JP2002028452A - Method and device for treating nitrogen oxides - Google Patents

Method and device for treating nitrogen oxides

Info

Publication number
JP2002028452A
JP2002028452A JP2000216150A JP2000216150A JP2002028452A JP 2002028452 A JP2002028452 A JP 2002028452A JP 2000216150 A JP2000216150 A JP 2000216150A JP 2000216150 A JP2000216150 A JP 2000216150A JP 2002028452 A JP2002028452 A JP 2002028452A
Authority
JP
Japan
Prior art keywords
irradiation zone
gas
treated
removal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000216150A
Other languages
Japanese (ja)
Other versions
JP4201465B2 (en
Inventor
Satoshi Nishikata
聡 西方
Tomoaki Nishimura
智明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP2000216150A priority Critical patent/JP4201465B2/en
Publication of JP2002028452A publication Critical patent/JP2002028452A/en
Application granted granted Critical
Publication of JP4201465B2 publication Critical patent/JP4201465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently remove NOX by suppressing the effect of the humidity fluctuation of a gas to be treated (polluted air) and so forth. SOLUTION: Plural removal modules 2 each consisting of a sheet with TiO2 as the main component and lamp modules 3 to irradiate each removal module with ultraviolet light are arranged along the passage for the gas to be treated in a housing 1, and a monitor 4 is provided to measure the NOX composition of the gas to be treated at the outlet side of each of the removal modules irradiated with the light. In this case, the removal modules on the upstream side are used as an irradiation zone and the removal modules on the downstream side as a non-irradiation zone with a position close to 0.5 in 0.3 to 0.8 ratio of NO2/NOX as the boundary, and the lighting of the lamp is controlled in a state where the removal modules are irradiated with the light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば自動車道
路用トンネルの換気空気から大気汚染物質である窒素酸
化物(NO:一酸化窒素NO、二酸化窒素NOの総
称)を除去する窒素酸化物の処理方法,および処理装置
に関する。
TECHNICAL FIELD The present invention is, for example, nitrogen oxides are air pollutants from the ventilation air of an automobile road tunnel (NO X: nitrogen monoxide NO, collectively nitrogen dioxide NO 2) nitrogen oxides to remove And a processing apparatus.

【0002】[0002]

【従来の技術】大都市でのNOによる大気汚染は依然
として深刻な問題である。このNOによる大気汚染の
原因は主として自動車、特にディーゼル車からの排気ガ
スにあると言われており、市街地域では道路交差点周辺
の大気のNO濃度は0.2〜0.3ppm、また自動
車道路用トンネルの換気ガスでは1〜2ppmのNO
を含み、周辺環境への大きな汚染源になっている。この
ため、自動車エンジンのNO低減対策とは別に、環境
側でも大気浄化対策としてNOの除去技術に関して様
々な研究がなされている。
Air pollution caused by NO X in the Background of the Invention metropolis is still a serious problem. Cause is mainly automobile of air pollution due to the NO X, in particular, is said to be in the exhaust gas from diesel vehicles, NO X concentration of the atmosphere around the road intersection in the urban areas is 0.2~0.3ppm, also automobile 1-2 ppm of NO X in ventilation gas for road tunnels
And is a major source of pollution to the surrounding environment. Therefore, apart from the NO X reduction measures automobile engine, various studies with respect to removal techniques of the NO X as the Clean Air measures have also been made in the environment side.

【0003】また、自動車の排気ガスが汚染源となるト
ンネル換気ガス中のNOの組成を調査した結果では、
NOとNOの比率が約9:1でNOが大半を占めてお
り、この観点から大気中からNOを除去するには、そ
の主成分であるNOを常温のままで大量に処理できる技
術の確立が求められている。
[0003] Further, the result of the exhaust gas of an automobile was investigated composition of the NO X in the tunnel ventilation gas as a source of contamination,
The ratio of NO and NO 2 is about 9: 1 and NO is the majority, in the removal of NO X from the atmosphere from this point of view, can be mass processed the the main component NO remain cold technology Is required.

【0004】一方、前記したNOを含む汚染空気を処
理する技術として、最近になり光触媒作用を利用した酸
化的除去法が注目を集めている。この処理方法は光触媒
として主にTiOを用い、光触媒シートに400nm
以下の紫外光を含む太陽光、または光化学ランプで照射
し、光触媒の表面に生成したOHラジカル(OH*),
スーパーオキシドアニオン(O - )などによりNO
を硝酸イオン(NO - )まで酸化してTiO表面に
捕捉しようとするものである。このときにNOは、NO
→ NO→ NO -というように2段階で酸化さ
れる。なお、NO - を表面に捕捉したTiOは、そ
の捕捉量が増加するにつれて光触媒活性が低下するが、
例えば降雨,シャワーなどによりTiOを水洗浄する
ことで、表面に捕捉されていたNO - は洗浄水へ移行
して光触媒活性は回復するようになる。
On the other hand, the aforementioned NOXProcess contaminated air containing
Recently, photocatalytic acid
Chemical removal methods are attracting attention. This treatment method is a photocatalyst
Mainly as TiO2400 nm on the photocatalyst sheet using
Illuminated by sunlight or photochemical lamps containing the following ultraviolet light
OH radical (OH *) generated on the surface of the photocatalyst,
Superoxide anion (O2 -NO)X
To nitrate ion (NO3 -) To TiO2On the surface
That is what we are trying to capture. NO at this time is NO
 → NO2→ NO3 -Oxidized in two stages
It is. Note that NO3 -With TiO2 trapped on the surface2Is
The photocatalytic activity decreases as the trapping amount increases,
For example, TiO due to rainfall, shower, etc.2Wash with water
As a result, the NO trapped on the surface3 -Shifts to washing water
As a result, the photocatalytic activity is restored.

【0005】また、発明者等はNOを含む被処理ガス
の処理方法として、先記の光触媒と同じTiOを主成
分とするシートを吸着材として光照射せずにNOを流
すと、NOとNOが等量ずつ同時に吸着除去される現
象(以下「等モル吸着」と呼称する)を見出し、これを
基にして前段処理ではオゾン,あるいは光照射による光
触媒作用により、被処理ガス中(汚染空気)のNOをN
に酸化してNOとNOの濃度バランスを調整し、
後段処理では前記の光触媒と同じ材料を用いたシート状
の吸着材にNOとNOを等モルずつ吸着させてNO
を効率よくを除去するようにした処理方法、および被処
理ガスの通風経路に沿って布設した前記吸着材の前半領
域を光照射ゾーンとしてここに波長400nm以下の紫
外光を照射してNOをNOに酸化し、後半領域の非照
射ゾーン(紫外光を照射しない)でNOとNOを等モ
ルずつ吸着させるように光照射ゾーンと非照射ゾーンを
組合せた処理方法を特開平11−9957号公報におい
て提案している。この処理方法では、非照射ゾーンに対
する光照射が不要で光エネルギーの投入が必要なく安価
なランニングコストで汚染空気を処理できる。
Further, as the processing method of the processed gas inventors have containing NO X, if the sheet as a main component the same TiO 2 as the previous SL photocatalyst flow NO X without light irradiation as an adsorbent, A phenomenon in which NO and NO 2 are simultaneously adsorbed and removed by an equal amount (hereinafter referred to as “equimolar adsorption”) has been found. NO in (contaminated air) N
Oxidized to O 2 to adjust the concentration balance between NO and NO 2 ,
In the post-processing, NO and NO 2 are adsorbed on the sheet-shaped adsorbent using the same material as the photocatalyst in an equimolar amount to form NO X.
And a treatment method in which the first half region of the adsorbent laid along the ventilation path of the gas to be treated is used as a light irradiation zone, where UV light having a wavelength of 400 nm or less is irradiated, and NO is determined as NO. oxidized to 2, the second half (not irradiated with ultraviolet light) unirradiated zone region in nO and nO 2 processing method equimolar by combining a light irradiation zone and non-irradiated zones to adsorb JP 11-9957 an Proposed in the gazette. According to this processing method, it is not necessary to irradiate the non-irradiation zone with light, and it is not necessary to input light energy, and contaminated air can be processed at low running cost.

【0006】[0006]

【発明が解決しようとする課題】ところで、前記提案の
ようにTiOなどを主成分とするシート前半の光照射
ゾーンに紫外光を照射してその光触媒作用により被処理
ガス(汚染空気:NO組成のNOとNOとの比が約
9:1)におけるNOとNOの濃度バランスを整え、
後半の非照射ゾーンでNOとNOを等モル除去するよ
うにした処理方法では、次のような解決すべき課題があ
る。
By the way, as in the above proposal, the light irradiation zone in the first half of the sheet mainly composed of TiO 2 or the like is irradiated with ultraviolet light, and the gas to be treated (contaminated air: NO X When the ratio of NO to NO 2 in the composition is about 9: 1), the concentration balance of NO and NO 2 is adjusted,
The processing method in which NO and NO 2 are removed in an equimolar amount in the latter half of the non-irradiation zone has the following problems to be solved.

【0007】すなわち、後半の非照射ゾーンでNOとN
を効率よく吸着させるには、この非照射ゾーンでの
入口側(=光照射ゾーン出口側)において、ここを流れ
る被処理ガスのNO組成がNO:NO≒1:1であ
ることが望ましい。
That is, NO and N
In order to adsorb O 2 efficiently, the NO X composition of the gas to be treated flowing on the inlet side (= light irradiation zone outlet side) in the non-irradiation zone should be NO: NO 2 ≒ 1: 1. Is desirable.

【0008】ところが、光照射ゾーンでのTiOの光
触媒としての酸化能力は一定ではなく、被処理ガスの相
対湿度によっても変動することが知られている。そのた
めに、当初に光照射ゾーンのシート全域に占める比率
を、その光照射ゾーンの出口(=非照射ゾーンの入口)
におけるNO組成がNO:NO≒1:1となるよう
に設定したとしても、気象条件などで被処理ガスの湿度
が変動したりすると、非照射ゾーンに移行する被処理ガ
スのNO組成も変化するために非照射ゾーンでNO
を高い効率で等モル吸着させることが困難となる。
However, it is known that the oxidizing ability of TiO 2 as a photocatalyst in the light irradiation zone is not constant, but varies depending on the relative humidity of the gas to be treated. For this purpose, the ratio of the light irradiation zone to the entire sheet area at the beginning is determined by the light irradiation zone exit (= non-irradiation zone entrance).
Even if the NO X composition is set so that NO: NO 2 ≒ 1: 1, if the humidity of the gas to be processed fluctuates due to weather conditions or the like, the NO X composition of the gas to be processed that moves to the non-irradiation zone NO X in the non-irradiation zone
It is difficult to make equimolar adsorption with high efficiency.

【0009】したがって、前記提案の処理方法を汚染空
気の浄化に実用化するには、被処理ガスの湿度変化など
の影響でTiOシートの光照射ゾーンの酸化能力に変
動があっても、この光照射ゾーンを通過して下流側の非
照射ゾーンに移行する被処理ガスのNO組成がNO:
NO≒1:1となるように濃度バランスを調整させる
ことが課題になる。
Therefore, in order to put the above-mentioned treatment method into practical use for purification of contaminated air, even if the oxidation ability of the light irradiation zone of the TiO 2 sheet fluctuates due to the change in the humidity of the gas to be treated, it is necessary to use this method. The NO X composition of the gas to be treated passing through the light irradiation zone and moving to the downstream non-irradiation zone is NO:
The challenge is to adjust the concentration balance so that NO 2 ≒ 1: 1.

【0010】本発明は上記の点に鑑みなされたものであ
り、TiOを主成分とするシートに光照射ゾーンと非
照射ゾーンを設定してここに流す被処理ガスからNO
を除去して浄化する処理方式について、被処理ガスの湿
度変化などの周囲条件に左右されることなく、非照射ゾ
ーンで効率よくNO除去が行えるように改良した窒素
酸化物の処理方法,および処理装置を提供することにあ
る。
The present invention has been made in view of the above-mentioned point, and a light irradiation zone and a non-irradiation zone are set on a sheet containing TiO 2 as a main component, and NO X
The processing method of purifying by removing the processing method of the nitrogen oxides with improved so without being influenced by the ambient conditions, in a non-irradiation zone can be performed efficiently NO X removal, such as changes in humidity of the process gases, and An object of the present invention is to provide a processing device.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明によれば、被処理ガスの導風路に沿ってTi
を主成分とするシートを布設し、その前半領域を光
照射ゾーンとして波長400nm以下の紫外光を照射し
てここに流れる被処理ガス中のNOを光触媒作用によ
り酸化して捕捉し、後半領域を非照射ゾーンとして光照
射せずにNOとNOを同モルずつ吸着さるようにした
窒素酸化物の処理方法において、前記シートの光照射ゾ
ーンと非照射ゾーンとの比率を可変とした上で、光照射
ゾーンの領域をその出口端で測定したNOとNO
比率(NO/NO)が0.3〜0.8となるように
設定してNOを処理するものとする(請求項1)。
In order to achieve the above object, according to the present invention, Ti along the air guide path of the gas to be treated is provided.
A sheet containing O 2 as a main component is laid, and the first half region is irradiated with ultraviolet light having a wavelength of 400 nm or less as a light irradiation zone to oxidize and capture NO X in a gas to be processed flowing through the region by photocatalysis, In a nitrogen oxide treatment method in which NO and NO 2 are adsorbed in the same moles without light irradiation in the latter half region as a non-irradiation zone, the ratio of the light irradiation zone to the non-irradiation zone of the sheet is made variable. In the above, NO X is processed by setting the ratio of NO X and NO 2 (NO 2 / NO X ) measured at the exit end of the region of the light irradiation zone to be 0.3 to 0.8. (Claim 1).

【0012】また、前記方法を実施する本発明の処理装
置は、被処理ガスの導風路に沿って、TiOを主成分
とする複数段の除去モジュール,および各段の除去モジ
ュールに波長400nm以下の紫外光を照射するランプ
モジュールを配列するとともに、被処理ガスのNO
成を光照射した各段の除去モジュールの出口側で測定す
るモニタを備え、除去モジュールを光照射した状態で、
前記モニタで検出したNOとNOの比率(NO
NO)が0.3〜0.8の範囲で0.5に近い地点を
境に、その上流側の除去モジュールを光照射ゾーン,下
流側の除去モジュールを非照射ゾーンとしてこれに合わ
せてランプモジュールを点灯制御するように構成する
(請求項2)。
Further, the processing apparatus of the present invention for carrying out the above-mentioned method comprises a plurality of removal modules mainly composed of TiO 2 and a removal module of each stage having a wavelength of 400 nm along the air guide path of the gas to be treated. Along with arranging a lamp module for irradiating the following ultraviolet light, a monitor for measuring the NO X composition of the gas to be treated at the exit side of each of the elimination modules irradiated with light is provided.
The ratio of NO X and NO 2 detected by the monitor (NO 2 /
NO X) is the boundary of a point close to 0.5 in the range of 0.3 to 0.8, the upstream side irradiation zone removal module, in accordance with this removal module downstream as a non-irradiation zone lamp The lighting control of the module is configured (claim 2).

【0013】先記のようにTiOを主成分とした光触
媒によるNOの酸化は、NO → NO→ NO -
の2段階からなる。この2段階の反応はいずれも紫外光
の照射が関与し、光照射によって生成した活性酸素種に
より反応が進行するが、最初の反応であるNO→NO
は反応が非常に速いのに対し、NO→NO - の反応
は速度が遅い。この理由は、NO→NOに関与する活
性酸素種とNO→NO - の反応に関与する活性酸素
種とが異なることが考えられる。このために、シート全
域に紫外光を照射して光触媒作用だけで単独処理する
と、NOの一部はNO - まで酸化されずにTiO
表面を離脱し、そのまま気相中に放出されることがあ
る。この現象は特に被処理ガスの相対湿度の影響を受け
易く、相対湿度が高いとNOがNO - まで酸化が進行
せずにNOに酸化されたところで気相中に放出される
割合が多くなる。
As described above, the oxidation of NO by the photocatalyst containing TiO 2 as a main component is carried out in the following manner: NO → NO 2 → NO 3
It consists of two stages. Both of these two-stage reactions involve irradiation of ultraviolet light, and the reaction proceeds by active oxygen species generated by light irradiation. However, the first reaction, NO → NO 2
The reaction is very fast, whereas the reaction of NO 2 → NO 3 is slow. The reason may be that active oxygen species involved in the reaction of NO → NO 2 and active oxygen species involved in the reaction of NO 2 → NO 3 are different. For this, when single processing only the photocatalytic action by irradiation of ultraviolet light to the sheet throughout a portion of the NO 2 is NO 3 - TiO 2 without being oxidized to
It may leave the surface and be released directly into the gas phase. This phenomenon is particularly susceptible to the influence of the relative humidity of the gas to be treated. If the relative humidity is high, the rate at which NO is oxidized to NO 2 without oxidizing to NO 3 is released into the gas phase when NO is oxidized. Become.

【0014】かかる点、本発明の処理方法によれば、光
照射ゾーンと非照射ゾーンの比率を可変とした上で、そ
の被処理ガスの通風経路上でNOとNOの比率(N
/NO)が0.3〜0.8となる地点をモニタに
より検出し、この地点を境にして上流側を光照射ゾー
ン,下流側を非照射ゾーンに設定するようにしたので、
湿度の周囲条件に左右されることなく、光照射ゾーンを
通過して非照射ゾーンに流れる被処理ガスのNO組成
は常にNO:NO≒1:1となる。これにより非照射
ゾーンではNOとNOが効率よく等モル吸着されるよ
うになり、この非照射ゾーンと光照射ゾーンとの組合せ
でトータル的にNOを効率よく除去できる。
In this respect, according to the processing method of the present invention, the ratio of NO X to NO 2 (N
A point where O 2 / NO X ) is 0.3 to 0.8 is detected by the monitor, and the light irradiation zone is set on the upstream side and the non-irradiation zone is set on the downstream side from this point.
The NO X composition of the gas to be processed which passes through the light irradiation zone and flows into the non-irradiation zone is always NO: NO 2 ≒ 1: 1 irrespective of the ambient conditions of humidity. As a result, NO and NO 2 are efficiently and equimolarly adsorbed in the non-irradiation zone, and NO X can be efficiently removed totally by the combination of the non-irradiation zone and the light irradiation zone.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図示
実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on illustrated embodiments.

【0016】図1はNO処理装置の構成図であり、図
において、1は被処理ガス(汚染空気)の通風路(例え
ば自動車道路トンネルの換気風路)に接続した処理装置
のハウジングであり、その内部には導風路に沿ってTi
を主成分とするシート状の材料で構成された複数段
(#1,#2,#3,..,#n)の除去モジュール2
と、各段の除去モジュール2に向けて波長400nm以
下の紫外光を照射するランプモジュール3とが交互に配
置された構成になり、さらに各段の除去モジュール2の
間には窒素酸化物の組成,濃度を計測するモニタ(窒素
酸化物濃度計)4から引出したガスサンプリング口4a
が開口している。
[0016] Figure 1 is a block diagram of the NO X processor, reference numeral 1 is an housing of the processing apparatus connected to the air passage of the gas to be treated (contaminated air) (e.g. ventilating air passage of an automobile road tunnels) Inside, along the air duct
A plurality of stages constituted by a sheet-like material to the O 2 as a main component (# 1, # 2, # 3, .., # n) removal of the module 2
And a lamp module 3 for irradiating ultraviolet light having a wavelength of 400 nm or less toward the removal module 2 at each stage, and a composition of nitrogen oxide is provided between the removal modules 2 at each stage. , Gas sampling port 4a drawn from monitor (nitrogen oxide concentration meter) 4 for measuring concentration
Is open.

【0017】ここで、各段の除去モジュール2は、例え
ばTiOとポリテトラフルオロエチレン(PTFE)
の粉末とを混合,圧延してシート化したものをプラスチ
ック板等の基板の両面に貼り付けたものを用いる。ま
た、ランプモジュール3には、例えば光化学用ランプ
(中心波長352nm)3aを1〜数本組み込んでその
上流側に隣接する除去モジュール2に向けて紫外光を照
射するようにした構成になる。
Here, the removal module 2 at each stage is made of, for example, TiO 2 and polytetrafluoroethylene (PTFE).
And a sheet made by mixing and rolling the above powders and pasting them on both sides of a substrate such as a plastic plate. The lamp module 3 has a configuration in which, for example, one or several photochemical lamps (center wavelength: 352 nm) 3a are incorporated and ultraviolet light is emitted toward the removal module 2 adjacent to the upstream side.

【0018】かかる構成の処理装置で汚染空気からNO
を除去して浄化するには、基本的に前後段に並ぶ複数
段の除去モジュール2(#1〜#n)と個々に対応する
ランプモジュール3のうち、上流側に並ぶランプモジュ
ール3のランプ3aを点灯して除去モジュール2に紫外
光を照射し、光照射を受けた除去モジュール2を光触媒
として機能させる(光照射ゾーン)。また、下流側に並
ぶ後段のランプモジュール3はランプ3aを点灯せず、
これに対応する除去モジュール2を等モル吸着材として
使用する(非照射ゾーン)。
[0018] In the processing apparatus having the above-described structure, NO is removed from contaminated air.
In order to remove and purify X , the lamps of the lamp modules 3 arranged in the upstream side of the plurality of removal modules 2 (# 1 to #n) basically arranged in the front and rear stages and the lamp modules 3 corresponding to the individual stages are basically used. 3a is turned on to irradiate the removal module 2 with ultraviolet light, and the removal module 2 having received the light irradiation functions as a photocatalyst (light irradiation zone). Further, the lamp module 3 at the subsequent stage arranged on the downstream side does not turn on the lamp 3a,
The corresponding removal module 2 is used as an equimolar adsorbent (non-irradiation zone).

【0019】一方、処理装置に被処理ガスを通風してN
処理をおこなっている稼働状態では、光照射を受け
ている除去モジュール2ごとにその下流側に配したガス
サンプリング口4aを通じて採取した被処理ガスをモニ
タ4に導き、ここで各段の除去モジュール2を流れる被
処理ガスのNO組成,濃度を測定し、このモニタ4で
の測定データを基に、後記のような条件で各段のランプ
モジュール3のランプ3aを点灯制御して前記した光照
射ゾーンと非照射ゾーンの比率をその時の状態に合わせ
て適正に設定する。
On the other hand, the gas to be treated is passed through
O In the operating state in which X processing is performed, leading to treated gas taken through the gas sampling port 4a which arranged on the downstream side of each removed module 2 undergoing light irradiation on the monitor 4, wherein the removal of each stage NO X composition of the gas to be treated flowing through the module 2 to measure the concentration, based on the measurement data in the monitor 4, and the lights controlling the lamp 3a of the lamp module 3 of each stage in the below-described conditions The ratio between the light irradiation zone and the non-irradiation zone is set appropriately according to the state at that time.

【0020】ここで、本発明の処理方法を検証するため
に行った実験例について述べる。この実験装置では、除
去モジュールとして、TiO(70重量%)とPTF
E粉末(30重量%)とを混合.圧延してシート化して
30×60cmの塩ビ板の両面に貼り付けたものを供試
試料として用意し、これを導風通路に沿い一定の間隔を
おいて25枚配列した。また、ランプモジュールとして
は20wの光化学用ランプを1本用い、これを前記した
除去モジュールの間に配置した。一方、被処理ガスには
自動車道路のトンネル内から採取した汚染空気を使用し
た。そして、ランプモジュールのランプを点灯した状態
で被処理ガスを流し、この状態で図1に示したモニタ
(窒素酸化物濃度計)により各段の除去モジュールの出
口側からガスを採取してそのNO組成,濃度を測定し
た。
Here, an experimental example performed to verify the processing method of the present invention will be described. In this experimental apparatus, TiO 2 (70% by weight) and PTF were used as removal modules.
E powder (30% by weight). Samples prepared by rolling and forming into sheets and pasting on both sides of a 30 × 60 cm PVC plate were prepared as test samples, and 25 of them were arranged at regular intervals along the air guide passage. In addition, one 20 w photochemical lamp was used as a lamp module, and this was disposed between the above-described removal modules. On the other hand, polluted air collected from the inside of a motorway tunnel was used as the gas to be treated. Then, the gas to be treated flows while the lamp of the lamp module is turned on. In this state, gas is collected from the outlet side of the removal module at each stage by the monitor (nitrogen oxide concentration meter) shown in FIG. X composition and concentration were measured.

【0021】図2は前記の実験で測定したデータを基に
して各段の除去モジュールに沿ったNO組成の分布図
であり、縦軸は装置入口のNO濃度を1としたときの
NO,NOの比率、横軸は光照射を行っている除去モ
ジュールの段数(1〜16段)であり、図中に表した各
特性線が各段数の除去モジュールごとにその出口側で測
定したNO,NO,NOの組成比率を表している。
[0021] Figure 2 is a distribution diagram of the NO X composition along the removal modules in each stage based on data measured by the experiments, NO when the vertical axis is taken as 1 the concentration of NO X device inlet , The ratio of NO 2 , and the horizontal axis is the number of stages (1 to 16) of the removal module performing light irradiation, and each characteristic line shown in the figure was measured at the exit side for each removal module of each stage. It represents the composition ratio of NO X , NO, and NO 2 .

【0022】この図では、入口端における汚染空気のN
の組成は、NOが約85%、NOが約15%であ
るが、装置内の導風路を進むにつれて光照射した除去モ
ジュールの光触媒作用によりNO,NOは濃度が急激
に減少している。これに対して、NOは最初の数段を
通過する過程で濃度が僅かに低下するものの、その後段
では濃度が上昇に転じてから緩やかに減少している。こ
のようにNOの濃度が経路の途中で上昇するのは、前
にも述べたように、NO→NOの反応に比べてNO
→NO - の反応速度が遅く、NOから転換したNO
がNO - に酸化して除去モジュールの表面に吸着され
る前に離脱して気相中に放出されることによると推定さ
れる。
In this figure, the N of contaminated air at the inlet end
The composition of O X is, NO is about 85 percent, although NO 2 is approximately 15% NO X by the photocatalytic action of removing modules light irradiation as traveling wind guide path in the apparatus, NO concentration rapidly decreases are doing. On the other hand, although the concentration of NO 2 slightly decreases in the process of passing through the first several stages, in the subsequent stages, the concentration starts to increase and then gradually decreases. The reason why the concentration of NO 2 is increased in the middle of the path, as described before, NO 2 as compared with the reaction of NO → NO 2
→ NO 3 - the reaction speed is slow, NO 2, which was converted from NO
Is oxidized to NO 3 - and is desorbed and released into the gas phase before being adsorbed on the surface of the removal module.

【0023】また、図2のケースでは、入口から数えて
7段目の除去モジュールの出口側においてNO:NO
が約1:1になっている。そこで、この地点を起点とし
てその上流側に並ぶ1〜7段までを光照射ゾーンとし
て、この範囲に並ぶ除去モジュールに対応するランプモ
ジュールのランプを点灯し、8段以降を非照射ゾーンと
してこの領域に並ぶランプモジュールのランプを消灯す
れば、光照射ゾーンを通過して後段の非照射ゾーンに移
行する被処理ガスの組成はNO:NO≒1:1となる
ので、これにより非照射ゾーンの除去モジュールでは、
NOとNOが等モルずつ効率よく吸着されるようにな
る。
In the case shown in FIG. 2, NO: NO 2 is provided at the outlet side of the seventh removal module counted from the inlet.
Is about 1: 1. Therefore, from this point as a starting point, the first to seventh steps arranged on the upstream side are set as light irradiation zones, the lamps of the lamp modules corresponding to the removal modules arranged in this range are turned on, and the eighth and subsequent steps are set as non-irradiation zones. If the lamps of the lamp modules are turned off, the composition of the gas to be treated that passes through the light irradiation zone and shifts to the subsequent non-irradiation zone becomes NO: NO 2 ≒ 1: 1. In the removal module,
NO and NO 2 are efficiently adsorbed on an equimolar basis.

【0024】次に、被処理ガスのNOとNOの比率を
様々に変えた場合に非照射ゾーンのNO除去率に及ぼ
す影響を検証するために次のような実験を行った。この
実験では、等モル吸着材料として前記と同様にTiO
(70重量%)とPTFE粉末(30重量%)とを混合,
圧延してサイズ5×30cmのシートを供試試料とし、
被処理ガスとしてはNOとNOの比率を様々に変えた
標準ガスを精製空気で希釈し、3ppmに調整した模擬
ガスを用いた。そして、光照射は行わずに入口から前記
模擬ガスを流して等モル吸着効果を調べた。
Next, the following experiment was conducted in order to verify the effect on the NO X removal rate of the non-irradiation zone when the ratio of NO to NO 2 in the gas to be treated was variously changed. In this experiment, TiO 2 was used as an equimolar adsorbent material as described above.
(70% by weight) and PTFE powder (30% by weight)
Rolled to obtain a 5 × 30 cm sheet as a test sample,
As the gas to be treated, a simulated gas prepared by diluting a standard gas with various ratios of NO and NO 2 with purified air and adjusting to 3 ppm was used. Then, the simulation gas was flowed from the entrance without performing light irradiation, and the equimolar adsorption effect was examined.

【0025】図3はこの実験から得た特性図であり、入
口におけるNO/NOが0.5〜0.6、つまりN
O:NOが1:1〜1:1.5でNO除去率が最大
(約70%)を示しているが、NO/NOが0.3
〜0.8の範囲でも除去率の低下は僅かで比較的高い除
去率(50%)を維持していることが判る。
FIG. 3 is a characteristic diagram obtained from this experiment, in which NO 2 / NO X at the inlet is 0.5 to 0.6, that is, N
O: NO 2 is 1: 1 to 1: A 1.5 NO X removal rate is the maximum (about 70%), NO 2 / NO X 0.3
It can be seen that even in the range of 0.80.8, the removal rate is slightly reduced and the removal rate is maintained at a relatively high level (50%).

【0026】さらに、発明者等は光照射ゾーンに流れる
被処理ガスの相対湿度が、光触媒として機能する除去モ
ジュールの酸化能力に及ぼす影響を調べるために次のよ
うな実験を行った。この実験では、前記実験と同じくT
iO(70重量%)とPTFE粉末(30重量%)と
を混合,圧延してサイズ5×30cmのシートを供試試
料とし、被処理ガスとしてはNOのみの標準ガスを精製
空気で3ppmに調整した模擬汚染ガスを用いた。そし
て、紫外光の光源としてUV強度1.1〜1.5w/c
2 のランプを使用してシートに照射し、被処理ガスの
湿度を様々に変えた条件でNOの転換率,およびNO
の除去率を出口側で測定した。
Further, the present inventors conducted the following experiment in order to examine the influence of the relative humidity of the gas to be treated flowing in the light irradiation zone on the oxidizing ability of the removal module functioning as a photocatalyst. In this experiment, as in the previous experiment, T
A mixture of iO 2 (70% by weight) and PTFE powder (30% by weight) was rolled to obtain a 5 × 30 cm sheet as a test sample, and a standard gas containing only NO as a gas to be treated was reduced to 3 ppm with purified air. The adjusted simulated pollutant gas was used. And, as an ultraviolet light source, the UV intensity is 1.1 to 1.5 w / c.
irradiating the sheet with a ramp of m 2, conversion of NO under conditions variously changed the humidity of the gas to be treated, and NO X
Was measured at the outlet side.

【0027】図4はこの実験から得た特性図であり、図
示のようにNO転換率は被処理ガスの相対湿度の影響を
殆ど受けることがないが、NO除去率は湿度によって
大きく影響を受けることが判る。なお、NO転換率
(%)、NO除去率(%)は次のように定義する。
FIG. 4 is a characteristic diagram obtained from this experiment. As shown, the NO conversion rate is hardly affected by the relative humidity of the gas to be treated, but the NO X removal rate is greatly affected by the humidity. We understand that we receive. The NO conversion rate (%) and the NO X removal rate (%) are defined as follows.

【0028】NO転換率=〔(入口NO濃度一出口NO
濃度)/入口NO濃度〕×100 NO除去率=〔(入口NO濃度一出口NO濃度)
/入口NO濃度〕×100 この実験ではNOの標準ガスを希釈して入口ガスとして
いるので、入口ではNOがそのままNOとなる。ま
た、NO転換率は入口から供給したNOが光触媒との反
応により何らかの作用を受けた割合であり、その作用は
NOがNOに酸化されてガス中に放出されるか、NO
がNO - に酸化されてTiOのシート表面に吸
着,捕捉されるかのいずれかである。これに対して、N
除去率はNOが光触媒作用によりNO - まで酸化
が進んでTiOシートの表面に捕捉された割合を表し
ている。
NO conversion rate = [(inlet NO concentration / outlet NO concentration)
Concentration) / Inlet NO concentration] × 100 NO X removal rate = [(Inlet NO X concentration / Outlet NO X concentration)
Since the / inlet NO X concentration] × 100 This experiment is the inlet gas by diluting the standard gas of NO, NO is as NO X at the inlet. The NO conversion rate is the rate at which NO supplied from the inlet has undergone some action by reaction with the photocatalyst, and the action is that NO is oxidized into NO 2 and released into the gas or NO
2 NO 3 - is oxidized to adsorb on the sheet surface of the TiO 2, it is either trapped. In contrast, N
O X removal rate NO is NO 3 photocatalytically - represents the percentage captured on the surface of the TiO 2 sheets progressed oxidized to.

【0029】そして、図4から判ることは、NO→NO
→NO - の2段階反応において、前半のNO→NO
の反応は湿度の影響を殆ど受けないが、NO→NO
-の反応は湿度が大きく影響することである。これを
図2に示したNO比率の分布図に当てはめると、被処
理ガスの相対湿度が高い場合には、NOの減少傾向は変
わらないものの、NO濃度は図2と比べて入口により
近い段数から上昇するようになる。
FIG. 4 shows that NO → NO
2 → NO 3 - of in a two-step reaction, the first half of the NO → NO
Reaction 2 is hardly affected by humidity, but NO 2 → NO
3 - of the reaction is that the humidity has a great influence. When this is applied to the NO X ratio distribution diagram shown in FIG. 2, when the relative humidity of the gas to be treated is high, the NO decreasing tendency does not change, but the NO 2 concentration is closer to the inlet than in FIG. Ascending from the number of stages.

【0030】ところで、このような高湿度の状況でも、
先述のように図1におけるモニタ4での測定データか
ら、光照射ゾーンの領域に並ぶ除去モジュールおいて、
NOとNOとの比率(NO/NO)が0.3〜
0.8の範囲で0.5に最も近い段数を確認した上で、
その段数に対応する除去モジュールを境にそれよりも上
流側(入口側)を光照射ゾーンに設定してこの領域のラ
ンプモジュール3のランプ3aを点灯して除去モジュー
ル2に紫外光を照射し、下流側(出口側)を非照射ゾー
ンとしてこの領域に配列したランプモジュール3のラン
プを消灯する。これにより、除去モジュール2を光触媒
として使用する光照射ゾーンと、除去モジュール2を等
モル吸着材として使用する非照射ゾーンの比率が当初の
設定から変わり、入口から光照射ゾーンを通過して非照
射ゾーンに移行する被処理ガスのNO組成はNO:N
≒1:1となる。これにより、非照射ゾーンの領域
に並ぶ除去モジュール2では、NOとNOが効率よく
等モル吸着されることになり、その結果として汚染空気
のNOを処理装置内で効率よく除去し、NOを殆ど
含まない清浄空気として送り出すことができる。
By the way, even in such a high humidity situation,
As described above, from the measurement data on the monitor 4 in FIG. 1, in the removal module lined up in the region of the light irradiation zone,
When the ratio of NO X to NO 2 (NO 2 / NO X ) is 0.3 to
After confirming the number of stages closest to 0.5 in the range of 0.8,
A light irradiation zone is set on the upstream side (entrance side) of the removal module corresponding to the number of stages, and the lamp 3a of the lamp module 3 in this area is turned on to irradiate the removal module 2 with ultraviolet light. The lamps of the lamp modules 3 arranged in this area are turned off on the downstream side (exit side) as a non-irradiation zone. As a result, the ratio of the light irradiation zone in which the removal module 2 is used as a photocatalyst and the non-irradiation zone in which the removal module 2 is used as an equimolar adsorbent is changed from the initial setting. The NO X composition of the gas to be treated that moves to the zone is NO: N
O 2 ≒ 1: 1. As a result, in the removal module 2 arranged in the non-irradiation zone, NO and NO 2 are efficiently adsorbed in an equimolar manner, and as a result, NO X of the contaminated air is efficiently removed in the processing apparatus, and NO is removed. It can be sent out as clean air containing almost no X.

【0031】[0031]

【発明の効果】以上述べたように、本発明の窒素酸化物
処理方法,および装置によれば、TiOを主成分とす
るシートに紫外光光源を組合せ、かつ前記シートを前半
の光照射ゾーンと後半の非照射ゾーンに区分けした上
で、ここに送り込んだ被処理ガス(汚染空気)からNO
を除去して浄化処理するようにしたものにおいて、前
記シートの光照射ゾーンと非照射ゾーンとの比率を可変
とした上で、光照射ゾーンの領域をその出口端で測定し
たNOとNOの比率(NO/NO)が0.3〜
0.8の範囲で好ましくは0.5となるように設定して
NOを処理するようにしたことにより、被処理ガスの
NO組成,相対湿度の変化に伴うTiOの酸化能力
などに変動があっても非照射ゾーンでNOのNOとN
を効率よく等モル吸着させることができる。
As described above, according to the nitrogen oxide treatment method and apparatus of the present invention, a sheet mainly composed of TiO 2 is combined with an ultraviolet light source, and the sheet is irradiated with a light irradiation zone in the first half. And the non-irradiation zone in the latter half, and the NO (contaminated air)
In the cleaning apparatus in which X is removed, the ratio between the light irradiation zone and the non-irradiation zone of the sheet is made variable, and the NO X and NO X measured in the area of the light irradiation zone at the exit end thereof. 2 (NO 2 / NO X ) is 0.3-
Preferably by that so as to process the NO X was set to be 0.5 in the range of 0.8, etc. NO X composition, oxidative capacity of the TiO 2 with changes in the relative humidity of the gas to be treated NO X NO and N in the non-irradiation zone
O 2 to thereby efficiently equimolar adsorption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による窒素酸化物処理装置の構
成断面図
FIG. 1 is a sectional view of a configuration of a nitrogen oxide processing apparatus according to an embodiment of the present invention.

【図2】図1の構成で、除去モジュールに光照射を行っ
た状態での除去モジュール段数と各段に対応するNO
組成比率の変化を表す図
FIG. 2 shows the number of removal module stages and the NO X corresponding to each stage when the removal module is irradiated with light in the configuration of FIG.
Diagram showing change in composition ratio

【図3】非照射の除去モジュールに対する被処理ガスの
NO/NO比率とNO除去率との関係を表す図
FIG. 3 is a diagram showing the relationship between the NO 2 / NO X ratio of the gas to be treated and the NO X removal rate for a non-irradiated removal module;

【図4】光照射の除去モジュールに対する被処理ガスの
相対湿度と光触媒の酸化能力との関係を表す図
FIG. 4 is a diagram showing the relationship between the relative humidity of a gas to be treated with respect to a light irradiation removal module and the oxidizing ability of a photocatalyst;

【符号の説明】[Explanation of symbols]

2 除去モジュール 3 ランプモジュール 3a ランプ 4 モニタ(窒素酸化物濃度計) 4a ガスサンプリング口 2 Removal module 3 Lamp module 3a Lamp 4 Monitor (nitrogen oxide concentration meter) 4a Gas sampling port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被処理ガスの導風路に沿ってTiOを主
成分とするシートを布設し、その前半領域を光照射ゾー
ンとして波長400nm以下の紫外光を照射してここに
流れる被処理ガス中のNOを光触媒作用により酸化し
て捕捉し、後半領域を非照射ゾーンとして光照射せずに
NOとNOを同モルずつ吸着させるようにした窒素酸
化物の処理方法において、前記シートの光照射ゾーンと
非照射ゾーンとの比率を可変とした上で、光照射ゾーン
の領域をその出口端で測定したNOとNOの比率
(NO/NO)が0.3〜0.8となるように設定
してNOを処理するようにしたことを特徴とする窒素
酸化物の処理方法。
1. A sheet mainly composed of TiO 2 is laid along an air guide path of a gas to be treated, and the first half of the sheet is irradiated with ultraviolet light having a wavelength of 400 nm or less as a light irradiation zone to flow through the sheet. the NO X in the gas captured by oxidized by photocatalytic action, the processing method of the nitrogen oxides to adsorb the NO and NO 2 in equal molar without photoirradiation half region as a non-irradiation zone, the seat The ratio of the NO X to NO 2 (NO 2 / NO X ) measured at the exit end of the region of the light irradiation zone after the ratio of the light irradiation zone to the non-irradiation zone is made variable is 0.3 to 0. 8. A method for treating nitrogen oxides, wherein NO X is treated at a setting of 0.8.
【請求項2】請求項1記載の処理方法の実施に用いる窒
素酸化物の処理装置であって、被処理ガスの導風路に沿
って、TiOを主成分とする複数段の除去モジュー
ル,および各段の除去モジュールに波長400nm以下
の紫外光を照射するランプモジュールを配列するととも
に、被処理ガスのNO組成を光照射した各段の除去モ
ジュールの出口側で測定するモニタを備え、除去モジュ
ールを光照射した状態で、前記モニタで検出したNO
とNOの比率(NO/NO)が0.3〜0.8の
範囲で0.5に近い地点を境に、その上流側の除去モジ
ュールを光照射ゾーン,下流側の除去モジュールを非照
射ゾーンとしてこれに合わせてランプモジュールを点灯
制御するようにしたことを特徴とする大気中の窒素酸化
物の処理装置。
2. An apparatus for treating nitrogen oxides for use in carrying out the treatment method according to claim 1, comprising a multi-stage removal module mainly composed of TiO 2 along an air guide path of a gas to be treated. and with arranging the lamp module for irradiating the following ultraviolet light wavelengths 400nm to remove modules in each stage, a monitor for measuring at the outlet side of the removal modules in each stage were light irradiated with NO X composition of the gas to be treated, removed NO X detected by the monitor while the module was irradiated with light
And the boundary of the point close to 0.5 within the range of the ratio of NO 2 (NO 2 / NO X ) is 0.3 to 0.8, the removal module of the upstream light irradiation zone, the removal module downstream An apparatus for treating nitrogen oxides in the atmosphere, characterized in that the lighting of a lamp module is controlled in accordance with the non-irradiation zone.
JP2000216150A 2000-07-17 2000-07-17 Nitrogen oxide processing equipment Expired - Fee Related JP4201465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216150A JP4201465B2 (en) 2000-07-17 2000-07-17 Nitrogen oxide processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216150A JP4201465B2 (en) 2000-07-17 2000-07-17 Nitrogen oxide processing equipment

Publications (2)

Publication Number Publication Date
JP2002028452A true JP2002028452A (en) 2002-01-29
JP4201465B2 JP4201465B2 (en) 2008-12-24

Family

ID=18711457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216150A Expired - Fee Related JP4201465B2 (en) 2000-07-17 2000-07-17 Nitrogen oxide processing equipment

Country Status (1)

Country Link
JP (1) JP4201465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor
CN109126447A (en) * 2018-09-19 2019-01-04 浙江瀚邦环保科技有限公司 A kind of lyosoption and its application method handling low-concentration organic exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007576A1 (en) * 2003-07-18 2005-01-27 Korea Polytechnic University Method for manufacturing metal organic deposition precursor solution using superconduction oxide and film superconductor
CN109126447A (en) * 2018-09-19 2019-01-04 浙江瀚邦环保科技有限公司 A kind of lyosoption and its application method handling low-concentration organic exhaust gas

Also Published As

Publication number Publication date
JP4201465B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
Zhong et al. Experimental and modeling study of visible light responsive photocatalytic oxidation (PCO) materials for toluene degradation
CN102811794B (en) System and method for air purification using enhanced multi-functional coating based on pn-situ photocatalytic oxidation and ozonation
JP2009154043A (en) Nitrogen oxide removing catalyst, denitration method and denitration device
CN108211791A (en) A kind of dual chamber modularization alternating denitrating system and method for denitration
JPH08508448A (en) Mobile device for purifying polluted air
Patzsch et al. On the underlying mechanisms of the low observed nitrate selectivity in photocatalytic NO x abatement and the importance of the oxygen reduction reaction
JPH01218622A (en) Method for removing nitrogen oxides in low concentration from air
JP2002028452A (en) Method and device for treating nitrogen oxides
JP4452197B2 (en) Nitrogen oxide removal catalyst, denitration method and denitration apparatus
JP2004290748A (en) Method for removing nitrogen oxide by optical reaction
JP2003284926A (en) Gas cleaning apparatus using photocatalyst
JPH09108570A (en) Oxidation catalyst for cleaning exhaust gas and preparation thereof
JP3796894B2 (en) Photocatalytic harmful gas removal device
JP2002166131A (en) Apparatus for treating nitrogen oxides
JP3483208B2 (en) Apparatus for removing nitrogen oxides from the atmosphere by diffusion scrubber method and its use
JP2002126451A (en) Device for removing nitrogen oxides in air
JP2001025634A (en) Removal of nitrogen oxide in atmosphere
KR101792958B1 (en) Heat Resonance System for Exhaust Gas Purification of Facilities that using Cokes
JP4295548B2 (en) Nitrogen oxide removing catalyst, denitration method and apparatus using the same
JP3476302B2 (en) Method and apparatus for removing harmful gas
JP2001259371A (en) Method for treating nitrogen oxide in atmosphere
JPH119957A (en) Method for removing nitrogen oxide in atmospheric air
JPH0810576A (en) Removing method of harmful gas and device therefor
JPH05237338A (en) Operating and controlling method of device for removing harmful gas
JP4471684B2 (en) Gas decomposition processing equipment

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees