004041477A1 (en) * 2002-11-06 2006-03-02 株式会社野村鍍金 Surface treatment method for vacuum member
JP2006212763A (en) * 2005-02-07 2006-08-17 Disco Abrasive Syst Ltd Electrodeposition grinding wheel and method of manufacturing electrodeposition grinding wheel
WO2020089129A1 (en) * 2018-10-31 2020-05-07 Solvay Specialty Polymers Italy S.P.A. Self-lubricating coating composition
JP2022509404A (en) * 2018-10-31 2022-01-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Elastomer curable composition
JP2022509405A (en) * 2018-10-31 2022-01-20 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Self-lubricating coating composition
JP7470704B2 (en) 2018-10-31 2024-04-18 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Self-lubricating coating composition
JP7470703B2 (en) 2018-10-31 2024-04-18 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Elastomeric curable compositions

Similar Documents

Publication Publication Date Title
EP0403614B1 (en) Multiple metal coated superabrasive grit and methods for their manufacture
US6416685B1 (en) Chemical mechanical planarization of low dielectric constant materials
JPH07205032A (en) Preparation of abrasive molding
KR910002563A (en) Thermally stable superabrasive product and its manufacturing method
CN1787895A (en) Improved chemical mechanical polishing compositions for copper and associated materials and method of using same
JP2000246512A (en) Diamond coating cutting tool
JP2020183342A (en) Cubic boron nitride particles having unique morphology
JP2002028872A (en) Abrasive grain tool and its manufacturing method
WO2003098680A1 (en) Chemical mechanical planarization of low dielectric constant materials
JP7281502B2 (en) Polishing pad dresser and manufacturing method thereof
JP2004050364A (en) Conductive grinding wheel, manufacturing method therefor and dressing method
JP2001162515A (en) Abrasive cloth, method of manufacturing for the same, microcapsule, and method of manufacturing for the same
JPH04372368A (en) Ultra-grinding grain grinding wheel
JP2002028848A (en) Lapping tool and manufacturing method for the same
JP3676102B2 (en) Abrasive tool manufacturing method
US10767694B2 (en) Manufacturing method for sliding member and sliding member
JP2000079566A (en) Abrasive grain tool and manufacture of the same
JPH071339A (en) Porous metal-bonded grinding wheel and manufacture thereof
JPS6253314B2 (en)
CN117340229B (en) Drainage agent and preparation method thereof
JP7339154B2 (en) SLIDING MEMBER AND METHOD FOR MANUFACTURING SLIDING MEMBER
JP2652190B2 (en) Abrasive particles and method for producing the same
JP2003214435A (en) Minute hard polishing ball, and its manufacturing method and device
JP7526722B2 (en) Cubic boron nitride particle population with highly etched particle surface and high toughness index
JP3182890B2 (en) Method for forming electrodes of dielectric resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A131 Notification of reasons for refusal

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325