JP2002026570A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2002026570A
JP2002026570A JP2000211375A JP2000211375A JP2002026570A JP 2002026570 A JP2002026570 A JP 2002026570A JP 2000211375 A JP2000211375 A JP 2000211375A JP 2000211375 A JP2000211375 A JP 2000211375A JP 2002026570 A JP2002026570 A JP 2002026570A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
width
along
absorbed
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000211375A
Other languages
Japanese (ja)
Inventor
Kenichi Harakawa
健一 原川
Nobuyoshi Murai
信義 村井
Toshio Saito
俊夫 斉藤
Motoyasu Togashi
元康 冨樫
Yasushi Hoshino
康 星野
Yoshiaki Matsuo
吉章 松尾
Atsushi Minase
淳 皆瀬
Yoshiichi Wakao
伊市 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Nippon Sheet Glass Environment Amenity Co Ltd
Original Assignee
Hitachi Kokusai Electric Inc
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Nippon Sheet Glass Environment Amenity Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Nippon Sheet Glass Co Ltd, Takenaka Komuten Co Ltd, Nippon Sheet Glass Environment Amenity Co Ltd filed Critical Hitachi Kokusai Electric Inc
Priority to JP2000211375A priority Critical patent/JP2002026570A/en
Publication of JP2002026570A publication Critical patent/JP2002026570A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Special Wing (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To make an electromagnetic wave absorbing area to be wide. SOLUTION: In an electromagnetic wave absorbing panel 3, three insulating substrates are arranged in parallel by leaving spaces. A matching film which absorbs a part of an arriving electromagnetic wave, makes the other part reflect and makes the remainder pass through, a division conductive film 22 and a reflection film reflecting the arriving electromagnetic wave are formed on the respective substrates in order from the arriving direction of the electromagnetic wave. A plurality of conductive patterns 24 which have shapes where change patterns whose width (b) changes like bmax→bmin→bmax are repeated at a prescribed period and which have film thickness (a) are disposed by leaving gaps 26 along the width direction. The width (d) of the gap 26 changes like dmin→dmax→dmin. The change ranges bmin to bmax of width (b) and the change ranges dmin to dmax of width (d) are decided in accordance with the frequency bands f1 to f22 of the electromagnetic wave to be absorbed. The electromagnetic wave arrived at the electromagnetic wave absorbing panel is absorbed at a high absorbing rate for the whole frequency bands f1 to f2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁波吸収体に係
り、特に、吸収すべき電磁波に逆位相の電磁波を重畳す
ることで電磁波を吸収する電磁波吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave absorber, and more particularly, to an electromagnetic wave absorber that absorbs an electromagnetic wave by superimposing an electromagnetic wave having an opposite phase on the electromagnetic wave to be absorbed.

【0002】[0002]

【従来の技術】現在、電磁波(電波)はラジオ、TV、
携帯電話、無線通信等を始めとして様々な分野で利用さ
れているが、これらの電磁波が他の電磁波の妨害を受け
ることにより種々の不都合が生ずる所謂電波障害は従来
より問題となっている。この電波障害の原因となる電磁
波としては、ビルディングや鉄塔等の建築物で反射され
た電磁波や、電気・電子機器から放射される不要電磁波
等が挙げられる。このうち、特にVHFやUHF等のT
V周波数帯域の電磁波が建築物で反射し、受信アンテナ
に局から直接到来した電磁波(直接波)と建築物の外壁
で反射された電磁波(反射波)とが各々入射する等によ
り生ずるゴースト等の受信障害は、近年の高層ビルディ
ングの増加に伴って社会問題となっている。
2. Description of the Related Art At present, electromagnetic waves (radio waves) are radio, TV,
It is used in various fields such as mobile phones, wireless communications, and the like. However, so-called radio interference, which causes various inconveniences due to interference of these electromagnetic waves with other electromagnetic waves, has conventionally been a problem. Examples of the electromagnetic waves that cause radio interference include electromagnetic waves reflected from buildings such as buildings and steel towers, and unnecessary electromagnetic waves radiated from electric and electronic devices. Among them, especially T of VHF and UHF
The electromagnetic wave in the V frequency band is reflected by the building, and the electromagnetic wave (direct wave) directly arriving from the station to the receiving antenna and the electromagnetic wave (reflected wave) reflected by the outer wall of the building are incident on the receiving antenna. The reception obstacle has become a social problem with the increase of high-rise buildings in recent years.

【0003】電磁波を吸収するための電磁波吸収体とし
ては、従来より種々の構成が提案されており、例えば到
来した電磁波を反射、吸収及び透過させる吸収材と、到
来した電磁波を反射させる反射材を、吸収すべき電磁波
の波長の1/4に相当する距離を隔てて配置した構成の
λ/4型電磁波吸収体は、広く知られているフェライト
等の磁性体を利用した電磁波吸収体と比較して、軽量で
安価に製造できるという利点を有している。また、光透
過性を有する部材で構成することで、建築物の窓部に適
用することも可能である。
Various types of electromagnetic wave absorbers for absorbing electromagnetic waves have been conventionally proposed. For example, an absorber that reflects, absorbs and transmits an incoming electromagnetic wave, and a reflector that reflects an incoming electromagnetic wave are used. A λ / 4 type electromagnetic wave absorber having a configuration arranged at a distance corresponding to 1 / of the wavelength of the electromagnetic wave to be absorbed is compared with a widely known electromagnetic wave absorber using a magnetic material such as ferrite. Thus, it has the advantage of being lightweight and inexpensive to manufacture. In addition, by using a member having light transmissivity, it is also possible to apply to a window of a building.

【0004】また、λ/4型電磁波吸収体の吸収材と反
射材との間を空気で満たした構成では、比較的低周波の
VHF帯(例えば100MHz程度)の電磁波を吸収す
るために吸収材と反射材を数10cm程度離間させる必
要があり、建築物の窓や壁等へ取付けるには厚みが厚過
ぎるという欠点がある。このため、λ/4型電磁波吸収
体の吸収材と反射材との間に、ストライプ状または格子
形状にコーティングされた導電性被膜を配設すること
で、吸収材と反射材との間の実効比誘電率を大きくする
技術も提案されている(特開平10−275997号公
報参照)。上記技術によれば、VHF帯の電磁波を吸収
するλ/4型電磁波吸収体を10cm程度の厚みで実現
することができる。
In a λ / 4 type electromagnetic wave absorber in which the space between the absorber and the reflector is filled with air, the absorber is used to absorb a relatively low-frequency electromagnetic wave in the VHF band (for example, about 100 MHz). And the reflector must be separated by about several tens of centimeters, which is disadvantageous in that it is too thick to be attached to a window or a wall of a building. For this reason, by disposing a conductive film coated in a stripe or lattice shape between the absorber and the reflector of the λ / 4 type electromagnetic wave absorber, the effective distance between the absorber and the reflector is improved. A technique for increasing the relative dielectric constant has also been proposed (see JP-A-10-275997). According to the above technique, a λ / 4 type electromagnetic wave absorber that absorbs electromagnetic waves in the VHF band can be realized with a thickness of about 10 cm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、λ/4
型電磁波吸収体は、上記のように吸収材と反射材との間
にストライプ状または格子形状の導電性被膜を配設した
構成も含め、反射材によって反射され吸収材を透過して
射出される電磁波が、吸収材によって反射されて射出さ
れる電磁波に対して逆位相となることを利用しているた
め、その吸収特性は、逆位相になる周波数を中心として
ごく狭い周波数帯域内の電磁波のみを高い吸収率で吸収
する特性を示す。このため、広い周波数帯域に亘って電
磁波を吸収することができない、という問題があった。
However, λ / 4
The electromagnetic wave absorber is reflected by the reflector and transmitted through the absorber, including the configuration in which the striped or lattice-shaped conductive coating is disposed between the absorber and the reflector as described above, and is emitted. Since the electromagnetic wave uses the fact that it has an opposite phase to the electromagnetic wave reflected and emitted by the absorber, its absorption characteristics are limited to electromagnetic waves within a very narrow frequency band centered on the opposite phase frequency. It shows the property of absorbing at a high absorption rate. Therefore, there is a problem that electromagnetic waves cannot be absorbed over a wide frequency band.

【0006】本発明は上記事実を考慮して成されたもの
で、電磁波吸収帯域の広帯域化を実現できる電磁波吸収
体を得ることが目的である。
The present invention has been made in view of the above-mentioned facts, and has as its object to provide an electromagnetic wave absorber capable of realizing a wider electromagnetic wave absorption band.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明に係る電磁波吸収体は、到来した
電磁波の一部を反射し他の一部を透過させる抵抗部材
と、前記抵抗部材と距離を隔てて配置され、到来した電
磁波を反射する反射部材と、前記抵抗部材と前記反射部
材との間に設けられ、前記抵抗部材と前記反射部材の並
ぶ方向と交差する方向に沿って、吸収すべき電磁波の周
波数帯域に応じて比誘電率εSが規則的又は非規則的に
変更された誘電部材と、を含んで構成されている。
According to a first aspect of the present invention, there is provided an electromagnetic wave absorber that reflects a part of an incoming electromagnetic wave and transmits another part of the electromagnetic wave. A reflection member that is arranged at a distance from the resistance member and reflects an incoming electromagnetic wave, and is provided between the resistance member and the reflection member, and extends along a direction that intersects a direction in which the resistance member and the reflection member are arranged. And a dielectric member whose relative permittivity ε S is changed regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed.

【0008】請求項1記載の発明では、到来した電磁波
の一部を反射し他の一部を透過させる抵抗部材と、電磁
波を反射する反射部材が距離を隔てて配置されており、
抵抗部材側から電磁波が到来すると、到来した電磁波
は、一部が抵抗部材によって反射され、他の一部が抵抗
部材を透過して反射部材に入射し、反射部材で反射され
て抵抗部材に再入射される。そして、抵抗部材に再入射
された電磁波は、一部が抵抗部材によって反射され、他
の一部が抵抗部材を透過する。
According to the first aspect of the present invention, the resistance member that reflects a part of the arriving electromagnetic wave and transmits the other part and the reflection member that reflects the electromagnetic wave are arranged at a distance.
When an electromagnetic wave arrives from the resistance member side, a part of the arriving electromagnetic wave is reflected by the resistance member, and another part is transmitted through the resistance member, enters the reflection member, is reflected by the reflection member, and is again reflected on the resistance member. Incident. Then, part of the electromagnetic wave that has re-entered the resistance member is reflected by the resistance member, and another part of the electromagnetic wave transmits through the resistance member.

【0009】この抵抗部材及び反射部材により、抵抗部
材によって反射されて電磁波吸収体から射出される電磁
波(便宜的に一次射出電磁波という)の位相に対し、反
射部材によって反射された後に抵抗部材を透過して電磁
波吸収体から射出される電磁波(便宜的に二次射出電磁
波という)の位相が略逆相となる周波数帯域の電磁波に
ついては、一次射出電磁波に略逆相の二次射出電磁波が
重畳されることで、λ/4型電磁波吸収体と同様に、電
磁波吸収体から射出される電磁波が減衰・吸収される。
With the resistance member and the reflection member, the phase of the electromagnetic wave reflected by the resistance member and emitted from the electromagnetic wave absorber (referred to as a primary emission electromagnetic wave for convenience) is transmitted through the resistance member after being reflected by the reflection member. As for the electromagnetic wave in the frequency band in which the phase of the electromagnetic wave emitted from the electromagnetic wave absorber (referred to as a secondary emission electromagnetic wave for convenience) is substantially opposite, the secondary emission electromagnetic wave having substantially opposite phase is superimposed on the primary emission electromagnetic wave. Thus, the electromagnetic wave emitted from the electromagnetic wave absorber is attenuated and absorbed, similarly to the λ / 4 type electromagnetic wave absorber.

【0010】ここで、或る媒質を伝播する電磁波の波長
λは、電磁波の周波数をf、媒質の誘電率をε(=εS
ε0:εSは比誘電率、ε0は真空の誘電率)、媒質の透
磁率をμ(=μSμ0:μSは比透磁率、μ0は真空の透磁
率)とすると、 λ=1/f・√(εμ) …(1) であるので、波長λは媒質の誘電率に応じて変化する。
従って、一次射出電磁波の位相に対して二次射出電磁波
の位相が略逆相となる周波数帯域は、抵抗部材と反射部
材の距離が一定であったとしても、抵抗部材と反射部材
との間に存在する媒質の誘電率に応じて変化する。
Here, the wavelength λ of an electromagnetic wave propagating through a certain medium is represented by f representing the frequency of the electromagnetic wave and ε (= ε S
ε 0 : ε S is relative permittivity, ε 0 is vacuum permittivity, and the magnetic permeability of the medium is μ (= μ S μ 0 : μ S is relative magnetic permeability, μ 0 is vacuum magnetic permeability). Since λ = 1 / f√ (εμ) (1), the wavelength λ changes according to the dielectric constant of the medium.
Therefore, the frequency band in which the phase of the secondary emission electromagnetic wave is substantially opposite to the phase of the primary emission electromagnetic wave is between the resistance member and the reflection member even if the distance between the resistance member and the reflection member is constant. It changes according to the dielectric constant of the existing medium.

【0011】上記に基づき請求項1記載の発明では、抵
抗部材と反射部材との間に、抵抗部材と反射部材の並ぶ
方向と交差する方向に沿って、吸収すべき電磁波の周波
数帯域に応じて比誘電率εSが規則的又は非規則的に変
更された誘電部材を設けている。なお誘電部材は、例え
ば請求項2に記載したように、間隔を空けて一定の方向
に配列した複数の導体を含んで構成することが望ましい
が、公知の誘電材料を用いて構成する(例えば比誘電率
εSが互いに異なる複数種の誘電材料を組み合わせて用
い、複数種の誘電材料の存在割合を前記交差する方向に
沿って規則的又は非規則的に変化させる等)ことによっ
ても実現可能である。
According to the first aspect of the present invention, according to the frequency band of the electromagnetic wave to be absorbed, between the resistance member and the reflection member, along the direction intersecting the direction in which the resistance member and the reflection member are arranged. A dielectric member whose relative dielectric constant ε S is changed regularly or irregularly is provided. It is preferable that the dielectric member includes a plurality of conductors arranged in a certain direction at an interval, for example, as described in claim 2. However, the dielectric member is formed using a known dielectric material (for example, It is also possible to use a combination of a plurality of types of dielectric materials having different dielectric constants ε S and to change the ratio of the plurality of types of dielectric materials regularly or irregularly along the intersecting direction. is there.

【0012】また、誘電部材の比誘電率εSは、例えば
吸収すべき電磁波の周波数帯域が最低周波数f1から最
高周波数f2に亘って連続している周波数帯域であれ
ば、最低周波数f1の電磁波の波長λ1を4で除した値
(λ1/4)を、抵抗部材と反射部材との距離に一致さ
せるための誘電率ε1(比誘電率εS1)を先の(1)式
に基づいて求めると共に、最高周波数f2の電磁波の波
長λ2を4で除した値(λ2/4)を、抵抗部材と反射部
材との距離に一致させるための誘電率ε2(比誘電率ε
S2)を先の(1)式に基づいて求め、誘電部材の比誘電
率εSを、εS1〜εS2の範囲内で規則的又は非規則的に
変化させればよい。
[0012] The dielectric constant epsilon S of the dielectric member, if the frequency band in which the frequency band of the electromagnetic wave is continuous over from the lowest frequency f 1 to the highest frequency f 2 for example to be absorbed, the lowest frequency f 1 electromagnetic waves of wavelength lambda divided by the 1 in 4 (lambda 1/4) the dielectric constant to match the distance between the resistive member and the reflecting member epsilon 1 (relative permittivity epsilon S1) the previous (1) with determined based on equation, the maximum frequency f 2 of the electromagnetic wave of the wavelength lambda divided by the 2 by 4 (lambda 2/4), the dielectric constant to match the distance between the resistive member and the reflecting member epsilon 2 (ratio Dielectric constant ε
Determined based on the S2) in the previous (1), the relative dielectric constant epsilon S of the dielectric member, it suffices regular or non-regular changed within the range of ε S1S2.

【0013】また、例えば吸収すべき電磁波の周波数帯
域がとびとびに複数存在する(周波数帯域fa1〜fa2
b1〜fb2,…)場合には、最低周波数に対応する比誘
電率及び最高周波数に対応する比誘電率を(1)式に基
づいて各周波数帯域毎に求め、誘電部材の比誘電率εS
を、各周波数帯域に対応する範囲内で規則的又は非規則
的に変化させればよい。
Further, for example, there are a plurality of discrete frequency bands of electromagnetic waves to be absorbed (frequency bands f a1 to f a2 ,
f b1 to f b2 ,...), the relative permittivity corresponding to the lowest frequency and the relative permittivity corresponding to the highest frequency are obtained for each frequency band based on the equation (1), and the relative permittivity of the dielectric member is obtained. ε S
May be changed regularly or irregularly within a range corresponding to each frequency band.

【0014】上記の誘電部材を抵抗部材と反射部材との
間に設けることにより、一次射出電磁波と二次射出電磁
波が略逆相となる周波数帯域、すなわち電磁波吸収体か
ら射出される電磁波の減衰・吸収が生ずる周波数帯域
は、抵抗部材と反射部材の並ぶ方向と交差する方向に沿
って規則的又は非規則的に変化することになり、吸収す
べき電磁波の周波数帯域の全域に亘って電磁波の減衰・
吸収を生じさせることができる。従って請求項1記載の
発明によれば、電磁波吸収帯域の広帯域化を実現するこ
とができる。
By providing the above dielectric member between the resistance member and the reflection member, the frequency band in which the primary emission electromagnetic wave and the secondary emission electromagnetic wave are substantially in opposite phases, that is, the attenuation of the electromagnetic wave emitted from the electromagnetic wave absorber. The frequency band in which absorption occurs changes regularly or irregularly along the direction intersecting the direction in which the resistance member and the reflection member are arranged, and the attenuation of the electromagnetic wave over the entire frequency band of the electromagnetic wave to be absorbed.・
Absorption can occur. Therefore, according to the first aspect of the present invention, it is possible to widen the electromagnetic wave absorption band.

【0015】請求項2記載の発明に係る電磁波吸収体
は、到来した電磁波の一部を反射し他の一部を透過させ
る抵抗部材と、前記抵抗部材と距離を隔てて配置され、
到来した電磁波を反射する反射部材と、前記抵抗部材と
前記反射部材との間に設けられ、前記抵抗部材と前記反
射部材の並ぶ方向と交差する方向に沿って間隔を空けて
配列された複数の導体と、を含んで構成された電磁波吸
収体であって、前記複数の導体は、吸収すべき電磁波の
周波数帯域に応じて実効比誘電率が規則的又は非規則的
に変化するように、前記交差する方向に沿った前記導体
の幅、前記交差する方向に沿った前記導体の間隙、及び
前記並ぶ方向に沿った前記導体の厚さの少なくとも1つ
が規則的又は非規則的に変更されていることを特徴とし
ている。
According to a second aspect of the present invention, there is provided an electromagnetic wave absorber, wherein a resistance member that reflects a part of an incoming electromagnetic wave and transmits another part is disposed at a distance from the resistance member.
A reflecting member that reflects an incoming electromagnetic wave, and a plurality of reflecting members are provided between the resistance member and the reflection member, and are arranged at intervals along a direction intersecting a direction in which the resistance member and the reflection member are arranged. A conductor, and an electromagnetic wave absorber configured to include, the plurality of conductors, so that the effective relative permittivity changes regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed, At least one of a width of the conductor along the intersecting direction, a gap between the conductors along the intersecting direction, and a thickness of the conductor along the juxtaposing direction is changed regularly or irregularly. It is characterized by:

【0016】請求項2記載の発明では、請求項1記載の
発明と同様の抵抗部材及び反射部材が設けられているの
で、一次射出電磁波と二次射出電磁波が略逆相となる周
波数帯域の電磁波が抵抗部材側から到来した場合、該電
磁波に応じて電磁波吸収体から射出される電磁波は減衰
・吸収されることになる。
According to the second aspect of the present invention, since the same resistance member and reflection member as those of the first aspect of the present invention are provided, the electromagnetic wave in the frequency band in which the primary emission electromagnetic wave and the secondary emission electromagnetic wave have substantially opposite phases. When the electromagnetic waves arrive from the resistance member side, the electromagnetic waves emitted from the electromagnetic wave absorber according to the electromagnetic waves are attenuated and absorbed.

【0017】また、請求項2記載の発明では、抵抗部材
と反射部材との間に、抵抗部材と反射部材の並ぶ方向と
交差する方向に沿って間隔を空けて配列された複数の導
体を設けている。複数の導体を上記のように配置した場
合、抵抗部材と反射部材との間の実効比誘電率ε
effは、導体と抵抗部材との間及び導体と反射部材との
間に存在する媒質の誘電率をεa,εb、抵抗部材と反射
部材の並ぶ方向と交差する方向に沿った導体の幅及び間
隔をb,d、抵抗部材と反射部材の並ぶ方向に沿った導
体の厚さをaとすると、次の(2)式で表される。
According to the second aspect of the present invention, a plurality of conductors are provided between the resistance member and the reflection member at intervals along a direction intersecting the direction in which the resistance member and the reflection member are arranged. ing. When a plurality of conductors are arranged as described above, the effective relative permittivity ε between the resistance member and the reflection member
eff is the dielectric constant of the medium existing between the conductor and the resistance member and between the conductor and the reflection member, ε a , ε b , the width of the conductor along the direction intersecting the direction in which the resistance member and the reflection member are arranged. When the distance is b and d, and the thickness of the conductor along the direction in which the resistance member and the reflection member are arranged is a, the following expression (2) is obtained.

【0018】[0018]

【数1】 (Equation 1)

【0019】上記の(2)式より明らかなように、実効
比誘電率εeffは抵抗部材と反射部材の並ぶ方向と交差
する方向に沿った導体の幅b、前記交差する方向に沿っ
た間隔d、及び抵抗部材と反射部材の並ぶ方向に沿った
導体の厚さaに応じて変化する。一次射出電磁波の位相
に対して二次射出電磁波の位相が略逆相となる周波数帯
域は、抵抗部材と反射部材との間に存在する媒質の誘電
率に応じて変化するので、請求項2記載の発明に係る電
磁波吸収体によって減衰・吸収される電磁波の周波数
は、抵抗部材と反射部材の並ぶ方向と交差する方向に沿
った導体の幅、抵抗部材と反射部材の並ぶ方向と交差す
る方向に沿った導体の間隙、及び抵抗部材と反射部材の
並ぶ方向に沿った導体の厚さに応じて変化することにな
る。
As is apparent from the above equation (2), the effective relative permittivity ε eff is the conductor width b along the direction intersecting the direction in which the resistance member and the reflection member are arranged, and the interval along the intersecting direction. d and the thickness a of the conductor along the direction in which the resistance member and the reflection member are arranged. The frequency band in which the phase of the secondary emission electromagnetic wave is substantially opposite to the phase of the primary emission electromagnetic wave changes according to the dielectric constant of a medium existing between the resistance member and the reflection member. The frequency of the electromagnetic wave attenuated and absorbed by the electromagnetic wave absorber according to the invention is the width of the conductor along the direction that intersects the direction in which the resistance member and the reflection member are arranged, and the direction that intersects the direction in which the resistance member and the reflection member are arranged. The distance varies depending on the gap between the conductors along the gap and the thickness of the conductor along the direction in which the resistance member and the reflection member are arranged.

【0020】請求項2記載の発明では、吸収すべき電磁
波の周波数帯域に応じて実効比誘電率が規則的又は非規
則的に変化するように、抵抗部材と反射部材の並ぶ方向
と交差する方向に沿った導体の幅、抵抗部材と反射部材
の並ぶ方向と交差する方向に沿った導体の間隙、及び抵
抗部材と反射部材の並ぶ方向に沿った導体の厚さの少な
くとも1つが規則的又は非規則的に変更されているの
で、請求項2記載の発明に係る電磁波吸収体によって減
衰・吸収される電磁波の周波数は、抵抗部材と反射部材
の並ぶ方向と交差する方向に沿って規則的又は非規則的
に変化することになる。従って請求項2記載の発明によ
れば、偏波面の方向が第1方向と略直交する電磁波の吸
収帯域の広帯域化を実現することができる。
According to the second aspect of the present invention, the direction intersecting the direction in which the resistance member and the reflection member are arranged so that the effective relative permittivity changes regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed. At least one of the width of the conductor along the width direction, the gap between the conductors along the direction intersecting the direction in which the resistance member and the reflection member are arranged, and the thickness of the conductor along the direction in which the resistance member and the reflection member are arranged are regular or irregular. Since the frequency is regularly changed, the frequency of the electromagnetic wave attenuated and absorbed by the electromagnetic wave absorber according to the second aspect of the present invention is regularly or irregularly along a direction intersecting the direction in which the resistance member and the reflection member are arranged. It will change regularly. Therefore, according to the second aspect of the present invention, it is possible to widen the absorption band of the electromagnetic wave in which the direction of the polarization plane is substantially perpendicular to the first direction.

【0021】また、請求項2記載の発明のように、間隔
を空けて複数の導体を一定の方向に配列することで得ら
れる誘電率((2)式によって求まる実効比誘電率
εeff)は、導体の厚さa、導体の幅b及び間隔dの値
を適切に設定することで、1よりも明らかに大きな値と
する(εeff≫1)ことを容易に実現できるので、吸収
すべき電磁波の周波数帯域が比較的低周波である場合に
も、抵抗部材と反射部材の距離が極端に大きくなること
を防止することができる。
The dielectric constant (effective relative dielectric constant eff obtained by equation (2)) obtained by arranging a plurality of conductors in a fixed direction at an interval as in the second aspect of the present invention is as follows. By appropriately setting the thickness a of the conductor, the width b of the conductor, and the distance d, it is possible to easily realize a value significantly larger than 1 (ε eff ≫1). Even when the frequency band of the electromagnetic wave is relatively low, it is possible to prevent the distance between the resistance member and the reflection member from becoming extremely large.

【0022】ところで、間隔を空けて複数の導体を一定
の方向に配列することで得られる誘電率((2)式によっ
て求まる実効比誘電率εeff)は、詳しくは複数の導体
の配列方向についての誘電率を表しており、この複数の
導体の配列方向についての誘電率は、偏波面の方向が複
数の導体の配列方向と略直交する電磁波に作用する。
By the way, the dielectric constant (effective relative dielectric constant ε eff obtained by equation (2)) obtained by arranging a plurality of conductors in a fixed direction at an interval is described in detail in the arrangement direction of the plurality of conductors. The dielectric constant in the arrangement direction of the plurality of conductors acts on an electromagnetic wave whose polarization plane is substantially perpendicular to the arrangement direction of the plurality of conductors.

【0023】上述した請求項2記載の発明の一態様とし
ては、複数の導体を、抵抗部材と反射部材の並ぶ方向と
交差する単一の方向に沿って間隔を空けて配列する構成
(ストライプ状に導体を配置する構成)が挙げられる
が、この構成では、導体の厚さa、導体の幅b及び間隔
dの少なくとも1つを規則的又は非規則的に変更させる
ことで、単一の方向についての実効比誘電率εeffのみ
が規則的又は非規則的に変化し、電磁波吸収体に到来し
た電磁波のうち、偏波面の方向が前記単一の方向に略直
交している電磁波についてのみ作用する。
According to another aspect of the present invention, a plurality of conductors are arranged at intervals along a single direction that intersects the direction in which the resistance member and the reflection member are arranged (a stripe shape). In this configuration, at least one of the thickness a of the conductor, the width b of the conductor, and the interval d is changed regularly or irregularly, so that a single direction is provided. Only the effective relative permittivity ε eff changes regularly or irregularly , and among electromagnetic waves arriving at the electromagnetic wave absorber, acts only on electromagnetic waves whose polarization plane direction is substantially orthogonal to the single direction. I do.

【0024】従って、上記の構成では、偏波面の方向が
一定でかつ前記単一の方向に略直交している電磁波(例
えば水平偏波の電磁波のみ、或いは垂直偏波の電磁波の
み)については広帯域に亘って吸収できるものの、偏波
面の方向が不定の電磁波(例えば円偏波の電磁波)や、
偏波面の方向が異なる複数種の電磁波(例えば水平偏波
の電磁波と垂直偏波の電磁波)を広帯域に亘って吸収す
ることは困難である。
Therefore, in the above configuration, the electromagnetic wave whose polarization plane direction is constant and which is substantially orthogonal to the single direction (for example, only horizontally polarized electromagnetic wave or only vertically polarized electromagnetic wave) can be broadband. , But the direction of the plane of polarization is indeterminate (for example, a circularly polarized electromagnetic wave),
It is difficult to absorb a plurality of types of electromagnetic waves having different polarization plane directions (for example, horizontally polarized electromagnetic waves and vertically polarized electromagnetic waves) over a wide band.

【0025】上記に基づき請求項3記載の発明では、請
求項2記載の発明において、複数の導体は、抵抗部材と
反射部材の並ぶ方向と交差する第1方向に沿って間隔を
空けて配列され、吸収すべき電磁波の周波数帯域に応じ
て第1方向についての実効比誘電率が規則的又は非規則
的に変化するように、第1方向に沿った導体の幅及び間
隙の少なくとも一方が規則的又は非規則的に変更されて
いると共に、前記並ぶ方向及び第1方向と各々交差する
第2方向に沿って間隔を空けて配列されており、吸収す
べき電磁波の周波数帯域に応じて第2方向についての実
効比誘電率が規則的又は非規則的に変化するように、第
2方向に沿った導体の幅及び間隙の少なくとも一方が規
則的又は非規則的に変更されていることを特徴としてい
る。
According to the third aspect of the present invention, the plurality of conductors are arranged at intervals along a first direction intersecting the direction in which the resistance member and the reflection member are arranged. At least one of the width and the gap of the conductor along the first direction is regular so that the effective relative permittivity in the first direction varies regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed. Or irregularly changed, and arranged at intervals along a second direction intersecting the line-up direction and the first direction, respectively, and arranged in a second direction according to a frequency band of an electromagnetic wave to be absorbed. Characterized in that at least one of the width and the gap of the conductor along the second direction is changed regularly or irregularly so that the effective relative permittivity of the conductor changes regularly or irregularly. .

【0026】請求項3記載の発明では、複数の導体が、
抵抗部材と反射部材の並ぶ方向と交差する第1方向に沿
って間隔を空けて配列されていると共に、抵抗部材と反
射部材の並ぶ方向及び第1方向と各々交差する第2方向
に沿って間隔を空けて配列されているので、第1方向に
ついての実効比誘電率εeffが第1方向に沿った導体の
幅及び間隔(及び前記並ぶ方向に沿った導体の厚さ)に
応じて変化し、第2方向についての実効比誘電率εeff
が第2方向に沿った導体の幅及び間隔(及び前記並ぶ方
向に沿った導体の厚さ)に応じて変化する。
According to the third aspect of the present invention, the plurality of conductors are:
The resistive member and the reflective member are arranged at intervals along a first direction intersecting the direction in which the resistive member and the reflective member are arranged, and are arranged along the direction in which the resistive member and the reflective member are arranged and in a second direction intersecting the first direction, respectively. , The effective relative permittivity ε eff in the first direction changes according to the width and spacing of the conductors along the first direction (and the thickness of the conductors along the aligned direction). , The effective relative permittivity ε eff in the second direction
Varies according to the width and spacing of the conductors in the second direction (and the thickness of the conductors in the direction in which the conductors are arranged).

【0027】そして請求項3記載の発明では、吸収すべ
き電磁波の周波数帯域に応じて第1方向についての実効
比誘電率が規則的又は非規則的に変化するように、第1
方向に沿った導体の幅及び間隙の少なくとも一方が規則
的又は非規則的に変更されていると共に、吸収すべき電
磁波の周波数帯域に応じて第2方向についての実効比誘
電率が規則的又は非規則的に変化するように、第2方向
に沿った導体の幅及び間隙の少なくとも一方が規則的又
は非規則的に変更されているので、電磁波の偏波面の方
向に拘わらず、電磁波吸収帯域の広帯域化を実現するこ
とができる。
According to the third aspect of the present invention, the first relative permittivity in the first direction changes regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed.
At least one of the width and the gap of the conductor along the direction is changed regularly or irregularly, and the effective relative permittivity in the second direction is regular or irregular depending on the frequency band of the electromagnetic wave to be absorbed. Since at least one of the width and the gap of the conductor along the second direction is changed regularly or irregularly so as to change regularly, regardless of the direction of the plane of polarization of the electromagnetic wave, the electromagnetic wave absorption band can be changed. Broadband can be realized.

【0028】ところで(1)式からも明らかなように、
電磁波吸収体の抵抗部材と反射部材の距離をなるべく小
さくするためには、抵抗部材と反射部材との間の実効比
誘電率をなるべく大きくすることが重要であり、請求項
2記載の発明において、実効比誘電率をなるべく大きく
するためには、(2)式からも明らかなように、抵抗部
材と反射部材の並ぶ方向に沿った導体の厚さaをなるべ
く小さくすることが有効である。
By the way, as is apparent from equation (1),
In order to minimize the distance between the resistance member and the reflection member of the electromagnetic wave absorber, it is important to increase the effective relative permittivity between the resistance member and the reflection member as much as possible. In order to increase the effective relative dielectric constant as much as possible, as is apparent from the equation (2), it is effective to reduce the thickness a of the conductor along the direction in which the resistance member and the reflection member are arranged as small as possible.

【0029】上記を考慮すると、請求項4に記載したよ
うに、絶縁性材料から成る基板上に複数の導体を形成す
ることが好ましい。複数の導体を基板上に形成すること
で、抵抗部材と反射部材の並ぶ方向に沿った導体の厚さ
を極めて小さくする(例えば膜状にする)ことを容易に
実現することができ、電磁波吸収体の抵抗部材と反射部
材の距離をより小さくすることが可能になる。
In view of the above, it is preferable that a plurality of conductors be formed on a substrate made of an insulating material. By forming a plurality of conductors on the substrate, it is possible to easily realize a very small thickness (for example, a film shape) of the conductors along the direction in which the resistance member and the reflection member are arranged, and it is possible to absorb electromagnetic waves. It is possible to make the distance between the resistance member of the body and the reflection member smaller.

【0030】なお、請求項1又は請求項2記載の発明に
係る抵抗部材は、到来した電磁波の一部を反射し残りを
全て透過させるように構成することも可能ではあるが、
請求項5に記載したように、絶縁性材料から成る基板
と、到来した電磁波の一部が吸収されるように導電率が
調整されて基板上に形成された導電性被膜と、を含んで
構成することが好ましい。
The resistance member according to the first or second aspect of the present invention can be configured to reflect a part of the arriving electromagnetic wave and transmit all the rest,
As described in claim 5, a structure comprising a substrate made of an insulating material, and a conductive film formed on the substrate by adjusting the conductivity so as to absorb a part of an incoming electromagnetic wave. Is preferred.

【0031】本発明に係る電磁波吸収体は、一次射出電
磁波に略逆相の二次射出電磁波を重畳することで電磁波
吸収体から射出される電磁波を減衰・吸収しているが、
実際には、反射部材によって反射された後に抵抗部材に
入射される電磁波の一部は抵抗部材によって反射される
(他の一部は二次射出電磁波として射出される)ことで
反射部材に再度入射されるので、一次射出電磁波と二次
射出電磁波の振幅が同一にならないことが殆どであるた
めに、射出される電磁波を完全に吸収することが困難で
あると共に、反射部材で反射された電磁波が抵抗部材で
も反射される現象が繰り返されることで、n≧3のn次
射出電磁波(nは抵抗部材への入射回数に相当)も射出
される。
The electromagnetic wave absorber according to the present invention attenuates and absorbs the electromagnetic wave emitted from the electromagnetic wave absorber by superimposing the secondary emission electromagnetic wave of substantially opposite phase on the primary emission electromagnetic wave.
In practice, part of the electromagnetic wave that is reflected by the reflecting member and then enters the resistive member is reflected by the resistive member (the other part is emitted as a secondary emission electromagnetic wave), thereby re-entering the reflective member. Since the amplitudes of the primary emission electromagnetic wave and the secondary emission electromagnetic wave are not almost the same in most cases, it is difficult to completely absorb the emitted electromagnetic wave, and the electromagnetic wave reflected by the reflection member is hardly absorbed. By repeating the phenomenon of being reflected by the resistance member, an n-th order emission electromagnetic wave of n ≧ 3 (n is equivalent to the number of times of incidence on the resistance member) is also emitted.

【0032】これに対して請求項5記載の発明では、抵
抗部材を構成する導電性被膜が、到来した電磁波の一部
が吸収されるように導電率が調整されているので、抵抗
部材に電磁波が入射される毎に、その一部が抵抗部材に
吸収されることによって減衰し、本発明に係る電磁波吸
収体から射出される電磁波をより低減することができ
る。
On the other hand, according to the fifth aspect of the present invention, since the conductivity of the conductive film constituting the resistance member is adjusted so as to absorb a part of the arriving electromagnetic wave, the electromagnetic wave is applied to the resistance member. Every time is incident, a part thereof is attenuated by being absorbed by the resistance member, and the electromagnetic wave emitted from the electromagnetic wave absorber according to the present invention can be further reduced.

【0033】また、請求項1又は請求項2記載の発明に
係る反射部材についても、請求項6に記載したように、
絶縁性材料から成る基板と、該基板上に形成された導電
性被膜と、を含んで構成することができる。
Further, the reflecting member according to the first or second aspect of the present invention also has the following features.
It can be configured to include a substrate made of an insulating material, and a conductive film formed on the substrate.

【0034】また、請求項1乃至請求項6の何れかに記
載の発明において、電磁波吸収体を構成する各部材は、
請求項7に記載したように略透明であってもよい。これ
により、本発明に係る電磁波吸収体を建築物の窓部等に
適用することが可能となる。
Further, in the invention according to any one of claims 1 to 6, each member constituting the electromagnetic wave absorber is
As described in claim 7, it may be substantially transparent. This makes it possible to apply the electromagnetic wave absorber according to the present invention to a window of a building or the like.

【0035】[0035]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態の一例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0036】〔第1実施形態〕図1には、請求項1及び
請求項2記載の発明に係る電磁波吸収体としての電磁波
吸収パネル10が示されている。この電磁波吸収パネル
10は、一定の間隔を隔てて平行に配置された平板状の
絶縁性基板12,14を備えている。絶縁性基板12,
14は、公知の様々な絶縁性材料の中から任意の材料を
選択的に用いて平板状に形成することで構成することが
できるが、電磁波吸収パネル10が光透過性を有するこ
とが求められている場合(例えば電磁波吸収パネル10
を建築物の窓部として用いる等の場合)には、例えばガ
ラス、或いは光透過性を有するビニールやプラスチック
等の材料で構成することができる。
[First Embodiment] FIG. 1 shows an electromagnetic wave absorbing panel 10 as an electromagnetic wave absorber according to the first and second aspects of the present invention. The electromagnetic wave absorbing panel 10 includes plate-like insulating substrates 12 and 14 which are arranged in parallel at a predetermined interval. Insulating substrate 12,
14 can be formed by selectively using an arbitrary material from various known insulating materials to form a flat plate, and it is required that the electromagnetic wave absorbing panel 10 has light transmittance. (For example, the electromagnetic wave absorbing panel 10
(For example, when used as a window of a building), it can be made of a material such as glass or vinyl or plastic having optical transparency.

【0037】絶縁性基板12のうち、絶縁性基板14と
対向している側の面には導電性被膜(抵抗膜)16が形
成されている。抵抗膜16は、電磁波が到来すると、そ
の一部を吸収すると共に他の一部を反射し、残りを透過
させるように、導電率(単位面積当りの抵抗値:面抵抗
値)が調整されている。抵抗膜16に好適な面抵抗値は
単位面積当り50Ω〜3000Ω程度であり、より好ま
しくは単位面積当り200Ω〜1500Ω程度である。
なお、絶縁性基板12は請求項5に記載の基板に、抵抗
膜16は請求項5に記載の導電性被膜に対応しており、
絶縁性基板12及び抵抗膜16は本発明に係る抵抗部材
に対応している。
A conductive film (resistive film) 16 is formed on the surface of the insulating substrate 12 facing the insulating substrate 14. When the electromagnetic wave arrives, the electrical conductivity (resistance per unit area: sheet resistance) of the resistance film 16 is adjusted so that a part of the resistance film 16 is absorbed, another part is reflected, and the other part is transmitted. I have. The sheet resistance suitable for the resistance film 16 is about 50Ω to 3000Ω per unit area, and more preferably about 200Ω to 1500Ω per unit area.
The insulating substrate 12 corresponds to the substrate described in claim 5, and the resistance film 16 corresponds to the conductive film described in claim 5,
The insulating substrate 12 and the resistance film 16 correspond to the resistance member according to the present invention.

【0038】また、絶縁性基板14のうち、絶縁性基板
12と対向している側の面には導電性被膜(反射膜)1
8が形成されている。反射膜18は、到来した電磁波の
殆どを反射するように導電率(面抵抗値)が調整されて
いる。反射膜18に好適な面抵抗値は単位面積当り1Ω
〜30Ω程度であり、より好ましくは単位面積当り5Ω
〜20Ω程度であるが、電磁波吸収パネル10が光透過
性を有することが求められていないのであれば面抵抗値
をより小さくすることができ、到来した電磁波の反射割
合をより高くすることができる。なお、絶縁性基板14
は請求項6に記載の基板に、反射膜18は請求項6に記
載の導電性被膜に対応しており、絶縁性基板14及び反
射膜18は本発明に係る反射部材に対応している。
A conductive film (reflection film) 1 is formed on the surface of the insulating substrate 14 facing the insulating substrate 12.
8 are formed. The conductivity (surface resistance) of the reflective film 18 is adjusted so that most of the arriving electromagnetic waves are reflected. The sheet resistance suitable for the reflection film 18 is 1Ω per unit area.
About 30Ω, more preferably 5Ω per unit area.
If the electromagnetic wave absorbing panel 10 is not required to have optical transparency, the sheet resistance can be made smaller, and the reflection ratio of the incoming electromagnetic wave can be made higher. . The insulating substrate 14
Corresponds to the substrate described in claim 6, the reflection film 18 corresponds to the conductive film described in claim 6, and the insulating substrate 14 and the reflection film 18 correspond to the reflection member according to the present invention.

【0039】また、絶縁性基板12と絶縁性基板14の
間隙には、その中間部に、平板状の絶縁性基板20が絶
縁性基板12,14と略平行に配置されており、絶縁性
基板12と絶縁性基板20の間、及び絶縁性基板14と
絶縁性基板20の間は空気で満たされている。絶縁性基
板20の一方の面には、その全面に分割導電膜22が形
成されている。
In the gap between the insulating substrate 12 and the insulating substrate 14, a flat insulating substrate 20 is disposed at an intermediate portion thereof substantially in parallel with the insulating substrates 12 and 14. The space between the insulating substrate 12 and the insulating substrate 20 and the space between the insulating substrate 14 and the insulating substrate 20 are filled with air. On one surface of the insulating substrate 20, a divided conductive film 22 is formed on the entire surface.

【0040】図2に示すように、本第1実施形態に係る
分割導電膜22は、略長尺状で膜厚aが一定の導電パタ
ーン24が、導電パターン24の長手方向と直交する幅
方向に沿って、ギャップ26を隔てて多数配列されて構
成されている。なお、これらの導電パターン24は請求
項2に記載の複数の導体に対応している。個々の導電パ
ターン24は、詳しくは導電パターン24の長手方向に
沿って、幅bが最大幅bmaxから最小幅bminへ線形に変
化し、続いて最小幅bminから最大幅bmaxへ線形に変化
する変化パターンが一定の周期で繰り返された規則的な
形状とされている。導電パターン24に好適な面抵抗値
は単位面積当り1Ω〜40Ω程度であり、より好ましく
は単位面積当り5Ω〜20Ω程度である。
As shown in FIG. 2, in the divided conductive film 22 according to the first embodiment, a substantially long conductive pattern 24 having a constant film thickness a is formed in a width direction orthogonal to the longitudinal direction of the conductive pattern 24. Are arranged along a gap 26 with a gap 26 therebetween. Note that these conductive patterns 24 correspond to the plurality of conductors described in claim 2. Individual conductive pattern 24 is more information in the longitudinal direction of the conductive pattern 24, varies linearly from a maximum width b max width b to the minimum width b min, followed by linearly from the minimum width b min to a maximum width b max Has a regular shape repeated in a constant cycle. The sheet resistance suitable for the conductive pattern 24 is about 1 Ω to 40 Ω per unit area, and more preferably about 5 Ω to 20 Ω per unit area.

【0041】また、多数個の導電パターン24は、幅b
が最大幅bmaxとなっている位置及び幅bが最小幅bmin
となっている位置が一致するように配置されているの
で、ギャップ26の幅dも、導電パターン24の長手方
向に沿って、導電パターン24の幅bの変化周期と同一
の周期で最小幅dmin→最大幅dmax→最小幅dmin→…
と線形かつ規則的に変化している。なお、導電パターン
24の幅b及びギャップ26の幅dの変化は非線形であ
ってもよい。
The plurality of conductive patterns 24 have a width b
Is the maximum width b max and the width b is the minimum width b min
The width d of the gap 26 is also set along the longitudinal direction of the conductive pattern 24 at the same cycle as the change cycle of the width b of the conductive pattern 24, so that the width d of the gap 26 is equal to the minimum width d. min → maximum width d max → minimum width d min → ...
And it changes linearly and regularly. Note that changes in the width b of the conductive pattern 24 and the width d of the gap 26 may be non-linear.

【0042】本第1実施形態では、電磁波吸収パネル1
0によって吸収すべき電磁波の周波数帯域が最低周波数
1から最高周波数f2に亘って連続しており、導電パタ
ーン24の幅bの変化範囲bmin〜bmax及びギャップ2
6の幅dの変化範囲dmin〜dmaxを、周波数f1,f2
基づいて以下のように定めている。
In the first embodiment, the electromagnetic wave absorbing panel 1
0, the frequency band of the electromagnetic wave to be absorbed is continuous from the lowest frequency f 1 to the highest frequency f 2 , and the change range b min to b max of the width b of the conductive pattern 24 and the gap 2
The change range d min to d max of the width d of 6 is determined as follows based on the frequencies f 1 and f 2 .

【0043】すなわち、まず最低周波数f1の電磁波の
波長λ1を4で除した値(λ1/4)を、抵抗膜16と反
射膜18との距離に一致させるための誘電率ε1(比誘
電率εS1)を先の(1)式に基づいて求めると共に、最
高周波数f2の電磁波の波長λ2を4で除した値(λ2
4)を、抵抗部材と反射部材との距離に一致させるため
の誘電率ε2(比誘電率εS2)を先の(1)式に基づい
て求める。
[0043] That is, the first minimum frequency f 1 of the electromagnetic wave of a wavelength lambda value obtained by dividing 1 by 4 (λ 1/4), the dielectric constant to match the distance between the resistive film 16 and the reflective film 18 epsilon 1 ( dielectric constant epsilon S1) together with determined based on the above equation (1), divided by the electromagnetic wave of the highest frequency f 2 of the wavelength lambda 2 with 4 (lambda 2 /
In 4), the dielectric constant ε 2 (relative dielectric constant ε S2 ) for matching the distance between the resistance member and the reflection member is obtained based on the above equation (1).

【0044】そして、比誘電率εS1,εS2の一方から、
先の(2)式に基づいて導電パターン24の最大幅b
maxとギャップ26の最小幅dminの組を求めると共に、
比誘電率εS1,εS2の他方から導電パターン24の最小
幅bminとギャップ26の最大幅dmaxの組を求める。こ
れにより、電磁波吸収帯域内の各周波数の電磁波を高い
吸収率で吸収するための導電パターン24の幅bの変化
範囲及びギャップ26の幅dの変化範囲が求まることに
なる。
Then, from one of the relative dielectric constants ε S1 and ε S2 ,
The maximum width b of the conductive pattern 24 based on the above equation (2)
A set of max and a minimum width d min of the gap 26 is obtained, and
From the other of the relative dielectric constants ε S1 and ε S2, a set of the minimum width b min of the conductive pattern 24 and the maximum width d max of the gap 26 is obtained. As a result, the change range of the width b of the conductive pattern 24 and the change range of the width d of the gap 26 for absorbing the electromagnetic waves of each frequency within the electromagnetic wave absorption band at a high absorption rate are obtained.

【0045】なお、抵抗膜16、反射膜18及び導電パ
ターン24は、公知の様々な導電性材料の中から任意の
材料を選択的に用いて絶縁性基板12上又は絶縁性基板
14上又は絶縁性基板20上に皮膜として形成すること
で構成することができるが、電磁波吸収パネル10が光
透過性を有することが求められている場合には、例えば
SnO2を主成分とする透明導電膜、In23を主成分
とする透明導電膜、Ag,Au,Cu,Alの何れかを
主成分とする金属膜が好適である。
The resistive film 16, the reflective film 18, and the conductive pattern 24 are formed on the insulating substrate 12 or the insulating substrate 14 or on the insulating substrate 14 by selectively using any of various known conductive materials. When the electromagnetic wave absorbing panel 10 is required to have optical transparency, for example, a transparent conductive film mainly composed of SnO 2 , A transparent conductive film mainly containing In 2 O 3 and a metal film mainly containing any of Ag, Au, Cu, and Al are preferable.

【0046】上記のような透明導電膜や金属膜は、太陽
光に含まれる近赤外光を反射すると共に、熱線の輻射量
が低いという特性を有しているため、上記の材料を用い
て構成した電磁波吸収パネル10を建築物の窓部に用い
ることで、室内の冷暖房の省エネルギー化も実現でき
る。
The above-mentioned transparent conductive film and metal film reflect near-infrared light contained in sunlight and have a characteristic of low radiation of heat rays. By using the configured electromagnetic wave absorbing panel 10 for a window of a building, it is possible to realize energy saving of indoor cooling and heating.

【0047】次に本第1実施形態の作用を説明する。電
磁波吸収パネル10は例えば建築物の窓部等に配設され
るが、このとき、分割導電膜22の導電パターン24の
配列方向(導電パターン24の幅方向)が、前記建築物
に到来する電磁波の偏波面の方向と略直交する向き(例
えば水平偏波の電磁波が到来する場合には、図2の上下
方向が建築物の上下方向に一致する向き)で、かつ抵抗
膜16側より電磁波が到来するように配設される。
Next, the operation of the first embodiment will be described. The electromagnetic wave absorbing panel 10 is disposed, for example, in a window of a building or the like. (For example, when a horizontally polarized electromagnetic wave arrives, the vertical direction in FIG. 2 coincides with the vertical direction of the building) and the electromagnetic wave is transmitted from the resistive film 16 side. Arranged to arrive.

【0048】電磁波吸収パネル10が上記のように建築
物に配設された状態で建築物に電磁波が到来すると、図
3に示すように、到来電磁波(図3に示す電磁波E0
は絶縁性基板12を透過して抵抗膜16に入射され、一
部が抵抗膜16によって反射され一次射出電磁波Er1
して射出されると共に、一部が抵抗膜16によって吸収
され、残りは抵抗膜16を透過し電磁波Et1として反射
膜18側へ射出される。
When an electromagnetic wave arrives at a building in a state where the electromagnetic wave absorbing panel 10 is disposed on the building as described above, the incoming electromagnetic wave (electromagnetic wave E 0 shown in FIG. 3) as shown in FIG.
Is transmitted through the insulating substrate 12 and is incident on the resistive film 16, a part of which is reflected by the resistive film 16 and is emitted as the primary emission electromagnetic wave E r1 , a part is absorbed by the resistive film 16, and the rest is 16 and is emitted to the reflection film 18 side as an electromagnetic wave Et1 .

【0049】この電磁波Et1は、分割導電膜22及び絶
縁性基板20を透過して反射膜18に入射され、反射膜
18によってその殆どが反射され、絶縁性基板20及び
分割導電膜22を再び透過して抵抗膜16に入射され
る。抵抗膜16に入射された電磁波Et1は、一部が抵抗
膜16を透過し二次射出電磁波Er2として射出されると
共に、一部が抵抗膜16によって吸収され、残りは抵抗
膜16によって反射され電磁波Et2として反射膜18側
へ射出される。
The electromagnetic wave Et 1 is transmitted through the divided conductive film 22 and the insulating substrate 20 and is incident on the reflective film 18. Most of the electromagnetic wave E t1 is reflected by the reflective film 18. The light is transmitted and incident on the resistance film 16. A part of the electromagnetic wave E t1 incident on the resistive film 16 passes through the resistive film 16 and is emitted as the secondary emission electromagnetic wave E r2 , while a part is absorbed by the resistive film 16 and the rest is reflected by the resistive film 16. Then, it is emitted to the reflection film 18 side as an electromagnetic wave Et2 .

【0050】更に、電磁波Et2は、分割導電膜22及び
絶縁性基板20を透過して反射膜18に入射され、反射
膜18によってその殆どが反射され、絶縁性基板20及
び分割導電膜22を再び透過して抵抗膜16に入射され
る。抵抗膜16に入射された電磁波Et2は、一部が抵抗
膜16を透過し三次射出電磁波Er3として射出されると
共に、一部が抵抗膜16によって吸収され、残りは抵抗
膜16によって反射され電磁波Et3として反射膜18側
へ射出される。
Further, the electromagnetic wave Et 2 is transmitted through the divided conductive film 22 and the insulating substrate 20 and is incident on the reflective film 18, and most of the electromagnetic wave Et 2 is reflected by the reflective film 18, and passes through the insulating substrate 20 and the divided conductive film 22. The light is transmitted again and is incident on the resistance film 16. A part of the electromagnetic wave Et 2 incident on the resistive film 16 is transmitted through the resistive film 16 and emitted as a tertiary emission electromagnetic wave Er 3, and a part is absorbed by the resistive film 16 and the rest is reflected by the resistive film 16. It is emitted to the reflection film 18 side as an electromagnetic wave Et3 .

【0051】上記の現象が繰り返されることで、電磁波
吸収パネル10に到来した電磁波は、一次射出電磁波〜
MAX次電磁波(理論的にはnMAX=∞)に分割されて電
磁波吸収パネル10から射出されるので、抵抗膜16が
形成された絶縁性基板12側から到来した電磁波吸収パ
ネル10の反射係数Γは、
By repeating the above-mentioned phenomenon, the electromagnetic wave arriving at the electromagnetic wave absorbing panel 10 becomes the primary emission electromagnetic wave to
Since (theoretically n MAX = ∞) n MAX order electromagnetic wave is divided into emitted from the electromagnetic wave absorption panel 10, the reflection coefficient of the electromagnetic wave absorbing panel 10 coming from the resistance film 16 is formed the insulating substrate 12 side Γ

【0052】[0052]

【数2】 (Equation 2)

【0053】となる。Is as follows.

【0054】ここで、抵抗膜16に入射された電磁波
は、その一部が抵抗膜16によって吸収されることで抵
抗膜16を透過又は抵抗膜16で反射されて射出される
電磁波の電界強度が小さくなる。n次射出電磁波の次数
nは対応する電磁波の抵抗膜16への入射回数を表して
おり、次数nの値が大きくなるに伴って抵抗膜16への
入射回数も増大するので、抵抗膜16における電磁波の
吸収率αの値にも依存するが、次数nの値が大きい高次
の射出電磁波(例えばn≧3の射出電磁波)は電界強度
が非常に小さくなるために無視できる。
Here, part of the electromagnetic wave incident on the resistive film 16 is absorbed by the resistive film 16 so that the electric field intensity of the electromagnetic wave transmitted through the resistive film 16 or reflected by the resistive film 16 and emitted is reduced. Become smaller. The order n of the n-th emitted electromagnetic wave indicates the number of times the corresponding electromagnetic wave is incident on the resistive film 16, and the number of incidents on the resistive film 16 increases as the value of the order n increases. Although depending on the value of the absorptivity α of the electromagnetic wave, a higher-order emission electromagnetic wave having a large order n (for example, an emission electromagnetic wave of n ≧ 3) can be neglected because the electric field intensity becomes very small.

【0055】また、本実施形態に係る電磁波吸収パネル
10において、抵抗膜16と反射膜18との間の導電パ
ターン24の配列方向についての実効比誘電率は、導電
パターン24の幅bを(2)式における導体の幅b、ギ
ャップ26の幅dを(2)式における間隔d、膜厚aを
(2)式における導体の厚さaとして各々用いること
で、(2)式によって求まる実効比誘電率εeffに一致
する。
Further, in the electromagnetic wave absorbing panel 10 according to the present embodiment, the effective relative dielectric constant in the arrangement direction of the conductive patterns 24 between the resistive film 16 and the reflective film 18 is determined by the width b of the conductive patterns 24 (2 )), The width d of the conductor and the width d of the gap 26 are used as the distance d in the equation (2), and the film thickness a is used as the thickness a of the conductor in the equation (2). It matches the dielectric constant ε eff .

【0056】先にも説明したように、本実施形態では、
電磁波吸収パネル10によって吸収すべき電磁波の周波
数帯域の最低周波数f1及び最高周波数f2に基づいて対
応する比誘電率εS1,εS2、を求め、導電パターン24
の最大幅bmaxとギャップ26の最小幅dminの組、及び
導電パターン24の最小幅bminとギャップ26の最大
幅dmaxの組を各々求め、導電パターン24の幅bを変
化範囲bmin〜bmax内で規則的に変化させると共に、ギ
ャップ26の幅dを変化範囲dmin〜dmax内で規則的に
変化させている。
As described above, in this embodiment,
The relative dielectric constants ε S1 and ε S2 corresponding to the lowest frequency f 1 and the highest frequency f 2 of the frequency band of the electromagnetic wave to be absorbed by the electromagnetic wave absorbing panel 10 are obtained, and the conductive pattern 24 is obtained.
Of the maximum width b max and the minimum width d min of the gap 26 and the pair of the minimum width b min of the conductive pattern 24 and the maximum width d max of the gap 26 are determined, and the width b of the conductive pattern 24 is changed to the change range b min with varying regularly in ~b max, it is regularly varied within the variation range d min to d max width d of the gap 26.

【0057】従って、本第1実施形態に係る電磁波吸収
パネル10は、抵抗膜16と反射膜18との間の導体パ
ターン24の配列方向についての実効比誘電率が、導体
パターン24の長手方向に沿ってεS1→εS2→εS1→…
と連続的かつ周期的に変化しており、この実効比誘電率
の周期的な変化に伴って、抵抗膜16と反射膜18との
間を往復伝播する電磁波Etnの波長((1)式参照)も、
導体パターン24の長手方向に沿って連続的かつ周期的
に変化する。
Therefore, in the electromagnetic wave absorbing panel 10 according to the first embodiment, the effective relative permittivity in the arrangement direction of the conductor patterns 24 between the resistive film 16 and the reflection film 18 is longer in the longitudinal direction of the conductor patterns 24. Along ε S1 → ε S2 → ε S1 →…
And the wavelength of the electromagnetic wave Etn reciprocatingly propagating between the resistive film 16 and the reflective film 18 with the periodic change of the effective relative permittivity (formula (1)). See also
It changes continuously and periodically along the longitudinal direction of the conductor pattern 24.

【0058】一次射出電磁波Er1と二次射出電磁波Er2
の位相差は電磁波Et1の伝播距離を電磁波Et1の波長で
除したときの剰余に相当するので、一次射出電磁波Er1
と二次射出電磁波Er2が略逆相(λ/2)となる周波数
帯域、すなわち電磁波吸収パネル10から射出される一
次射出電磁波Er1及び二次射出電磁波Er2が、互いに打
ち消し合うことで大幅に減衰・吸収される周波数帯域の
中心周波数は、導体パターン24の長手方向に沿って、
1〜f2の範囲で連続的かつ周期的に変化することにな
り、電磁波吸収パネル10に到来した電磁波E0(但
し、偏波面の方向が分割導電膜22の導電パターン24
の配列方向に略直交する電磁波のみ)を、吸収すべき電
磁波の周波数帯域f1〜f2の全域に亘って高い吸収率で
吸収することができる。
The primary emission electromagnetic wave E r1 and the secondary emission electromagnetic wave E r2
Of the phase difference corresponds to the remainder when dividing the propagation distance of the electromagnetic waves E t1 at the wavelength of the electromagnetic waves E t1, primary injection electromagnetic wave E r1
And the secondary emission electromagnetic wave E r2 have a substantially opposite phase (λ / 2), that is, the primary emission electromagnetic wave E r1 and the secondary emission electromagnetic wave E r2 emitted from the electromagnetic wave absorbing panel 10 cancel each other out. The center frequency of the frequency band that is attenuated / absorbed along the longitudinal direction of the conductor pattern 24 is
It changes continuously and periodically in the range of f 1 to f 2 , and the electromagnetic wave E 0 arriving at the electromagnetic wave absorbing panel 10 (provided that the direction of the polarization plane is the conductive pattern 24 of the divided conductive film 22)
(Only the electromagnetic waves substantially perpendicular to the arrangement direction) can be absorbed at a high absorption rate over the entire frequency band f 1 to f 2 of the electromagnetic waves to be absorbed.

【0059】また、先に説明したように、光透過性を有
する部材で電磁波吸収パネル10を構成すれば、光透過
性を有する電磁波吸収パネル10を得ることができるの
で、建築物の窓部等のように光透過性の確保が要求され
る部位に配設することも可能となる。
Further, as described above, if the electromagnetic wave absorbing panel 10 is made of a member having light transmitting properties, the electromagnetic wave absorbing panel 10 having light transmitting properties can be obtained. It is also possible to dispose them at a site where light transmission is required.

【0060】〔第2実施形態〕次に本発明の第2実施形
態について説明する。なお、以下で説明する各実施形態
は、分割導電膜22の導電パターン24及びギャップ2
6の形状以外は第1実施形態と同一であるので、各部分
に同一の符号を付して説明を省略し、第1実施形態と相
違している点のみ説明する。
[Second Embodiment] Next, a second embodiment of the present invention will be described. In the embodiments described below, the conductive pattern 24 of the divided conductive film 22 and the gap 2
6 is the same as the first embodiment except for the shape of 6, and therefore, the same reference numerals are given to the respective portions and the description is omitted, and only the points different from the first embodiment will be described.

【0061】先に説明した第1実施形態では、導電パタ
ーン24の幅b及びギャップ26の幅dを各々変化させ
た分割導電膜22を用いていたが、図4に示すように、
本第2実施形態では、ギャップ26の幅dを一定とし、
導電パターン24の幅bのみを変化させた分割導電膜2
2を用いている。
In the first embodiment described above, the divided conductive film 22 in which the width b of the conductive pattern 24 and the width d of the gap 26 are changed is used. However, as shown in FIG.
In the second embodiment, the width d of the gap 26 is fixed,
Divided conductive film 2 in which only width b of conductive pattern 24 is changed
2 is used.

【0062】また、本第2実施形態では、電磁波吸収パ
ネル10によって吸収すべき電磁波の周波数帯域とし
て、f11〜f12及びf21〜f22の2つの周波数帯域が定
められており、周波数帯域f11〜f12に対応して幅bが
b1min〜b1maxの範囲で変化している導電パターン24
Aと、周波数帯域f21〜f22に対応して幅bがb2min
b2maxの範囲で変化している導電パターン24Bを交互
に配置している。
In the second embodiment, two frequency bands f 11 to f 12 and f 21 to f 22 are defined as the frequency bands of the electromagnetic waves to be absorbed by the electromagnetic wave absorbing panel 10. f 11 ~f 12 width b corresponds to the b1 min ~ b1 max conductive pattern is changed in the range of 24
And A, the width b corresponds to the frequency band f 21 ~f 22 is b2 min ~
The conductive patterns 24B changing in the range of b2 max are alternately arranged.

【0063】導電パターン24Aは、詳しくは導電パタ
ーン24Aの長手方向に沿って、幅bが最大幅b1max
ら最小幅b1minへ線形に変化し、続いて最小幅b1min
ら最大幅b1maxへ線形に変化する変化パターンが一定の
周期で繰り返された規則的な形状とされている。同様に
導電パターン24Bは、詳しくは導電パターン24Bの
長手方向に沿って、幅bが最大幅b2maxから最小幅b2
minへ線形に変化し、続いて最小幅b2minから最大幅b2
maxへ線形に変化する変化パターンが一定の周期で繰り
返された規則的な形状とされている。
More specifically, the width b of the conductive pattern 24A changes linearly from the maximum width b1 max to the minimum width b1 min along the longitudinal direction of the conductive pattern 24A, and then from the minimum width b1 min to the maximum width b1 max . It has a regular shape in which a change pattern that changes linearly is repeated at a constant cycle. Similarly, the conductive pattern 24B has a width b from the maximum width b2 max to the minimum width b2 along the longitudinal direction of the conductive pattern 24B.
linearly to min , followed by a minimum width b2 min to a maximum width b2
It has a regular shape in which a change pattern that changes linearly to max is repeated at a constant cycle.

【0064】また、導電パターン24A,24Bは、導
電パターン24Aにおける幅bが最大幅b1maxとなって
いる位置と、導電パターン24Bにおける幅bが最小幅
b2m inとなっている位置が一致し、かつ隣合う導電パタ
ーンとのギャップ26の幅dが一定となるように配置さ
れている。なお、導電パターン24A,24Bの幅bの
変化は非線形であってもよい。
[0064] The conductive patterns 24A, 24B is set to the position where the width b of the conductive pattern 24A is in the maximum width b1 max, the position where the width b of the conductive pattern 24B becomes the minimum width b2 m in match And the width d of the gap 26 between adjacent conductive patterns is arranged to be constant. The change in the width b of the conductive patterns 24A and 24B may be non-linear.

【0065】導電パターン24Aの幅bの変化範囲b1
min〜b1maxは、周波数f1min,f1m axに基づいて以下
のように定めている。すなわち、まず周波数f11の電磁
波の波長λ11を4で除した値(λ11/4)を抵抗膜16
と反射膜18との距離に一致させるための誘電率ε
11(比誘電率εS11)、周波数f12の電磁波の波長λ12
を4で除した値(λ12/4)を抵抗部材と反射部材との
距離に一致させるための誘電率ε12(比誘電率εS12
を先の(1)式に基づいて各々求める。そして、比誘電
率εS11から、先の(2)式に基づいて導電パターン2
4の幅b1minを求めると共に、比誘電率εS12から導電
パターン24の幅b1maxを求める。これにより、電磁波
吸収帯域f11〜f12内の各周波数の電磁波を高い吸収率
で吸収するための導電パターン24Aの幅bの変化範囲
が求まることになる。なお、導電パターン24Bの幅b
の変化範囲b2min〜b2maxについても、周波数f2min
f2maxに基づき上記と同様にして求めることができる。
Change range b1 of width b of conductive pattern 24A
min ~ B1 max is determined as follows based on the frequency f1 min, f1 m ax. That is, first electromagnetic radiation of a wavelength lambda 11 divided by the four frequencies f 11 (λ 11/4) the resistive film 16
Permittivity ε to match the distance between
11 (relative permittivity epsilon S11), the electromagnetic wavelength lambda 12 of frequency f 12
Divided by the 4 (lambda 12/4) dielectric constant epsilon 12 to match the distance between the resistive member and the reflecting member (relative permittivity epsilon S12)
Are calculated based on the above equation (1). Then, based on the relative permittivity ε S11 , the conductive pattern 2 is formed based on the above equation (2).
4 with obtaining the width b1 min of, determine the width b1 max of the conductive pattern 24 from the dielectric constant epsilon S12. As a result, the variation range of the width b of the conductive pattern 24A for absorbing an electromagnetic wave of each frequency of the electromagnetic wave absorption band f 11 ~f 12 at a high absorption rate is obtained. The width b of the conductive pattern 24B
Of the change range b2 min to b2 max of the frequency f2 min ,
It can be obtained in the same manner as described above based on f2 max .

【0066】本第2実施形態の作用を説明する。本第2
実施形態に係る電磁波吸収パネル10についても、建築
物の窓部等への配設に際し、分割導電膜22の導電パタ
ーン24の配列方向(導電パターン24の幅方向)が、
前記建築物に到来する電磁波の偏波面の方向と略直交す
る向きで、かつ抵抗膜16側より電磁波が到来するよう
に配設される。
The operation of the second embodiment will be described. Book second
Also in the case of the electromagnetic wave absorbing panel 10 according to the embodiment, the arrangement direction of the conductive patterns 24 of the divided conductive film 22 (the width direction of the conductive patterns 24) is,
It is arranged in a direction substantially perpendicular to the direction of the plane of polarization of the electromagnetic wave arriving at the building and so that the electromagnetic wave arrives from the resistive film 16 side.

【0067】本第2実施形態では、導電パターン24A
の幅bを、吸収すべき電磁波の周波数帯域f11〜f12
応じた変化範囲b1min〜b1max内で規則的に変化させ、
導電パターン24Bの幅dを、吸収すべき電磁波の周波
数帯域f21〜f22に応じた変化範囲b2min〜b2max内で
規則的に変化させているので、一次射出電磁波Er1と二
次射出電磁波Er2が略逆相(λ/2)となり、互いに打
ち消し合うことで電磁波吸収パネル10から射出される
電磁波が大幅に減衰・吸収される周波数帯域の中心周波
数は、導電パターン24Aが配設された部位において
は、導体パターン24Aの長手方向に沿ってf11〜f12
の範囲で連続的かつ周期的に変化し、導電パターン24
Bが配設された部位においては、導体パターン24Bの
長手方向に沿ってf21〜f22の範囲で連続的かつ周期的
に変化することになる。
In the second embodiment, the conductive pattern 24A
The width b, regularly varied in accordance with the electromagnetic wave frequency band f 11 ~f 12 of to be absorbed changes range b1 min ~b1 max,
The width d of the conductive pattern 24B, since the regularly varied depending on the frequency band f 21 ~f 22 of the electromagnetic wave to be absorbed changes range b2 min ~b2 max, a primary injection waves E r1 secondary injection The conductive pattern 24A is disposed at the center frequency of the frequency band in which the electromagnetic wave E r2 is substantially in opposite phase (λ / 2) and the electromagnetic wave emitted from the electromagnetic wave absorbing panel 10 is largely attenuated and absorbed by canceling each other. In the region where the conductive pattern 24A is formed, f 11 -f 12
Continuously and periodically in the range of
In the portion B is disposed, will vary continuously and periodically in a range of f 21 ~f 22 along the longitudinal direction of the conductor pattern 24B.

【0068】従って、電磁波吸収パネル10に到来した
電磁波E0(但し、偏波面の方向が分割導電膜22の導
電パターン24の配列方向に略直交する電磁波のみ)
を、吸収すべき電磁波の周波数帯域f11〜f12及び周波
数帯域f21〜f22の全域に亘って高い吸収率で吸収する
ことができる。
Accordingly, the electromagnetic wave E 0 arriving at the electromagnetic wave absorbing panel 10 (however, only the electromagnetic wave whose direction of the polarization plane is substantially perpendicular to the arrangement direction of the conductive patterns 24 of the divided conductive film 22)
Can be absorbed with a high absorptivity over the entire frequency bands f 11 to f 12 and the frequency bands f 21 to f 22 of the electromagnetic waves to be absorbed.

【0069】〔第3実施形態〕次に本発明の第3実施形
態について説明する。図5に示すように、本第3実施形
態に係る分割導電膜22は、外形形状が略矩形状の多数
個の導電パターン24Cがギャップ26を隔ててマトリ
クス状に配置されて構成されている。多数個の導電パタ
ーン24Cは、互いに同一の形状とされており、詳しく
は、4本の辺の中間部が各々導電パターン24Cの外側
へ凸となるように湾曲されている。
[Third Embodiment] Next, a third embodiment of the present invention will be described. As shown in FIG. 5, the divided conductive film 22 according to the third embodiment is configured by arranging a plurality of conductive patterns 24C having a substantially rectangular outer shape in a matrix with a gap 26 therebetween. The multiple conductive patterns 24C have the same shape as each other, and more specifically, are curved such that the middle portions of the four sides are each protruded outward from the conductive pattern 24C.

【0070】これにより、導電パターン24Cの第1の
配列方向(図5の矢印A方向)に沿った導電パターン2
4Cの幅b1は、第2の配列方向(図5の矢印B方向)
に沿った中央で最大幅b1maxとされ、第2の配列方向に
沿った両端部へ向かって徐々に(非線形に)小さくな
り、前記両端部で最小幅b1minとされている。同様に、
導電パターン24Cの第2の配列方向に沿った導電パタ
ーン24Cの幅b2は、第1の配列方向に沿った中央で
最大幅b2max(=b1max)とされ、第1の配列方向に沿
った両端部へ向かって徐々に(非線形に)小さくなり、
前記両端部で最小幅b2min(=b1min)とされている。
As a result, the conductive patterns 2 along the first arrangement direction (the direction of arrow A in FIG. 5) of the conductive patterns 24C are formed.
The width b1 of 4C is in the second arrangement direction (the direction of arrow B in FIG. 5).
Is the maximum width b1 max at the center along the gradually toward both end portions along the second arrangement direction (the non-linear) becomes smaller, there is a minimum width b1 min at the both end portions. Similarly,
The width b2 of the conductive pattern 24C along the second arrangement direction of the conductive pattern 24C is a maximum width b2 max (= b1 max ) at the center along the first arrangement direction, and is along the first arrangement direction. Gradually (non-linearly) smaller towards both ends,
The minimum width b2 min (= b1 min ) is set at both ends.

【0071】第1の配列方向に沿って並ぶ各導電パター
ン24Cは、幅b1が最大幅b1maxとなっている部分
が、第2の配列方向に沿って互いに同一の位置に位置す
るように各々配置されているので、第1の配列方向に沿
って並ぶ各導電パターン24Cのギャップ26の幅d1
も、導電パターン24Cの幅b1の変化に伴い、第2の
配列方向に沿って最大幅d1max→最小幅d1min→最小幅
d1minと非線形に変化している。また、第2の配列方向
に沿って並ぶ各導電パターン24Cは、幅b2が最大幅
b2maxとなっている部分が、第1の配列方向に沿って互
いに同一の位置に位置するように各々配置されているの
で、第2の配列方向に沿って並ぶ各導電パターン24C
のギャップ26の幅d2も、導電パターン24Cの幅b2
の変化に伴い、第1の配列方向に沿って最大幅d2max
最小幅d2min→最小幅d2minと非線形に変化している。
なお、導電パターン24Cの幅b1,b2及びギャップ2
6の幅d1,d2の変化は線形であってもよい(この場
合、導電パターン24の外形形状は八角形となる)。
Each of the conductive patterns 24C arranged in the first arrangement direction has a width b1 which is the maximum width b1 max and is located at the same position in the second arrangement direction. Since they are arranged, the width d1 of the gap 26 of each conductive pattern 24C arranged along the first arrangement direction
Also, along with the change of the width b1 of the conductive pattern 24C, the width changes nonlinearly along the second arrangement direction as the maximum width d1 max → the minimum width d1 min → the minimum width d1 min . The conductive patterns 24C arranged in the second arrangement direction are arranged such that the portions where the width b2 is the maximum width b2 max are located at the same position along the first arrangement direction. The conductive patterns 24C arranged in the second arrangement direction
The width d2 of the gap 26 is also the width b2 of the conductive pattern 24C.
Along with the maximum width d2 max along the first arrangement direction.
It has been changed to the minimum width d2 min → minimum width d2 min and non-linear.
The width b1 and b2 of the conductive pattern 24C and the gap 2
The change in the widths d1 and d2 of line 6 may be linear (in this case, the outer shape of the conductive pattern 24 is an octagon).

【0072】本第3実施形態では、吸収すべき電磁波の
周波数帯域の最低周波数f1及び最高周波数f2に基づ
き、導電パターン24Cの幅b1の変化範囲b1min〜b1
max(=幅b2の変化範囲b2min〜b2max)及びギャップ
26の幅d1の変化範囲d1min〜d1max(=幅d2の変化
範囲d2min〜d2max)を第1実施形態と同様にして定め
ている。
[0072] In the third embodiment, based on the lowest frequency f 1 and the maximum frequency f 2 of the frequency band of the electromagnetic wave to be absorbed, the change range of the width b1 of the conductive patterns 24C b1 min ~ B1
and max a variation range d1 min ~ D1 of (= change in the width b2 range b2 min ~ B2 max) and the width d1 of the gap 26 max (= variation range d2 min ~ D2 max width d2) in the same manner as in the first embodiment It has established.

【0073】本第3実施形態の作用を説明する。本第3
実施形態に係る電磁波吸収パネル10は、導電パターン
24Cがマトリクス状に配列された分割導電膜22が設
けられているので、建築物の窓部等への配設に際して
は、分割導電膜22の導電パターン24Cの配列方向を
建築物に到来する電磁波の偏波面の方向と対応付けるこ
となく、単に抵抗膜16側より電磁波が到来するように
配設される。
The operation of the third embodiment will be described. Book 3
In the electromagnetic wave absorption panel 10 according to the embodiment, the divided conductive films 22 in which the conductive patterns 24C are arranged in a matrix are provided. The pattern is arranged such that the electromagnetic wave simply arrives from the resistive film 16 side without associating the arrangement direction of the pattern 24C with the direction of the plane of polarization of the electromagnetic wave arriving at the building.

【0074】すなわち、本第3実施形態に係る分割導電
膜22は、導電パターン24Cがマトリクス状に配列さ
れて構成されているので、抵抗膜16と反射膜18との
間の第1の配列方向についての実効比誘電率が、第2の
配列方向に沿ってεS1→εS2→εS1→…と連続的かつ周
期的に変化しており、抵抗膜16と反射膜18との間の
第2の配列方向についての実効比誘電率も、第1の配列
方向に沿ってεS1→ε S2→εS1→…と連続的かつ周期的
に変化している。
That is, the divided conductive material according to the third embodiment
The film 22 has conductive patterns 24C arranged in a matrix.
The resistance film 16 and the reflection film 18
The effective relative permittivity in the first arrangement direction between
Ε along the array directionS1→ εS2→ εS1→… continuous and round
And between the resistance film 16 and the reflection film 18.
The effective relative permittivity in the second arrangement direction is
Along the direction εS1→ ε S2→ εS1→… continuous and periodic
Has changed.

【0075】これにより、建築物に到来する電磁波の偏
波面の方向に拘わらず(例えば水平偏波、垂直偏波、円
偏波の何れであっても)、電磁波吸収パネル10から射
出される電磁波が大幅に減衰・吸収される周波数帯域の
中心周波数は、第1の配列方向及び第2の配列方向に沿
って、各々f1〜f2の範囲で連続的かつ周期的に変化す
る。従って、電磁波吸収パネル10に到来した電磁波E
0を、該電磁波の偏波面の方向に拘わらず、吸収すべき
電磁波の周波数帯域f1〜f2の全域に亘って高い吸収率
で吸収することができる。
Accordingly, regardless of the direction of the plane of polarization of the electromagnetic wave arriving at the building (for example, any of horizontal polarization, vertical polarization and circular polarization), the electromagnetic wave emitted from the electromagnetic wave absorbing panel 10 can be used. The center frequency of the frequency band in which is greatly attenuated and absorbed changes continuously and periodically in the range of f 1 to f 2 along the first arrangement direction and the second arrangement direction. Therefore, the electromagnetic wave E arriving at the electromagnetic wave absorbing panel 10
0 can be absorbed with a high absorption rate over the entire frequency band f 1 to f 2 of the electromagnetic wave to be absorbed, regardless of the direction of the polarization plane of the electromagnetic wave.

【0076】〔第4実施形態〕次に本発明の第4実施形
態について説明する。図6に示すように、本第4実施形
態に係る分割導電膜22は、第3実施形態と同様に、外
形形状が略矩形状の多数個の導電パターンがギャップ2
6を隔ててマトリクス状に配置されて構成されている。
また本第4実施形態では、第2実施形態と同様に、電磁
波吸収パネル10によって吸収すべき電磁波の周波数帯
域として、f11〜f12及びf21〜f22の2つの周波数帯
域が定められており、本第4実施形態に係る分割導電膜
22は、詳しくは周波数帯域f11〜f12に対応する導電
パターン24Dと、周波数帯域f 21〜f22に対応する導
電パターン24Eが、互い違いに配置されて構成されて
いる。
[Fourth Embodiment] Next, a fourth embodiment of the present invention will be described.
The state will be described. As shown in FIG. 6, the fourth embodiment
The divided conductive film 22 according to the second embodiment is similar to the third embodiment, and is similar to the third embodiment.
A large number of conductive patterns having a substantially rectangular shape have a gap 2
6 and are arranged in a matrix.
In the fourth embodiment, as in the second embodiment, the electromagnetic
Frequency band of electromagnetic wave to be absorbed by wave absorbing panel 10
As an area, f11~ F12And ftwenty one~ Ftwenty twoTwo frequency bands
The divided conductive film according to the fourth embodiment has a defined area.
22 is a frequency band f11~ F12Conductivity corresponding to
Pattern 24D and frequency band f twenty one~ Ftwenty twoCorresponding to
The electric patterns 24E are arranged alternately.
I have.

【0077】導電パターン24Dは、第3実施形態で説
明した導電パターン24Cと同様に、4本の辺の中間部
が各々導電パターン24Dの外側へ凸となるように湾曲
されており、導電パターン24Dの第1の配列方向(図
6の矢印A方向)に沿った導電パターン24Dの幅b11
は、第2の配列方向(図6の矢印B方向)に沿った中央
で最大幅b11maxとされ、第2の配列方向に沿った両端
部へ向かって徐々に(非線形に)小さくなり、前記両端
部で最小幅b11minとされている。同様に、導電パター
ン24Dの第2の配列方向に沿った導電パターン24の
幅b12は、第1の配列方向に沿った中央で最大幅b12
max(=b11max)とされ、第1の配列方向に沿った両端
部へ向かって徐々に(非線形に)小さくなり、前記両端
部で最小幅b12min(=b11min)とされている。
Similar to the conductive pattern 24C described in the third embodiment, the conductive pattern 24D is curved so that the middle portions of the four sides are each convex outside the conductive pattern 24D. Of the conductive pattern 24D along the first arrangement direction (the direction of arrow A in FIG. 6).
Has a maximum width b11 max at the center along the second arrangement direction (the direction of the arrow B in FIG. 6), and gradually (nonlinearly) decreases toward both ends along the second arrangement direction. Both ends have a minimum width b11 min . Similarly, the width b12 of the conductive pattern 24 along the second arrangement direction of the conductive pattern 24D is equal to the maximum width b12 at the center along the first arrangement direction.
max (= b11 max ), gradually (non-linearly) smaller toward both ends along the first arrangement direction, and has a minimum width b12 min (= b11 min ) at both ends.

【0078】一方、導電パターン24Eは、4本の辺の
中間部が各々導電パターン24Eの内側へ凸となるよう
に、導電パターン24Dと同一の曲率で湾曲されてお
り、導電パターン24Eの第1の配列方向に沿った導電
パターン24Eの幅b21は、第2の配列方向に沿った両
端部で最大幅b21maxとされ、第2の配列方向に沿った
中央へ向かって徐々に(非線形に)小さくなり、その中
央で最小幅b21minとされている。同様に、導電パター
ン24Eの第2の配列方向に沿った導電パターン24の
幅b22は、第1の配列方向に沿った両端部で最大幅b22
max(=b21max)とされ、第1の配列方向に沿った中央
へ向かって徐々に(非線形に)小さくなり、その中央で
最小幅b22min(=b21min)とされている。
On the other hand, the conductive pattern 24E is curved with the same curvature as the conductive pattern 24D so that the middle portions of the four sides are each convex toward the inside of the conductive pattern 24E. The width b21 of the conductive pattern 24E along the arrangement direction is a maximum width b21 max at both ends along the second arrangement direction, and gradually (nonlinearly) toward the center along the second arrangement direction. It has a minimum width b21 min at the center. Similarly, the width b22 of the conductive patterns 24 along the second arrangement direction of the conductive patterns 24E is the maximum width b22 at both ends along the first arrangement direction.
max (= b21 max ), gradually (nonlinearly) smaller toward the center along the first arrangement direction, and has a minimum width b22 min (= b21 min ) at the center.

【0079】第1の配列方向に沿って並ぶ導電パターン
24D,24Eは、導電パターン24Dにおいて幅b11
が最大幅b11maxとなっている部分及び導電パターン2
4Eにおいて幅b21が最大幅b21maxとなっている部分
が、第2の配列方向に沿って互いに同一の位置に位置す
るように各々配置されているので、第1の配列方向に沿
って並ぶ導電パターン24D,24Eのギャップ26の
幅dは一定とされている。
The conductive patterns 24D and 24E arranged along the first arrangement direction have a width b11 in the conductive pattern 24D.
Where the width is the maximum width b11 max and the conductive pattern 2
4E, the portions where the width b21 is the maximum width b21 max are arranged so as to be located at the same position as each other along the second arrangement direction. The width d of the gap 26 of the patterns 24D and 24E is constant.

【0080】また、第2の配列方向に沿って並ぶ導電パ
ターン24D,24Eは、導電パターン24Dにおいて
幅b12が最大幅b12maxとなっている部分及び導電パタ
ーン24Eにおいて幅b22が最大幅b22maxとなってい
る部分が、第1の配列方向に沿って互いに同一の位置に
位置するように各々配置されているので、第2の配列方
向に沿って並ぶ導電パターン24D,24Eのギャップ
26の幅dも一定とされている。
The conductive patterns 24D and 24E arranged in the second arrangement direction include a portion where the width b12 is the maximum width b12 max in the conductive pattern 24D and a width b22 which is the maximum width b22 max in the conductive pattern 24E. Are arranged so as to be located at the same position as each other in the first arrangement direction, so that the width d of the gap 26 between the conductive patterns 24D and 24E arranged in the second arrangement direction Is also constant.

【0081】本第4実施形態では、吸収すべき電磁波の
周波数帯域f11〜f12に対応する導電パターン24Dの
幅b11の変化範囲b11min〜b11max(=幅b12の変化範
囲b12min〜b12max)を、周波数f1,f2に基づき第2
実施形態と同様にして定めている。また、吸収すべき電
磁波の周波数帯域f21〜f22に対応する導電パターン2
4Eの幅b21の変化範囲b21min〜b21max(=幅b22の
変化範囲b22min〜b22max)を、周波数f1,f2に基づ
き第2実施形態と同様にして定めている。
[0081] In the fourth embodiment, the change in variation range b11 min ~b11 max (= width b12 of the conductive pattern 24D having a width b11 corresponding to the electromagnetic wave frequency band f 11 ~f 12 of to be absorbed range b12 min to B12 the max), the basis of the frequency f 1, f 2 2
It is determined in the same manner as in the embodiment. The conductive pattern 2 corresponding to the frequency band f 21 ~f 22 of the electromagnetic wave to be absorbed
4E variation range of the width b21 b21 min ~b21 max (= variation range b22 min ~b22 max width b22) of, are determined in the same manner as in the second embodiment based on the frequency f 1, f 2.

【0082】本第4実施形態の作用を説明する。本第4
実施形態に係る電磁波吸収パネル10には、導電パター
ン24D,24Eがマトリクス状に配列された分割導電
膜22が設けられているので、建築物の窓部等への配設
に際しては、第3実施形態と同様に、単に抵抗膜16側
より電磁波が到来するように配設される。
The operation of the fourth embodiment will be described. Book 4
The electromagnetic wave absorbing panel 10 according to the embodiment is provided with the divided conductive film 22 in which the conductive patterns 24D and 24E are arranged in a matrix. As in the case of the embodiment, it is arranged so that the electromagnetic wave simply arrives from the resistance film 16 side.

【0083】また、本第4実施形態に係る分割導電膜2
2は、導電パターン24D,24Eがマトリクス状かつ
互い違いに配列されて構成されており、抵抗膜16と反
射膜18との間の第1の配列方向についての実効比誘電
率は、導電パターン24Dに対応する部位においては、
第2の配列方向に沿ってεS11→εS12→εS11と連続的
に変化しており、導電パターン24Eに対応する部位に
おいては、第2の配列方向に沿ってεS22(周波数f22
に対応する実効比誘電率値)→εS21(周波数f 21に対
応する実効比誘電率値)→εS22と連続的に変化してい
る。
Further, the divided conductive film 2 according to the fourth embodiment
2 indicates that the conductive patterns 24D and 24E are
The resistive film 16 and the resistive film 16 are arranged alternately.
Effective relative dielectric with respect to the first arrangement direction between the film and the projection film 18
In the portion corresponding to the conductive pattern 24D,
Ε along the second array directionS11→ εS12→ εS11And continuous
At the position corresponding to the conductive pattern 24E.
Ε along the second arrangement directionS22(Frequency ftwenty two
Effective relative permittivity value corresponding to) → εS21(Frequency f twenty oneTo
Corresponding effective relative permittivity value) → εS22And continuously changing
You.

【0084】一方、抵抗膜16と反射膜18との間の第
2の配列方向についての実効比誘電率は、導電パターン
24Dに対応する部位においては、第1の配列方向に沿
ってεS11→εS12→εS11と連続的に変化しており、導
電パターン24Eに対応する部位においては、第1の配
列方向に沿ってεS22→εS21→εS22と連続的に変化し
ている。
On the other hand, the effective relative dielectric constant between the resistive film 16 and the reflective film 18 in the second arrangement direction is ε S11 → along the first arrangement direction at a portion corresponding to the conductive pattern 24D. ε S12 → ε S11 continuously changes, and at a portion corresponding to the conductive pattern 24E, changes continuously along the first arrangement direction as ε S22 → ε S21 → ε S22 .

【0085】これにより、建築物に到来する電磁波の偏
波面の方向に拘わらず(例えば水平偏波、垂直偏波、円
偏波の何れであっても)、電磁波吸収パネル10から射
出される電磁波が大幅に減衰・吸収される周波数帯域の
中心周波数は、導電パターン24Dに対応する部位にお
いては第1の配列方向及び第2の配列方向に沿って、各
々f11〜f12の範囲で連続的に変化し、導電パターン2
4Eに対応する部位においては第1の配列方向及び第2
の配列方向に沿って、各々f21〜f22の範囲で連続的に
変化する。従って、電磁波吸収パネル10に到来した電
磁波E0を、該電磁波の偏波面の方向に拘わらず、吸収
すべき電磁波の周波数帯域f11〜f12及び周波数帯域f
21〜f22の全域に亘って高い吸収率で吸収することがで
きる。
Thus, regardless of the direction of the plane of polarization of the electromagnetic wave arriving at the building (for example, any of horizontal polarization, vertical polarization, and circular polarization), the electromagnetic wave emitted from the electromagnetic wave absorption panel 10 can be used. the center frequency of the frequency band to be greatly attenuated and absorbed, in the portion corresponding to the conductive pattern 24D along the first arrangement direction and the second arrangement direction, each successive range of f 11 ~f 12 To conductive pattern 2
4E, the first arrangement direction and the second
Along the arrangement direction of, and continuously changes in the range of f 21 to f 22 . Therefore, the electromagnetic wave E 0 arriving at the electromagnetic wave absorbing panel 10 can be converted into the frequency bands f 11 to f 12 and the frequency band f 11 of the electromagnetic wave to be absorbed regardless of the direction of the polarization plane of the electromagnetic wave.
It can be absorbed by the high absorption over the entire 21 ~f 22.

【0086】〔第5実施形態〕次に本発明の第5実施形
態について説明する。本第5実施形態では、電磁波吸収
パネル10によって吸収すべき電磁波の周波数帯域とし
て、中心周波数が大きく異なる2つの周波数帯域(中心
周波数f1の周波数帯域及び中心周波数f2の周波数帯
域)が定められており、本第5実施形態に係る分割導電
膜22は、中心周波数f1の周波数帯域に対応する正方
形の導電パターン24Fと、中心周波数f2の周波数帯
域に対応する正方形の導電パターン24Gが組み合わさ
れて構成されている。
[Fifth Embodiment] Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, as a frequency band of electromagnetic waves to be absorbed by the electromagnetic wave absorbing panel 10, the center frequency is largely different two frequency bands (center frequency f 1 of the frequency band and center frequency f 2 of the frequency band) is defined and, dividing the conductive film 22 according to the fifth embodiment, a square conductive pattern 24F corresponding to the frequency band of the center frequency f 1, the conductive pattern 24G square corresponding to the frequency band of the center frequency f 2 combined It is configured.

【0087】本第5実施形態では、導電パターン24F
の幅(辺の長さ)b1を、対応する周波数帯域の中心周
波数f1に基づいて定めており、導電パターン24Gの
幅(辺の長さ)b2を、対応する周波数帯域の中心周波
数f2に基づいて定めているが、中心周波数f1,f2
大きく異なっているため、導電パターン24Fの辺の長
さは、導電パターン24Gの辺の長さの1/2よりも僅
かに小さくなっている。このため、本第5実施形態に係
る分割導電膜22は、一定幅のギャップ26を空けて4
個の導電パターン24Fをマトリクス状に並べた導電パ
ターン群と導電パターン24Gが、マトリクス状かつ互
い違いに配列されて構成されている。
In the fifth embodiment, the conductive patterns 24F
The width (length of a side) b1, and determined based on the center frequency f 1 of the corresponding frequency band, the width of the conductive pattern 24G (side length) of b2, corresponding frequency band center frequency f 2 However, since the center frequencies f 1 and f 2 are greatly different, the length of the side of the conductive pattern 24F is slightly smaller than の of the length of the side of the conductive pattern 24G. ing. For this reason, the divided conductive film 22 according to the fifth embodiment has four gaps 26 with a constant width.
A conductive pattern group in which the individual conductive patterns 24F are arranged in a matrix and the conductive patterns 24G are arranged in a matrix and are alternately arranged.

【0088】本第5実施形態の作用を説明する。本第5
実施形態に係る電磁波吸収パネル10には、4個の導電
パターン24Fが組み合わされた導電パターン群と導電
パターン24Gがマトリクス状に配列された分割導電膜
22が設けられているので、建築物の窓部等への配設に
際しては、第3実施形態及び第4実施形態と同様に、単
に抵抗膜16側より電磁波が到来するように配設され
る。
The operation of the fifth embodiment will be described. Book 5
Since the electromagnetic wave absorbing panel 10 according to the embodiment is provided with the conductive pattern group in which the four conductive patterns 24F are combined and the divided conductive film 22 in which the conductive patterns 24G are arranged in a matrix, the windows of the building are provided. In the case of disposing the electromagnetic wave from the resistive film 16, the electromagnetic wave is simply arranged from the resistive film 16 side, as in the third and fourth embodiments.

【0089】また、本第5実施形態では、抵抗膜16と
反射膜18との間の実効比誘電率は、導電パターン24
Fに対応する部位においては、第1の配列方向及び第2
の配列方向共にεS1となり、導電パターン24Gに対応
する部位においては、第1の配列方向及び第2の配列方
向共にεS2となる。
In the fifth embodiment, the effective relative permittivity between the resistive film 16 and the reflective film 18 is different from that of the conductive pattern 24.
F, the first arrangement direction and the second arrangement direction
Is ε S1 in both the arrangement direction and ε S2 in the first arrangement direction and the second arrangement direction in the portion corresponding to the conductive pattern 24G.

【0090】これにより、建築物に到来する電磁波の偏
波面の方向に拘わらず(例えば水平偏波、垂直偏波、円
偏波の何れであっても)、電磁波吸収パネル10から射
出される電磁波が大幅に減衰・吸収される周波数帯域の
中心周波数は、導電パターン24Fに対応する部位にお
いてはf1、導電パターン24Eに対応する部位におい
てはf2となる。従って、電磁波吸収パネル10に到来
した電磁波E0のうち、中心周波数f1の周波数帯域内の
電磁波及び中心周波数f2の周波数帯域内の電磁波を、
該電磁波の偏波面の方向に拘わらず、各々高い吸収率で
吸収することができる。
Thus, regardless of the direction of the plane of polarization of the electromagnetic wave arriving at the building (for example, any of horizontal polarization, vertical polarization and circular polarization), the electromagnetic wave emitted from the electromagnetic wave absorbing panel 10 can be used. the center frequency of the frequency band is greatly attenuated and absorbed becomes f 2 in portions corresponding to f 1, the conductive pattern 24E is at the site corresponding to the conductive pattern 24F. Therefore, among the electromagnetic waves E 0 arriving at the electromagnetic wave absorbing panel 10, the electromagnetic waves in the frequency band of the center frequency f 1 and the electromagnetic waves in the frequency band of the center frequency f 2 are
Irrespective of the direction of the plane of polarization of the electromagnetic waves, they can be absorbed at a high absorption rate.

【0091】なお、上記では比誘電率に関連するパラメ
ータ(上記では導体パターン24の幅bやギャップ26
の幅d)を規則的に変化させることで電磁波吸収帯域の
広帯域化を実現していたが、これに限定されるものでは
なく、比誘電率に関連するパラメータを非規則的に(ラ
ンダムに)変化させるようにしてもよい。
In the above description, parameters related to the relative permittivity (the width b of the conductor pattern 24 and the gap 26
The width of the electromagnetic wave absorption band has been widened by regularly changing the width d), but the present invention is not limited to this. Irregularly (randomly) the parameters related to the relative permittivity are changed. You may make it change.

【0092】また、上記では導体パターン24の幅b
(抵抗部材と反射部材の並ぶ方向と交差する方向に沿っ
た導体の幅)のみを変化させるか、又は幅bとギャップ
26の幅d(抵抗部材と反射部材の並ぶ方向と交差する
方向に沿った導体の間隙)を変化させることで実効比誘
電率を変化させる態様を説明したが、これに限定される
ものではなく、分割導電膜22(導電パターン24)の
膜厚a(抵抗部材と反射部材の並ぶ方向に沿った導体の
厚さ)のみを変化させたり、膜厚aを幅bや幅dと組み
合わせて変化させることで実効比誘電率を変化させるよ
うにしてもよい。
In the above description, the width b of the conductor pattern 24
(Only the width of the conductor along the direction intersecting the direction in which the resistance member and the reflection member are arranged) is changed, or the width b and the width d of the gap 26 (along the direction intersecting the direction in which the resistance member and the reflection member are arranged). Although the mode in which the effective relative permittivity is changed by changing the gap between the conductors described above has been described, the present invention is not limited to this, and the film thickness a of the divided conductive film 22 (conductive pattern 24) (the resistance member and the reflection The effective relative permittivity may be changed by changing only the thickness of the conductor along the direction in which the members are arranged) or by changing the film thickness a in combination with the width b or the width d.

【0093】また、本発明に係る電磁波吸収体は、建築
物の窓部に配設することに限られるものではなく、例え
ば建築物を構成するコンクリート等に埋設したり(コン
クリートへの埋設に際し、周囲に存在する物質により経
時的に電磁波吸収体の腐食等が生ずる恐れがある場合に
は、表面をコーティングする等により腐食防止の対策を
施した後に埋設すればよい)、建設部材(例えば外壁パ
ネル、内壁パネル、手摺り、ブラインド等)に予め配設
するようにしてもよい。
The electromagnetic wave absorber according to the present invention is not limited to being disposed in a window of a building. For example, the electromagnetic wave absorber may be buried in concrete or the like constituting a building (when buried in concrete, If there is a possibility that corrosion of the electromagnetic wave absorber may occur with time due to the substances present in the surroundings, the electromagnetic wave absorber may be buried after taking measures to prevent corrosion by coating the surface, etc., and construction members (for example, outer wall panels). , Inner wall panels, handrails, blinds, etc.).

【0094】例えば予め電磁波吸収体を配設した外壁パ
ネルを用いて建築物の外壁を構築するか、又は建築物の
施工時に外壁内に電磁波吸収体を埋設すれば、外部から
電磁波が到来することにより建築物の外壁から再輻射さ
れる電磁波を低減することができ、建築物の周囲におけ
る受信障害等の電波障害が発生することを防止すること
ができる。
For example, if an outer wall of a building is constructed by using an outer wall panel on which an electromagnetic wave absorber is disposed in advance, or if an electromagnetic wave absorber is buried in the outer wall at the time of construction of a building, electromagnetic waves come from outside. Thereby, electromagnetic waves re-radiated from the outer wall of the building can be reduced, and it is possible to prevent radio interference such as reception interference around the building from occurring.

【0095】また予め電磁波吸収体を配設した内装パネ
ルを用いて建築物の内壁を構築するか、または建築物の
施工時に内壁内に電磁波吸収体を埋設すれば、建築物の
内部に電磁波放射源が配設されていたとしても、建築物
の外部への漏洩を低減することができる。また、建築物
内の特定の部屋の壁面、床面及び天井面に、各々電磁波
吸収体を配設すれば、前記特定の部屋からの電磁波の漏
洩や外部から前記特定の部屋への電磁波の侵入を低減す
ることができ、前記特定の部屋を所謂電波暗室として利
用することも可能となる。
If the inner wall of a building is constructed using an interior panel in which an electromagnetic wave absorber is disposed in advance, or if the electromagnetic wave absorber is buried in the inner wall during construction of the building, the electromagnetic wave is radiated inside the building. Even if a source is provided, leakage to the outside of the building can be reduced. In addition, if an electromagnetic wave absorber is provided on the wall surface, floor surface, and ceiling surface of a specific room in a building, leakage of electromagnetic waves from the specific room or intrusion of electromagnetic waves from the outside into the specific room Can be reduced, and the specific room can be used as a so-called anechoic chamber.

【0096】更に、上記で説明した電磁波吸収体を、例
えば格子、網戸、窓ガラス、サッシ、カーテン、ブライ
ンド、室内に設置されているパーティションや家具等の
うちの少なくとも複数箇所に多重に配設すれば、多重に
配設した電磁波吸収体の電磁波吸収性能が総合されて、
高い電磁波吸収性能を得ることができる。
Further, the above-described electromagnetic wave absorbers may be multiplexed at at least a plurality of locations such as a grid, a screen, a window glass, a sash, a curtain, a blind, a partition or furniture installed in a room. For example, the electromagnetic wave absorption performance of multiple electromagnetic wave absorbers is integrated,
High electromagnetic wave absorption performance can be obtained.

【0097】また、上記で説明した電磁波吸収体を、建
設作業等において、到来する電磁波と作業員との間に配
設されるシート材、例えば養生シートや落下防止ネット
等に貼着するようにしてもよい。これにより、到来する
電磁波の電界強度が高い領域で作業する作業者を、到来
する電磁波から保護することができる。
In the construction work or the like, the above-described electromagnetic wave absorber is attached to a sheet material provided between an incoming electromagnetic wave and a worker, such as a curing sheet or a fall prevention net. You may. Thereby, the worker working in the region where the electric field strength of the incoming electromagnetic wave is high can be protected from the incoming electromagnetic wave.

【0098】更に、本発明に係る電磁波吸収体は、建設
部材に適用することに限定されるものではない。例えば
軍用機等の航空機の翼の先端部等のように、到来した電
磁波を再輻射することが望ましくない物体に対し、本発
明に係る電磁波吸収体を取付ければ、前記物体から再輻
射される電磁波を低減することができる。
Further, the electromagnetic wave absorber according to the present invention is not limited to application to construction members. If an electromagnetic wave absorber according to the present invention is attached to an object such as a tip of a wing of an aircraft such as a military aircraft that does not want to re-emit an incoming electromagnetic wave, the object is re-emitted from the object. Electromagnetic waves can be reduced.

【0099】また、一般に高周波電流を扱う電気・電子
機器、或いは電磁波放射源を備えた電気・電子機器(ブ
ラウン管を備えた機器や電子レンジ等)からは、微弱で
はあるが電磁波が放射されている。このような電気・電
子機器に上記で説明した電磁波吸収体を設ければ、該電
気・電子機器から放射される電磁波を低減することがで
き、放射される電磁波が人体に及ぼす影響を低減できる
と共に、放射される電磁波による電波障害も低減するこ
とができる。
In general, electromagnetic waves, though weak, are radiated from electric / electronic devices handling high-frequency currents or electric / electronic devices provided with an electromagnetic wave radiation source (devices equipped with a cathode ray tube, a microwave oven, etc.). . If such an electric / electronic device is provided with the electromagnetic wave absorber described above, the electromagnetic wave radiated from the electric / electronic device can be reduced, and the effect of the radiated electromagnetic wave on the human body can be reduced. Also, it is possible to reduce radio interference caused by radiated electromagnetic waves.

【0100】[0100]

【発明の効果】以上説明したように請求項1記載の発明
は、抵抗部材と反射部材との間に、抵抗部材と反射部材
の並ぶ方向と交差する方向に沿って、吸収すべき電磁波
の周波数帯域に応じて比誘電率εSが規則的又は非規則
的に変更された誘電部材を設けたので、電磁波吸収帯域
の広帯域化を実現することができる、という優れた効果
を有する。
As described above, according to the first aspect of the present invention, the frequency of the electromagnetic wave to be absorbed is set between the resistance member and the reflection member along the direction intersecting the direction in which the resistance member and the reflection member are arranged. Since the dielectric member in which the relative dielectric constant ε S is changed regularly or irregularly according to the band is provided, an excellent effect that the band of the electromagnetic wave absorption band can be widened is realized.

【0101】請求項2記載の発明は、少なくとも抵抗部
材と反射部材の並ぶ方向と交差する方向に沿って間隔を
空けて配列された複数の導体を抵抗部材と反射部材との
間に設け、吸収すべき電磁波の周波数帯域に応じて実効
比誘電率が規則的又は非規則的に変化するように、抵抗
部材と反射部材の並ぶ方向と交差する方向に沿った導体
の幅、抵抗部材と反射部材の並ぶ方向と交差する方向に
沿った導体の間隙、及び抵抗部材と反射部材の並ぶ方向
に沿った導体の厚さの少なくとも1つを規則的又は非規
則的に変更したので、偏波面の方向が第1方向と略直交
する電磁波の吸収帯域の広帯域化を実現することができ
る、という優れた効果を有する。
According to a second aspect of the present invention, a plurality of conductors arranged at least along the direction intersecting the direction in which the resistance member and the reflection member are arranged are provided between the resistance member and the reflection member, and a plurality of conductors are provided between the resistance member and the reflection member. The width of the conductor along the direction intersecting the direction in which the resistance member and the reflection member are arranged, and the resistance member and the reflection member so that the effective relative permittivity changes regularly or irregularly according to the frequency band of the electromagnetic wave to be performed. Since at least one of the gap between the conductors along the direction intersecting with the direction in which the conductors are arranged and the thickness of the conductor along the direction in which the resistance member and the reflection member are arranged are changed regularly or irregularly, the direction of the plane of polarization is changed. Has an excellent effect that an absorption band of an electromagnetic wave substantially orthogonal to the first direction can be broadened.

【0102】請求項3記載の発明は、請求項2記載の発
明において、複数の導体は、抵抗部材と反射部材の並ぶ
方向と交差する第1方向に沿って間隔を空けて配列さ
れ、第1方向に沿った導体の幅及び間隙の少なくとも一
方が規則的又は非規則的に変更されていると共に、抵抗
部材と反射部材の並ぶ方向及び第1方向と各々交差する
第2方向に沿って間隔を空けて配列され、第2方向に沿
った導体の幅及び間隙の少なくとも一方が規則的又は非
規則的に変更されているので、上記効果に加え、電磁波
の偏波面の方向に拘わらず、電磁波吸収帯域の広帯域化
を実現することができる、という効果を有する。
According to a third aspect of the present invention, in the second aspect of the invention, the plurality of conductors are arranged at intervals along a first direction intersecting a direction in which the resistance member and the reflection member are arranged. At least one of the width and the gap of the conductor along the direction is changed regularly or irregularly, and the interval is set along the direction in which the resistance member and the reflection member are arranged and the second direction intersecting the first direction. Since the conductors are arranged at intervals and at least one of the width and the gap of the conductor along the second direction is changed regularly or irregularly, in addition to the above-described effects, regardless of the direction of the polarization plane of the electromagnetic wave, the electromagnetic wave absorption This has the effect that the band can be broadened.

【0103】請求項4記載の発明は、請求項2記載の発
明において、複数の導体を絶縁性材料から成る基板上に
形成したので、上記効果に加え、電磁波吸収体の抵抗部
材と反射部材の距離をより小さくすることが可能とな
る、という効果を有する。
According to a fourth aspect of the present invention, in the second aspect of the present invention, a plurality of conductors are formed on a substrate made of an insulating material. This has the effect that the distance can be made smaller.

【0104】請求項5記載の発明は、請求項1又は請求
項2記載の発明において、到来した電磁波の一部が吸収
されるように導電率が調整されて基板上に形成された導
電性被膜を含んで抵抗部材を構成したので、上記効果に
加え、電磁波吸収体から射出される電磁波をより低減す
ることができる、という効果を有する。
According to a fifth aspect of the present invention, in the first or the second aspect of the present invention, the conductive film is formed on the substrate by adjusting the conductivity so that a part of the arriving electromagnetic wave is absorbed. Is included in the resistance member, and in addition to the above effects, there is an effect that electromagnetic waves emitted from the electromagnetic wave absorber can be further reduced.

【0105】請求項7記載の発明は、請求項1乃至請求
項6の何れかに記載の発明において、電磁波吸収体を構
成する各部材を略透明としたので、上記効果に加え、本
発明に係る電磁波吸収体を建築物の窓部等に適用するこ
とが可能となる、という効果を有する。
According to a seventh aspect of the present invention, in the first aspect of the present invention, each member constituting the electromagnetic wave absorber is made substantially transparent. There is an effect that it becomes possible to apply such an electromagnetic wave absorber to a window of a building or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態に係る電磁波吸収パネルの概略断
面図である。
FIG. 1 is a schematic sectional view of an electromagnetic wave absorbing panel according to an embodiment.

【図2】 第1実施形態に係る電磁波吸収パネルにおけ
る導電パターンを示す平面図である。
FIG. 2 is a plan view showing a conductive pattern in the electromagnetic wave absorbing panel according to the first embodiment.

【図3】 電磁波吸収パネルによる電磁波吸収の原理を
説明するための概念図である。
FIG. 3 is a conceptual diagram for explaining the principle of electromagnetic wave absorption by an electromagnetic wave absorbing panel.

【図4】 第2実施形態に係る電磁波吸収パネルにおけ
る導電パターンを示す平面図である。
FIG. 4 is a plan view showing a conductive pattern in an electromagnetic wave absorbing panel according to a second embodiment.

【図5】 第3実施形態に係る電磁波吸収パネルにおけ
る導電パターンを示す平面図である。
FIG. 5 is a plan view showing a conductive pattern in an electromagnetic wave absorbing panel according to a third embodiment.

【図6】 第4実施形態に係る電磁波吸収パネルにおけ
る導電パターンを示す平面図である。
FIG. 6 is a plan view showing a conductive pattern in an electromagnetic wave absorbing panel according to a fourth embodiment.

【図7】 第5実施形態に係る電磁波吸収パネルにおけ
る導電パターンを示す平面図である。
FIG. 7 is a plan view showing a conductive pattern in an electromagnetic wave absorbing panel according to a fifth embodiment.

【符号の説明】[Explanation of symbols]

10 電磁波吸収パネル 16 抵抗膜 18 反射膜 22 分割導電膜 24 導電パターン 26 ギャップ DESCRIPTION OF SYMBOLS 10 Electromagnetic wave absorption panel 16 Resistive film 18 Reflective film 22 Divided conductive film 24 Conductive pattern 26 Gap

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000001122 株式会社日立国際電気 東京都中野区東中野三丁目14番20号 (72)発明者 原川 健一 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 村井 信義 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 斉藤 俊夫 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 冨樫 元康 東京都港区芝1−11−11 日本板硝子環境 アメニティ株式会社内 (72)発明者 星野 康 東京都港区芝1−11−11 日本板硝子環境 アメニティ株式会社内 (72)発明者 松尾 吉章 埼玉県大宮市蓮沼1406番地 八木アンテナ 株式会社大宮工場内 (72)発明者 皆瀬 淳 埼玉県大宮市蓮沼1406番地 八木アンテナ 株式会社大宮工場内 (72)発明者 若生 伊市 埼玉県大宮市蓮沼1406番地 八木アンテナ 株式会社大宮工場内 Fターム(参考) 2E001 DH01 DH25 FA04 FA06 FA11 FA14 FA31 FA32 GA06 GA12 GA24 GA32 GA42 HA11 HB01 HD11 HD13 2E039 AC00 5E321 AA43 AA44 GG05  ──────────────────────────────────────────────────の Continued on the front page (71) Applicant 000001122 Hitachi Kokusai Electric Inc. 3- 14-20 Higashi-Nakano, Nakano-ku, Tokyo (72) Inventor Kenichi Harakawa 1-5-1, Otsuka, Inzai-shi, Chiba Pref. Takenaka Corporation Inside the Technical Research Institute of Construction Office (72) Inventor Nobuyoshi Murai 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Research Institute of Takenaka Corporation (72) Inventor Toshio Saito 1-5-1, Otsuka 1, Inzai City, Chiba Prefecture Stock Company (72) Inventor Motoyasu Togashi 1-1-11-11 Shiba, Minato-ku, Tokyo Nippon Sheet Glass Environmental Amenities Inc. (72) Inventor Yasushi Hoshino 1-11-1-11 Shiba, Minato-ku, Tokyo Japan Sheet Glass Environment Amenity Co., Ltd. (72) Inventor Yoshiaki Matsuo 1406 Hasunuma, Omiya City, Saitama Prefecture Yagi Antenna Yagi Antenna Co., Ltd. Omiya Plant (72) Invention Person Atsushi Minase 1406 Hasunuma, Omiya City, Saitama Prefecture Yagi Antenna, Omiya Plant Co., Ltd. FA14 FA31 FA32 GA06 GA12 GA24 GA32 GA42 HA11 HB01 HD11 HD13 2E039 AC00 5E321 AA43 AA44 GG05

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 到来した電磁波の一部を反射し他の一部
を透過させる抵抗部材と、 前記抵抗部材と距離を隔てて配置され、到来した電磁波
を反射する反射部材と、 前記抵抗部材と前記反射部材との間に設けられ、前記抵
抗部材と前記反射部材の並ぶ方向に交差する方向に沿っ
て、吸収すべき電磁波の周波数帯域に応じて比誘電率ε
Sが規則的又は非規則的に変更された誘電部材と、 を含む電磁波吸収体。
A resistance member that reflects a part of the arriving electromagnetic wave and transmits another part; a reflection member that is arranged at a distance from the resistance member and reflects the arriving electromagnetic wave; A dielectric constant ε is provided between the reflection member and a direction along the direction intersecting the direction in which the resistance member and the reflection member are arranged, according to the frequency band of the electromagnetic wave to be absorbed.
An electromagnetic wave absorber comprising: a dielectric member in which S is changed regularly or irregularly.
【請求項2】 到来した電磁波の一部を反射し他の一部
を透過させる抵抗部材と、 前記抵抗部材と距離を隔てて配置され、到来した電磁波
を反射する反射部材と、 前記抵抗部材と前記反射部材との間に設けられ、前記抵
抗部材と前記反射部材の並ぶ方向と交差する方向に沿っ
て間隔を空けて配列された複数の導体と、 を含んで構成された電磁波吸収体であって、 前記複数の導体は、吸収すべき電磁波の周波数帯域に応
じて実効比誘電率が規則的又は非規則的に変化するよう
に、前記交差する方向に沿った前記導体の幅、前記交差
する方向に沿った前記導体の間隙、及び前記並ぶ方向に
沿った前記導体の厚さの少なくとも1つが規則的又は非
規則的に変更されていることを特徴とする電磁波吸収
体。
2. A resistance member that reflects a part of the arriving electromagnetic wave and transmits another part, a reflection member that is arranged at a distance from the resistance member and reflects the arriving electromagnetic wave, A plurality of conductors provided between the reflection member and arranged at intervals along a direction intersecting a direction in which the resistance member and the reflection member are arranged. The plurality of conductors, the width of the conductor along the intersecting direction, the intersection so that the effective relative permittivity changes regularly or irregularly according to the frequency band of the electromagnetic wave to be absorbed An electromagnetic wave absorber wherein at least one of a gap between the conductors along a direction and a thickness of the conductors along the direction in which the conductors are arranged is changed regularly or irregularly.
【請求項3】 前記複数の導体は、前記抵抗部材と前記
反射部材の並ぶ方向と交差する第1方向に沿って間隔を
空けて配列され、吸収すべき電磁波の周波数帯域に応じ
て前記第1方向についての実効比誘電率が規則的又は非
規則的に変化するように、前記第1方向に沿った前記導
体の幅及び間隙の少なくとも一方が規則的又は非規則的
に変更されていると共に、前記並ぶ方向及び前記第1方
向と各々交差する第2方向に沿って間隔を空けて配列さ
れており、吸収すべき電磁波の周波数帯域に応じて前記
第2方向についての実効比誘電率が規則的又は非規則的
に変化するように、前記第2方向に沿った前記導体の幅
及び間隙の少なくとも一方が規則的又は非規則的に変更
されていることを特徴とする請求項2記載の電磁波吸収
体。
3. The plurality of conductors are arranged at intervals along a first direction intersecting a direction in which the resistance member and the reflection member are arranged, and the first conductor is arranged in accordance with a frequency band of an electromagnetic wave to be absorbed. At least one of the width and the gap of the conductor along the first direction is regularly or irregularly changed so that the effective relative permittivity in the direction changes regularly or irregularly, It is arranged at intervals along the second direction intersecting the first direction and the line-up direction, and the effective relative permittivity in the second direction is regular according to the frequency band of the electromagnetic wave to be absorbed. The electromagnetic wave absorber according to claim 2, wherein at least one of the width and the gap of the conductor along the second direction is changed regularly or irregularly so as to change irregularly. body.
【請求項4】 前記複数の導体は絶縁性材料から成る基
板上に形成されていることを特徴とする請求項2記載の
電磁波吸収体。
4. The electromagnetic wave absorber according to claim 2, wherein said plurality of conductors are formed on a substrate made of an insulating material.
【請求項5】 前記抵抗部材は、絶縁性材料から成る基
板と、到来した電磁波の一部が吸収されるように導電率
が調整されて前記基板上に形成された導電性被膜と、を
含んで構成されていることを特徴とする請求項1又は請
求項2記載の電磁波吸収体。
5. The resistance member includes a substrate made of an insulating material, and a conductive film formed on the substrate with a conductivity adjusted to absorb a part of an incoming electromagnetic wave. The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorber comprises:
【請求項6】 前記反射部材は、絶縁性材料から成る基
板と、該基板上に形成された導電性被膜と、を含んで構
成されていることを特徴とする請求項1又は請求項2記
載の電磁波吸収体。
6. The reflection member according to claim 1, wherein the reflection member includes a substrate made of an insulating material, and a conductive film formed on the substrate. Electromagnetic wave absorber.
【請求項7】 前記電磁波吸収体を構成する各部材が略
透明であることを特徴とする請求項1乃至請求項6の何
れか1項記載の電磁波吸収体。
7. The electromagnetic wave absorber according to claim 1, wherein each member constituting the electromagnetic wave absorber is substantially transparent.
JP2000211375A 2000-07-12 2000-07-12 Electromagnetic wave absorber Withdrawn JP2002026570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000211375A JP2002026570A (en) 2000-07-12 2000-07-12 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211375A JP2002026570A (en) 2000-07-12 2000-07-12 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2002026570A true JP2002026570A (en) 2002-01-25

Family

ID=18707491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211375A Withdrawn JP2002026570A (en) 2000-07-12 2000-07-12 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2002026570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087980A (en) * 2005-09-16 2007-04-05 Goto Ikueikai Radio wave absorber
JP2008106455A (en) * 2006-10-23 2008-05-08 Takenaka Komuten Co Ltd Room structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087980A (en) * 2005-09-16 2007-04-05 Goto Ikueikai Radio wave absorber
JP2008106455A (en) * 2006-10-23 2008-05-08 Takenaka Komuten Co Ltd Room structure

Similar Documents

Publication Publication Date Title
Kiani et al. A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading
JP3243789B2 (en) Radio wave absorbing panel
KR100315537B1 (en) Window glass with electronic shield performance
KR20090031529A (en) Electromagnetic wave shielding material and electromagnetic wave absorber
JP2003069282A (en) Specified electromagnetic wave transmitting plate
JPH1168374A (en) Electromagnetic-wave shielding body, panel and blind
KR101502452B1 (en) EM wave absorber design applicable for the inside of a structure
JP2002026570A (en) Electromagnetic wave absorber
JP2002076678A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002076681A (en) Electromagnetic wave absorbing body and method for absorbing the same
JPH11330773A (en) Electromagnetic shielding body and window member thereof
AlKayyali et al. Convoluted Frequency Selective Surface Wallpaper to Block the Industrial, Scientific, and Medical Radio Bands Inside Buildings
JP2002076679A (en) Electromagnetic wave absorber
JPH10126091A (en) Window glass with electromagnetic shielding capability
JP2002076671A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP2002033595A (en) Electromagnetic-wave absorber
JPH09162589A (en) Radio wave absorbent and radio wave absorbing method
JP2002151885A (en) Radio wave absorbing panel and method for manufacturing the same
JP2002076672A (en) Electromagnetic wave absorber
JPH11261286A (en) Radio wave shield region in building
KR102579285B1 (en) Glass Window Device for Selective Transmission of Electromagnetic Waves
JP2005079247A (en) Electric wave absorber
JP2004363138A (en) Wave absorber/reflector
CN101120628B (en) Radio wave shielding body
JP2000196288A (en) Electromagnetic shielding structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041207

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002