JPH11261286A - Radio wave shield region in building - Google Patents

Radio wave shield region in building

Info

Publication number
JPH11261286A
JPH11261286A JP5655498A JP5655498A JPH11261286A JP H11261286 A JPH11261286 A JP H11261286A JP 5655498 A JP5655498 A JP 5655498A JP 5655498 A JP5655498 A JP 5655498A JP H11261286 A JPH11261286 A JP H11261286A
Authority
JP
Japan
Prior art keywords
radio wave
wave shielding
building
shielding area
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5655498A
Other languages
Japanese (ja)
Other versions
JP3180899B2 (en
Inventor
Junichi Hirai
淳一 平井
Kimio Kawasaki
公雄 川崎
修一 ▲高▼坂
Shuichi Kosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP05655498A priority Critical patent/JP3180899B2/en
Publication of JPH11261286A publication Critical patent/JPH11261286A/en
Application granted granted Critical
Publication of JP3180899B2 publication Critical patent/JP3180899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To shield radio wave regardless of moisture adhering to sash, or the like, by applying the surface of a sash in the radio wave shield region within a building in parallel with a planar radio wave shielding body comprising conductive elements having length in two axial directions shorter than one half of the wavelength of a radio wave to be shielded. SOLUTION: A radio wave shield region 15 in a building has floor, ceiling and wall surrounding a window 1 in a conductive sash 3 entirely formed of a radio wave shielding barrier wall 2. A planar radio wave shielding body 4 is formed by arranging conductive elements having length in the biaxial direction on a specified orthogonal coordinate system shorter than one half of the wavelength of a radio wave 14 to be shielded on the entire surface along two axes at an interval shorter than one half of the wavelength. The body 4 is disposed in parallel with the plane of the sash 3 and the air gap therebetween is set in the range of 1/30-1/2 of the wavelength in order to shield the radio wave while resonating at the frequency thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は建物内電波遮蔽域に関
し、特に屋内空間での電波通信における屋内・屋外間の
電波の漏れによる通信情報の盗聴、干渉妨害、侵入等を
防止するセキュリティ確保、及び屋内簡易携帯電話シス
テム(Personal Handyphone System、PHS)において屋外
通話に影響されない屋内での搬送波の有効利用のための
電波遮蔽域に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave shielding area in a building, and more particularly to security for preventing wiretapping, interference, and intrusion of communication information due to leakage of radio waves between indoor and outdoor in radio communication in an indoor space. Also, the present invention relates to a radio wave shielding area for effective use of a carrier wave indoors which is not affected by an outdoor call in an indoor simple portable telephone system (Personal Handyphone System, PHS).

【0002】[0002]

【従来の技術】情報化の進展に伴い、電波通信機能を備
えたインテリジェントビルが増え、さらにディジタル情
報通信及びPHSの普及に応じ、秘密保持、混信防止、及
び電波の効率的利用等の面から建物内部に電磁遮蔽空間
を設ける機会が増えている。電磁遮蔽空間では天井面、
床面、及び側面の全周面のすべてを電磁遮蔽することが
不可欠であるが、建物においては居住性の要求等から窓
もまた欠かせない。
2. Description of the Related Art With the advance of information technology, the number of intelligent buildings equipped with radio wave communication functions has increased, and furthermore, with the spread of digital information communication and PHS, confidentiality protection, interference prevention, and efficient use of radio waves have been improved. Opportunities to provide electromagnetic shielding space inside buildings are increasing. In electromagnetic shielding space, ceiling surface,
Although it is indispensable to electromagnetically shield the entire floor surface and the entire peripheral surface of the side surface, windows are also indispensable in a building due to requirements for livability.

【0003】図1に事業者内又は屋内のPHSの構成例を
示す。電磁遮蔽機能のある隔壁2(床面2f、天井面2c、
周囲壁2w)によって電波遮蔽域15を画成し、基地局5を
例えば電波遮蔽域15の天井に取付け、該基地局5と電波
14で交信する域内携帯電話器6を遮蔽域15内に適宜分散
させて配置する。周囲壁2wの窓1に電波漏洩があると、
屋外の域外携帯電話器7による盗聴、侵入、干渉、妨害
の虞が生じる。
FIG. 1 shows an example of the configuration of a PHS in a company or indoors. Partition wall 2 with electromagnetic shielding function (floor surface 2f, ceiling surface 2c,
The radio wave shielding area 15 is defined by the surrounding wall 2w), and the base station 5 is attached to, for example, the ceiling of the radio wave shielding area 15, and the base station 5
The intra-area mobile telephones 6 that communicate with each other at 14 are appropriately dispersed and arranged in the shielded area 15. If there is radio wave leakage in the window 1 of the surrounding wall 2w,
There is a risk of eavesdropping, intrusion, interference, and obstruction by the outdoor out-of-bounds mobile phone 7.

【0004】また、PHSでは一定の数の搬送周波数を含
む周波数群が、時分割多重・時分割同時送受話方式に割
り当てられるが、窓1に電波漏洩がある場合には、屋内
のPHSで専用することが望ましい搬送周波数が屋外の域
外携帯電話器7によって先取りされることも予想され、
屋内専用の態勢が崩され、屋内で回線が話中ビジーとな
る危険性が高まる。
In the PHS, a frequency group including a fixed number of carrier frequencies is allocated to the time division multiplexing / time division simultaneous transmission / reception system. It is also anticipated that the carrier frequency that is desired to be
The situation for indoor use is broken, and the risk of the line being busy inside the house increases.

【0005】これらの問題の解決のため、窓を導電性材
料等で覆って電磁遮蔽することが考えられるが、導電性
材料は光学的透過性に乏しく、採光と外界の景観の観賞
機能の維持に問題があった。透明な電磁遮蔽手段とし
て、図2(D)のような導電素子散在型で周波数選択性が
ある電波遮蔽面状体(FSS)をガラス表面に設ける提案
がなされている(Techniques for Analyzing Frequency
Selective Surfaces ―A Review, by RAJ MITTRA et a
l, Proceedings of IEEE, December 1988)。
To solve these problems, electromagnetic shielding may be considered by covering the window with a conductive material or the like. However, the conductive material is poor in optical transparency, so that it is capable of daylighting and maintaining the function of viewing the external scenery. Had a problem. As a transparent electromagnetic shielding means, it has been proposed to provide a radio-shielding sheet (FSS) having a conductive element dispersed type and frequency selectivity on a glass surface as shown in FIG. 2D (Techniques for Analyzing Frequency).
Selective Surfaces ―A Review, by RAJ MITTRA et a
l, Proceedings of IEEE, December 1988).

【0006】この面状体FSSは、例えば窓ガラス1a(図
7参照)の表面上に規則的に配列した金属小片(metall
ic patch)素子10(以下に等方性導電素子という場合が
ある。)又は金属スクリーン上の規則的配列の小開口素
子からなり、それら素子に特有の共振点近傍において全
体的反射(total reflection)又は全体的伝搬(total
transmission)を実現するものである。半波長ダイポー
ル・アンテナの受信動作がその原理である。
The sheet-like body FSS is formed, for example, on a surface of a window glass 1a (see FIG. 7) by regularly arranging small metal pieces (metallized pieces).
ic patch) consists of elements 10 (hereinafter sometimes referred to as isotropic conductive elements) or regularly arranged small aperture elements on a metal screen, and the total reflection near the resonance point specific to those elements. Or total propagation (total
transmission). The principle is the receiving operation of a half-wave dipole antenna.

【0007】図5(A)において、受信抵抗Rを有するダ
イポール型の半波長アンテナ11が電力密度Pで到来する
電磁波を受信すると、受信抵抗Rに誘起される電力とし
ては、アンテナを構成する導体の面積より遙かに広い面
積Aに存在するエネルギー(=P×A)を吸収すること
が知られている。その面積Aは近似的にA≒0.13λ
2(λは波長)で与えられる。一方、受信抵抗Rを図5
(B)に示すように短絡すると、受信電力は逆位相で反射
されるが、その反射面積AS(学名は散乱断面積)は近
似的にAS≒0.52λ2(λは波長)で与えられ、吸収の面
積Aよりも広い。
In FIG. 5A, when a dipole half-wave antenna 11 having a reception resistor R receives an electromagnetic wave arriving at a power density P, the power induced in the reception resistor R is represented by a conductor constituting the antenna. It is known that energy (= P × A) existing in an area A much larger than the area A is absorbed. The area A is approximately A ≒ 0.13λ
2 (λ is the wavelength). On the other hand, the receiving resistance R is
When a short circuit occurs as shown in (B), the received power is reflected in the opposite phase, but the reflection area A S (scientific name is the scattering cross section) is approximately given by A S ≒ 0.52λ 2 (λ is the wavelength). Larger than the area A of absorption.

【0008】即ち、半波長アンテナ11の周囲は、あたか
も透明な反射板のような動作をする。これがFSSの原理
であり、アンテナ終端抵抗が短絡した状態に相当する共
振素子が、その周囲の電磁界において前記反射面積に相
当した面積の反射板として働く。当然であるが、共振し
ない周波数の電波は反射されずに透過するので、共振周
波数以外の電磁波の応用には障害を与えない。
That is, the periphery of the half-wave antenna 11 operates as if it were a transparent reflector. This is the principle of the FSS, and a resonance element corresponding to a state in which the antenna terminating resistor is short-circuited acts as a reflector having an area corresponding to the reflection area in a surrounding electromagnetic field. As a matter of course, radio waves having a frequency that does not resonate are transmitted without being reflected, and thus do not impede the application of electromagnetic waves other than the resonance frequency.

【0009】FSSにおいて実際に反射を行わせる面は厚
さのない面ではなく、半波長アンテナ11即ち素子を軸と
した回転楕円体であり、面だけでなく膨らみを持ち、以
下に説明する窓枠金属・電波遮蔽面状体間の間隙s(図
1参照)に対しても遮蔽性能を有する。また実用上は、
任意の電波の偏波面に対して機能するように多方向の複
数素子で電波遮蔽面状体FSSを構成する例が多い。
In the FSS, the surface on which reflection is actually performed is not a surface having a small thickness, but is a half-wavelength antenna 11, that is, a spheroid having an element as an axis. It also has shielding performance for the gap s (see FIG. 1) between the frame metal and the radio wave shielding sheet. In practice,
In many cases, the radio wave shielding sheet FSS is composed of a plurality of elements in multiple directions so as to function on the polarization plane of an arbitrary radio wave.

【0010】[0010]

【発明が解決しようとする課題】しかし、従来のガラス
面に設けた電波遮蔽面状体には次の欠点があった。
However, the conventional radio wave shielding sheet provided on the glass surface has the following disadvantages.

【0011】(1)FSSの導電素子10の共振、従ってFSS
全体の共振周波数は、導電素子10に近接する誘電体物質
の誘電率に大きく影響されるのであるが、ガラスが基盤
である場合には影響する誘電率がガラスの種類や厚さに
依存し、また紫外線・赤外線等に対するガラス表面処理
の有無にも依存する。このため、市販されている多種多
様な各種ガラスに適応するには、問題が複雑になり工業
的な解決が困難である。
(1) The resonance of the conductive element 10 of the FSS, and thus the FSS
The overall resonance frequency is greatly affected by the dielectric constant of the dielectric substance close to the conductive element 10, but when glass is the base, the dielectric constant to affect depends on the type and thickness of the glass, It also depends on the presence or absence of glass surface treatment for ultraviolet rays, infrared rays, etc. For this reason, adapting to a wide variety of various commercially available glasses complicates the problem and makes it difficult to solve it industrially.

【0012】(2)窓ガラスは外気に曝され、その表面
には雨滴や結露による水滴が日常的に付着する。ガラス
の比誘電率が3ないし7であるのに対し、水の比誘電率
は80程度であり、FSSの共振点が水滴の付着によって変
動し、電磁遮蔽の効果が不安定になる。
(2) The window glass is exposed to the outside air, and raindrops and water droplets due to dew condensation adhere to the surface thereof on a daily basis. While the relative dielectric constant of glass is 3 to 7, the relative dielectric constant of water is about 80, and the resonance point of FSS fluctuates due to the attachment of water droplets, and the effect of electromagnetic shielding becomes unstable.

【0013】(3)屋内専用のPHSには、屋内設置の基
地局5が不可欠である。屋内PHSにおける情報が屋外に
漏れないようにする保安の目的、及び屋内搬送波が屋外
から利用されるのを防ぎ屋内での話中(ビジー)の頻度
を減らす目的のために、基地局と屋外携帯電話機7との
結合を抑制することが考えられる。屋内基地局5からの
距離dが10メートルの位置にある屋外携帯電話機7と屋
内基地局5との直接結合を避けることが一応の目安と考
えられる。基地局送信出力は10mWと法定されており、基
地局アンテナでの送信電波の電界強度値は110dBμV/m程
度であり、自由空間10mの伝播損失は約58dB(周波数約
2GHz)と見込まれ、屋外携帯電話器7の最低受信感度
は10dBμV/m程度とされているから、この場合に屋内・
外の電磁波遮蔽に必要な減衰として約40dB(110-58-1
0)が想定される。しかし、図2(D)の十文字型の導電
素子10を半波長の間隔で並べたのでは、一般に実用上約
20dBの減衰が限度とされている。
(3) An indoor-installed base station 5 is indispensable for a PHS dedicated to indoor use. Base stations and outdoor mobile phones for security purposes to prevent information in the indoor PHS from leaking to the outside, and to prevent indoor carriers from being used outdoors and reduce the frequency of indoor busy. It is conceivable to suppress the connection with the telephone 7. It is considered as a rough guide to avoid the direct coupling between the outdoor mobile phone 7 and the indoor base station 5 whose distance d from the indoor base station 5 is 10 meters. The output power of the base station is legally required to be 10 mW, the electric field strength of the radio wave transmitted by the base station antenna is about 110 dBμV / m, and the propagation loss in 10 m of free space is expected to be about 58 dB (frequency about 2 GHz). Since the minimum receiving sensitivity of the mobile phone 7 is about 10 dBμV / m,
Approximately 40 dB (110-58-1
0) is assumed. However, if the cross-shaped conductive elements 10 shown in FIG.
20dB attenuation is the limit.

【0014】従って本発明の目的は、窓ガラス表面の誘
電率変化に影響されない高減衰率の電波遮蔽壁で囲んだ
建物内電波遮蔽域を提供するにある。
Accordingly, an object of the present invention is to provide a radio wave shielding area in a building surrounded by a radio wave shielding wall having a high attenuation rate which is not affected by a change in the dielectric constant of the surface of a window glass.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
本発明者は、従来のFSSの導電素子が直交座標系の二軸
方向に対して同一形状を持つという意味で当方性形状で
あるか又は一直線状の素朴なダイポール形状であり、減
衰率を向上させるために素子間間隔c(図2(D)参照)
を狭めると素子間に干渉が起こるので、一定限度以上に
減衰率を高めることができないことに注目した。導電素
子を、所定直交座標系の二軸方向に異なる形状をもった
異方性形状とすれば、素子間間隔cを狭めても、素子間
の干渉を避け、高い減衰率が得られることを実験的に見
出した。また、FSSを窓ガラス面から空隙s(図1参照)
を隔てて配置すれば、FSSの機能がガラス面状の結露に
よって強く影響されることはなくなる。
In order to achieve the above object, the present inventor has determined that a conventional FSS conductive element has an isotropic shape in the sense that it has the same shape in two axial directions of a rectangular coordinate system. Or, it is a simple linear dipole shape, and the spacing c between the elements to improve the attenuation factor (see FIG. 2D)
It has been noted that if the distance is narrowed, interference occurs between the elements, so that the attenuation rate cannot be increased beyond a certain limit. If the conductive element has an anisotropic shape having different shapes in the biaxial directions of the predetermined orthogonal coordinate system, it is possible to avoid interference between the elements and obtain a high attenuation rate even when the interval c between the elements is narrowed. Found experimentally. In addition, a gap s (see Fig. 1) from the window glass surface to FSS
The FSS function is not strongly affected by the dew condensation on the glass surface.

【0016】図1の実施例において、本発明の建物内電
波遮蔽域15は、床・天井面及び導電性窓枠3付き周囲壁
の全てが電磁遮蔽能を有する隔壁2である建物内電波遮
蔽域15において、所定直交座標系の二軸方向の長さa1
b1(図2(A)参照)が遮蔽すべき周波数の電波の半波長
以下の導電素子9(図2参照、以下に異方性導電素子と
いう場合がある。)を該半波長以下の素子間間隔cで前
記二軸に沿う所定面全体に敷き詰めた電波遮蔽面状体4
を、窓枠3で定まる面と平行に張り、且つ窓枠3及び窓
枠3で定まる面と面状体4との空隙sを前記波長の三十
分の一から二分の一までの大きさとしてなるものであ
る。好ましくは、前記素子間間隔cを遮蔽すべき周波数
電波の波長の十分の一以下とする。
In the embodiment shown in FIG. 1, the radio wave shielding area 15 in the building according to the present invention is a radio wave shielding area in a building in which the floor and the ceiling surface and the surrounding wall with the conductive window frame 3 are all partitions 2 having electromagnetic shielding ability. In the area 15, the length a 1 in the biaxial direction of the predetermined rectangular coordinate system,
b 1 (see FIG. 2 (A)) is a conductive element 9 (see FIG. 2, hereinafter sometimes referred to as an anisotropic conductive element) having a half wavelength or less of a radio wave of a frequency to be shielded. A radio wave shielding sheet 4 spread over the entire predetermined surface along the two axes at an interval c.
And the gap s between the window frame 3 and the plane defined by the window frame 3 and the plane body 4 is set to a size of one third to one half of the wavelength. It becomes as. Preferably, the inter-element interval c is set to one-tenth or less of the wavelength of the frequency radio wave to be shielded.

【0017】導電素子9の所定直交座標系の二軸方向の
長さa1、b1を遮蔽すべき周波数の電波の半波長以下とす
るのは、当該周波数の電波に共振させて遮蔽するためで
ある。隣接する導電素子9間の間隔cを前記周波数の半
波長以下、好ましくは十分の一波長以下とするのは、そ
の周波数で高い減衰を得るためである。窓枠3及び窓枠
3で定まる面と電波遮蔽面状体4との空隙sを前記波長
の三十分の一から二分の一までの範囲の大きさとするの
は、この範囲より狭い時は電波遮蔽面状体4の性能が窓
枠3及び窓枠3で定まる面上に付着することのある水分
の影響で劣化し、この範囲より広い時はこの空隙sにお
ける電波遮蔽が低下するためである。
The lengths a 1 and b 1 of the conductive element 9 in the biaxial direction of the predetermined rectangular coordinate system are set to be equal to or less than a half wavelength of the radio wave of the frequency to be shielded in order to resonate and shield the radio wave of the frequency. It is. The interval c between the adjacent conductive elements 9 is set to be equal to or less than a half wavelength of the frequency, and preferably equal to or less than one-tenth wavelength in order to obtain high attenuation at the frequency. When the gap s between the window frame 3 and the plane defined by the window frame 3 and the radio wave shielding sheet 4 is set to have a size in the range of one third to one half of the wavelength, when the width is smaller than this range, The performance of the radio wave shielding sheet 4 is degraded by the influence of moisture that may adhere to the window frame 3 and the surface defined by the window frame 3, and if it is wider than this range, the radio wave shielding in this gap s decreases. is there.

【0018】好ましくは、導電素子9を所定直交座標系
の二軸方向に異なる形状を有する異方性導電素子とす
る。また、導電素子9を透明な非導電性膜上に取付けて
電波遮蔽面状体4を形成することができる。
Preferably, the conductive element 9 is an anisotropic conductive element having different shapes in two axial directions of a predetermined rectangular coordinate system. Further, the radio wave shielding sheet 4 can be formed by mounting the conductive element 9 on a transparent non-conductive film.

【0019】[0019]

【発明の実施の形態】図1の実施例から明らかなよう
に、本発明による電波遮蔽域15は、電磁遮蔽能を有する
床面2f、天井面2c及び導電性窓枠3付き周囲壁2wからな
る隔壁2によって囲まれるので、導電性窓枠3の内側窓
1を除けば、電波の出入りが電波遮蔽に必要な程度に抑
制されている。窓1を覆う電波遮蔽面状体4は、所定直
交座標系のx軸、y軸等の二軸方向の長さa1、b1(図2
(A)参照)が、遮蔽すべき周波数例えば1.9MHzの電波の
半波長以下である導電素子9を該半波長以下の素子間間
隔cで前記二軸に沿う面の全体に敷き詰めて形成したFSS
であり、しかも窓枠3及び窓枠3で定まる面と電波遮蔽
面状体4との空隙sを前記波長の三十分の一から二分の
一までの大きさとしているから、窓1における電波減衰
も電波遮蔽に必要な程度に保たれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As is clear from the embodiment shown in FIG. 1, the radio wave shielding area 15 according to the present invention is composed of a floor surface 2f, a ceiling surface 2c and a peripheral wall 2w with a conductive window frame 3 having electromagnetic shielding ability. Since it is surrounded by the partition wall 2, except for the inner window 1 of the conductive window frame 3, the ingress and egress of radio waves are suppressed to the extent necessary for radio wave shielding. The radio wave shielding planar body 4 covering the window 1 has lengths a 1 and b 1 in two axial directions such as an x-axis and a y-axis in a predetermined rectangular coordinate system (FIG. 2).
(A)), an FSS formed by laying a conductive element 9 having a frequency to be shielded, for example, a half wavelength or less of a radio wave of 1.9 MHz, on the entire surface along the two axes at an element interval c of the half wavelength or less.
In addition, since the gap s between the window frame 3 and the surface defined by the window frame 3 and the radio wave shielding sheet 4 is set to a size of one third to one half of the wavelength, the radio wave in the window 1 Attenuation is also maintained to the extent required for radio wave shielding.

【0020】全体として電波遮蔽域15は、完全に必要な
電波遮蔽能のある隔壁で囲まれるので、その遮蔽域15の
内外に亘る電波伝搬は所要限界以下に抑えられる。しか
も、窓1及び窓枠3と電波遮蔽面状体4との間には空隙
sがあるので、たとえ窓1や窓枠3に水滴(図示せず)
などの付着があっても、電波遮蔽面状体4の電波遮蔽性
能が直接に水滴の誘電率に影響されて低下することがな
い。
As a whole, the radio wave shielding area 15 is completely surrounded by a partition having a necessary radio wave shielding ability, so that radio wave propagation inside and outside the shielding area 15 can be suppressed to a required limit or less. Moreover, there is a gap between the window 1 and the window frame 3 and the radio wave shielding sheet 4.
s, so even if water drops on window 1 or window frame 3 (not shown)
Even if there is such adhesion, the radio wave shielding performance of the radio wave shielding planar body 4 does not directly decrease due to the dielectric constant of the water droplet.

【0021】こうして、本発明の目的である「窓ガラス
表面の誘電率変化に影響されない高減衰率の電波遮蔽壁
で囲んだ建物内電波遮蔽域」の提供が達成される。
Thus, the object of the present invention is to provide "a radio wave shielding area in a building surrounded by a radio wave shielding wall having a high attenuation rate which is not affected by a change in the dielectric constant of the window glass surface".

【0022】図2(A)に示すように、導電素子9を所定
直交座標系のx軸、y軸等の二軸方向に異なる形状を有
する異方性形状、例えばY字型とすれば素子間間隔cを
狭くしても、隣接素子9間の実効的な平行長さを抑制
し、素子間干渉を避けることができる。そのため、図6
に示す高い減衰率、例えば40dBの減衰を図2(B)の導電
素子9の配置からなる電波遮蔽面状体4によって達成で
きること、及び図2(A)及び図2(C)の配置によっても
達成できることを実験的に確認した。これらの実施例の
素子寸法a、b及び素子間間隔cを従来例の図2(D)のも
のと共に表1に示す。
As shown in FIG. 2A, if the conductive element 9 is formed into an anisotropic shape having different shapes in two axial directions such as an x-axis and a y-axis in a predetermined orthogonal coordinate system, for example, a Y-shaped element is used. Even if the interval c is reduced, the effective parallel length between the adjacent elements 9 can be suppressed, and interference between elements can be avoided. Therefore, FIG.
2 (A) and FIG. 2 (C) can be achieved by the radio wave shielding sheet 4 including the conductive elements 9 shown in FIG. 2 (B). It has been experimentally confirmed that this can be achieved. Table 1 shows the element dimensions a and b and the element spacing c of these examples together with the conventional example shown in FIG.

【0023】[0023]

【表1】表1(単位cm) 図番 a b c 2(A) 0.236(幅w=0.02) 0.272 0.003 2(B) 0.306 0.353 0.003 2(C) 0.433 0.375 0.003 2(D) 0.5 0.5 0.5[Table 1] Table 1 (unit cm) Drawing number abc 2 (A) 0.236 (width w = 0.02) 0.272 0.003 2 (B) 0.306 0.353 0.003 2 (C) 0.433 0.375 0.003 2 (D) 0.5 0.5 0.5

【0024】異方性形状の導電素子9の機能を説明す
る。アンテナ及びそれに類似の動作をするFSSの導電素
子9は広く知られるように共振周波数で定在波を発生さ
せる。図3のカーブVは、アンテナや導電素子9の先端
で電圧が高く(開放端でありインピーダンスが極めて高
く)、他方それらの中央部では定在波電圧が殆どゼロで
ある(インピーダンスが極めて低い)ことを示す。
The function of the conductive element 9 having an anisotropic shape will be described. The antenna and the conductive element 9 of the FSS which operates in a similar manner generate a standing wave at a resonance frequency as is widely known. The curve V in FIG. 3 shows that the voltage is high at the tip of the antenna or the conductive element 9 (open end and the impedance is extremely high), while the standing wave voltage is almost zero at the center thereof (the impedance is extremely low). Indicates that

【0025】従来の一直線状素子では、図3(A)のよう
に、端部における高い定在波電圧と高いインピーダンス
のため、端部での隣接素子間の結合が容易となるので、
不可避的に生じる端部対向部での素子間間隔cを同図のc
4の如く共振周波数の半波長程度に保たなければならな
い。他方、例えばY字型の異方性形状の導電性素子9で
は、図3(B)に示すように、常にインピーダンスの低い
中央部とインピーダンスの高い端部とのみで隣接導電素
子9を近接させることが可能になる。
In a conventional linear element, as shown in FIG. 3A, a high standing wave voltage and a high impedance at an end facilitate coupling between adjacent elements at the end.
In the figure, the distance c between the elements at
As shown in Fig. 4 , it must be kept at about a half wavelength of the resonance frequency. On the other hand, in the conductive element 9 having, for example, a Y-shaped anisotropic shape, as shown in FIG. 3B, the adjacent conductive element 9 is always brought close only to the central portion having low impedance and the end portion having high impedance. It becomes possible.

【0026】このような隣接導電素子間の間隔cの制限
は、図4に示すような現象の原因となる。即ち、例えば
十字型の等方性形状の導電素子10では、素子間間隔cを
大きくせざるを得ないので、図5(B)の各素子10の反射
面積ASの間に図4(A)のように隙間が生じる。他方、
例えばY字型の異方性形状の導電素子9では、素子間間
隔cを狭くできるので、図5(B)の隣接する導電素子9
による反射面積ASを図4(B)のように重ね合せ一定以
上の反射レベルの反射面を連続的に形成することができ
る。要するに、異方性形状の採用により、素子間間隔c
を狭くし、素子密度(反射減衰度に比例)を高め、減衰
率の高い電波遮蔽面状体4を提供することができる。
The limitation of the distance c between adjacent conductive elements causes a phenomenon as shown in FIG. That is, for example, in the case of the cross-shaped isotropic conductive element 10, the inter-element spacing c must be increased, so that the reflection area A S of each element 10 in FIG. A gap is formed as in (). On the other hand,
For example, in the conductive element 9 having a Y-shaped anisotropic shape, the distance c between the elements can be reduced, so that the adjacent conductive element 9 shown in FIG.
The reflecting surface of the superposition above a certain reflection level as shown in FIG. 4 (B) the reflection area A S due can be continuously formed. In short, the inter-element spacing c
, The element density (proportional to the reflection attenuation) is increased, and the radio wave shielding sheet 4 having a high attenuation can be provided.

【0027】図6は、従来の等方性形状の導電素子10を
使ったFSSの減衰率が点線で示すように約20dB未満であ
るのに対し、本発明の異方性形状の導電素子9を使った
FSSでは実線で示すように40dB以上の高い減衰率が得ら
れることを示す。また、等方性形状の導電素子10の場合
には、素子間の間隙から電波が漏れるので、導電素子10
自体の抵抗値を低くしても、遮蔽減衰度はある限界以上
に改善されない。
FIG. 6 shows that the attenuation factor of the FSS using the conventional isotropically shaped conductive element 10 is less than about 20 dB as indicated by the dotted line, whereas the anisotropically shaped conductive element 9 of the present invention is used. Used
The FSS shows that a high attenuation rate of 40 dB or more can be obtained as shown by the solid line. In the case of the conductive element 10 having an isotropic shape, since radio waves leak from the gap between the elements, the conductive element 10
Even if the resistance value itself is reduced, the shielding attenuation is not improved beyond a certain limit.

【0028】さらに本発明によれば、電波遮蔽面状体4
を窓枠3及び窓1から離して設けるので、窓ガラス1a
(図7)及び窓枠3の構造や素材の物性に影響されるこ
とがなく、且つ通信システムの変遷にも弾力的に適応す
る変更等が容易に行える。
Furthermore, according to the present invention, the radio wave shielding sheet 4
Is provided away from the window frame 3 and the window 1, so that the window glass 1a
(FIG. 7), the structure of the window frame 3 and the physical properties of the material are not affected, and a change or the like that can flexibly adapt to the change of the communication system can be easily performed.

【0029】[0029]

【実施例】図7(A)は、電波遮蔽面状体4を二重に配置
することにより、さらに高い遮蔽減衰を与える実施例を
示す。また図7(B)は、熱反射性の透明金属膜8を窓ガ
ラス1aと電波遮蔽面状体4との間に配置して、両者の相
乗効果により遮蔽減衰を一層高める実施例を示す。
FIG. 7A shows an embodiment in which a higher shielding attenuation is provided by arranging the radio wave shielding planes 4 in a double manner. FIG. 7B shows an embodiment in which a heat-reflective transparent metal film 8 is disposed between the window glass 1a and the radio wave shielding sheet 4 to further enhance the shielding attenuation by a synergistic effect of the two.

【0030】図8(A)は、三角型の異方性導電素子9aの
内部にY字型の異方性導電素子9bを配置して複合異方性
素子19を構成し、この複合異方性素子19を敷き詰めて電
波遮蔽面状体4とする実施例を示す。この場合には、複
数の共振周波数で遮蔽機能が発揮される。また図8(B)
は、隣接するY字型の異方性導電素子9bの間に三角型の
異方性導電素子9dを配置して、同様に複数の共振周波数
で遮蔽機能を発揮させる実施例である。
FIG. 8A shows a composite anisotropic element 19 in which a Y-shaped anisotropic conductive element 9b is arranged inside a triangular anisotropic conductive element 9a. An example in which the conductive elements 19 are spread to form the radio wave shielding sheet 4 will be described. In this case, the shielding function is exhibited at a plurality of resonance frequencies. FIG. 8 (B)
This is an embodiment in which a triangular anisotropic conductive element 9d is arranged between adjacent Y-shaped anisotropic conductive elements 9b, and a shielding function is similarly exhibited at a plurality of resonance frequencies.

【0031】以上の説明において、1,900MHz帯の搬送波
利用のPHSを想定したが、2,450MHz帯の無線LANにも同様
な効果と用途が存在する。さらに上記の建物内電波遮蔽
域に各種の変形を本発明の技術的範囲内で加え得ること
は当業者には明らかである。
In the above description, a PHS using a carrier wave in the 1,900 MHz band is assumed. However, similar effects and applications exist in a wireless LAN in the 2,450 MHz band. Further, it will be apparent to those skilled in the art that various modifications can be made to the above-mentioned radio wave shielding area in the building within the technical scope of the present invention.

【0032】[0032]

【発明の効果】以上詳細に説明したように、本発明の建
物内電波遮蔽域は、電波遮蔽面状体と窓との間に空隙を
設け、さらに好ましくは異方性導電素子からなる電波遮
蔽面状体を使用するので、次の顕著な効果を奏する。
As described above in detail, the radio wave shielding area in a building according to the present invention is provided with a gap between the radio wave shielding sheet and the window, and more preferably a radio wave shielding made of an anisotropic conductive element. The use of the planar body has the following remarkable effects.

【0033】(イ)窓ガラスや窓枠に付着し得る水分の
影響を受けない電波遮蔽を行える。 (ロ)導電素子間の間隔を狭くした電波遮蔽面状体を使
うことにより高い電波遮蔽度を有する電波遮蔽域が提供
できる。 (ハ)PHSなどの無線通信システムにおける搬送波周波
数の変更等にも電波遮蔽面状体の張り替えなどにより容
易に対応することができる。 (ニ)透明な導電素子を使用すれば、窓ガラスの採光性
や外部景観観察を損わない電波遮蔽が可能になる。 (ホ)既設建物の窓にも容易に適応できる。
(A) Electromagnetic shielding can be performed without being affected by moisture that can adhere to window glasses and window frames. (B) A radio wave shielding area having a high degree of radio wave shielding can be provided by using a radio wave shielding planar body in which the distance between the conductive elements is reduced. (C) It is possible to easily cope with a change of a carrier wave frequency in a wireless communication system such as a PHS by replacing a radio wave shielding sheet. (D) If a transparent conductive element is used, it is possible to shield radio waves without impairing the lighting properties of the window glass and observing the external scenery. (E) It can be easily adapted to windows of existing buildings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明の建物内電波遮蔽域の説明図であ
る。
FIG. 1 is an explanatory diagram of a radio wave shielding area in a building according to the present invention.

【図2】は、電波遮蔽面状体用の導電素子の構造例を示
す図である。
FIG. 2 is a diagram showing a structural example of a conductive element for a radio wave shielding sheet.

【図3】は、導電素子における電圧分布を示す図であ
る。
FIG. 3 is a diagram showing a voltage distribution in a conductive element.

【図4】は、電波遮蔽面状体内の導電素子の周囲の等価
的な電波反射面の分布を示す図である。
FIG. 4 is a diagram showing a distribution of an equivalent radio wave reflection surface around a conductive element in a radio wave shielding plane.

【図5】は、導電素子単体周囲の等価的な電波反射面の
分布を示す図である。
FIG. 5 is a diagram showing a distribution of an equivalent radio wave reflection surface around a conductive element alone.

【図6】は、等方性導電素子と異方性導電素子の電波遮
蔽性能を比較して示すグラフである。
FIG. 6 is a graph showing a comparison of radio wave shielding performance between an isotropic conductive element and an anisotropic conductive element.

【図7】は、窓の電波遮蔽に関する他の実施例の説明図
である。
FIG. 7 is an explanatory diagram of another embodiment relating to radio wave shielding of a window.

【図8】は、異なる形状の導電素子の複合的な配置を示
す図である。
FIG. 8 is a diagram showing a composite arrangement of conductive elements having different shapes.

【符号の説明】[Explanation of symbols]

1…窓 2…隔壁 3…窓枠 4…電波遮蔽面状体 5…基地局 6…域内携帯電話器 7…域外携帯電話器 8…透明金属膜 9…異方性導電素子 10…等方性導電素子 11…半波長アンテナ 14…電波 15…電波遮蔽域 19…複合異方性導電素子 DESCRIPTION OF SYMBOLS 1 ... Window 2 ... Partition wall 3 ... Window frame 4 ... Radio wave shielding sheet | seat 5 ... Base station 6 ... In-area mobile phone 7 ... Out-of-area mobile phone 8 ... Transparent metal film 9 ... Anisotropic conductive element 10 ... Isotropic Conductive element 11 ... Half-wave antenna 14 ... Radio wave 15 ... Shielding area of radio wave 19 ... Composite anisotropic conductive element

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】床・天井面及び導電性窓枠付き周囲壁が全
て電磁遮蔽能を有する隔壁である建物内電波遮蔽域にお
いて、所定直交座標系の二軸方向の長さが遮蔽すべき周
波数の電波の半波長以下の導電素子を該半波長以下の素
子間間隔で前記二軸に沿う所定面全体に敷き詰めた電波
遮蔽面状体を、前記窓枠で定まる面と平行に張り、且つ
前記窓枠及び窓枠で定まる面と面状体との空隙を前記波
長の三十分の一から二分の一までの大きさとしてなる建
物内電波遮蔽域。
In a radio wave shielding area in a building, in which a floor / ceiling surface and a surrounding wall with a conductive window frame are all partitions having an electromagnetic shielding ability, a frequency to be shielded in a biaxial direction of a predetermined orthogonal coordinate system. A radio wave shielding planar body in which conductive elements having a wavelength equal to or less than a half wavelength of the radio wave are spread over the entire predetermined surface along the two axes at an interval between the elements equal to or less than the half wavelength, stretched in parallel with a surface determined by the window frame, and A radio wave shielding area in a building in which a window frame and a gap between a plane defined by the window frame and the planar body have a size of one third to one half of the wavelength.
【請求項2】請求項1の電波遮蔽域において、前記導電
素子を前記所定直交座標系の二軸方向に異なる形状を有
する異方性導電素子としてなる建物内電波遮蔽域。
2. A radio wave shielding area in a building according to claim 1, wherein said conductive element is an anisotropic conductive element having different shapes in two axial directions of said predetermined orthogonal coordinate system.
【請求項3】請求項1又は2の電波遮蔽域において、前
記導電素子相互間の素子間隔を前記電波波長の十分の一
以下としてなる建物内電波遮蔽域。
3. A radio wave shielding area in a building according to claim 1, wherein an element interval between said conductive elements is set to one tenth or less of said radio wave wavelength.
【請求項4】請求項1から3の何れかの電波遮蔽域にお
いて、前記電波遮蔽面状体を透明樹脂薄膜の全面に前記
態様で敷き詰めて形成してなる建物内電波遮蔽域。
4. A radio wave shielding area in a building, wherein the radio wave shielding planar body is formed by laying over the entire surface of a transparent resin thin film in the above-mentioned mode in the radio wave shielding area according to any one of claims 1 to 3.
【請求項5】請求項1から4の何れかの電波遮蔽域にお
いて、前記面状体の前記窓枠と反対側にさらに前記面状
体を設けてなる建物内電波遮蔽域。
5. A radio wave shielding area in a building, wherein the radio wave shielding area according to any one of claims 1 to 4, further comprising the planar body provided on a side of the planar body opposite to the window frame.
【請求項6】請求項1から5の何れかの電波遮蔽域にお
いて、前記窓枠に窓ガラスを取付け、前記窓枠及び窓ガ
ラスと前記面状体との空隙を前記波長の三十分の一から
二分の一までの大きさとしてなる建物内電波遮蔽域。
6. A window glass is attached to the window frame in any of the radio wave shielding areas according to any one of claims 1 to 5, and a gap between the window frame and the window glass and the planar body is set to be 30 minutes of the wavelength. A radio wave shielding area inside a building that has a size of one to one half.
【請求項7】請求項6の電波遮蔽域において、前記窓ガ
ラスの建物内電波遮蔽域側に前記電波遮蔽面状体を設け
てなる建物内電波遮蔽域。
7. The radio wave shielding area in a building, wherein the radio wave shielding plane is provided on the side of the window glass on the side of the radio wave shielding area in the building.
【請求項8】請求項6又は7の電波遮蔽域において、前
記窓ガラスと前記面状体との空隙に透明金属膜を設けて
なる建物内電波遮蔽域。
8. The radio wave shielding area in a building according to claim 6, wherein a transparent metal film is provided in a gap between said window glass and said planar body.
【請求項9】請求項1から8の何れかの電波遮蔽域にお
いて、前記電波遮蔽面状体の各導電素子をY字型として
なる建物内電波遮蔽域。
9. A radio wave shielding area in a building, wherein each of the conductive elements of the radio wave shielding planar body has a Y-shape in the radio wave shielding area according to any one of claims 1 to 8.
【請求項10】請求項1から8の何れかの電波遮蔽域に
おいて、前記電波遮蔽面状体の各導電素子を三角型とし
てなる建物内電波遮蔽域。
10. A radio wave shielding area in a building, wherein each of the conductive elements of the radio wave shielding planar body has a triangular shape in the radio wave shielding area according to any one of claims 1 to 8.
【請求項11】請求項1から8の何れかの電波遮蔽域に
おいて、前記電波遮蔽面状体の各導電素子を、中空三角
型の線部材と該中空部に設けたY字型部材とにより形成
した複合異方性導電素子としてなる建物内電波遮蔽域。
11. In the radio wave shielding area according to any one of claims 1 to 8, each conductive element of the radio wave shielding plane is formed by a hollow triangular wire member and a Y-shaped member provided in the hollow portion. A radio wave shielding area inside the building that is formed as a composite anisotropic conductive element.
【請求項12】請求項1から11の何れかの電波遮蔽域
において、前記隔壁を建物の駆体構造部材としてなる建
物内電波遮蔽域。
12. A radio wave shielding area in a building according to any one of claims 1 to 11, wherein said partition wall is used as a vehicle structural member.
JP05655498A 1998-03-09 1998-03-09 Radio wave shielding sheet and radio wave shielding area in building Expired - Fee Related JP3180899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05655498A JP3180899B2 (en) 1998-03-09 1998-03-09 Radio wave shielding sheet and radio wave shielding area in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05655498A JP3180899B2 (en) 1998-03-09 1998-03-09 Radio wave shielding sheet and radio wave shielding area in building

Publications (2)

Publication Number Publication Date
JPH11261286A true JPH11261286A (en) 1999-09-24
JP3180899B2 JP3180899B2 (en) 2001-06-25

Family

ID=13030341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05655498A Expired - Fee Related JP3180899B2 (en) 1998-03-09 1998-03-09 Radio wave shielding sheet and radio wave shielding area in building

Country Status (1)

Country Link
JP (1) JP3180899B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502978A (en) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ Optical element
WO2006088063A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Cable Industries, Ltd. Radio wave shielding body
JP2007096228A (en) * 2005-09-30 2007-04-12 Mitsubishi Cable Ind Ltd Radio wave shielding body
JP2008041687A (en) * 2006-08-01 2008-02-21 Mitsubishi Cable Ind Ltd Electromagnetic shield
GB2452665B (en) * 2006-06-02 2010-11-24 Mitsubishi Cable Ind Ltd Radio shielding partitioning plane material and method for manufacturing the same
US9727762B2 (en) 2013-08-22 2017-08-08 Fujitsu Limited Wireless communication module, wireless communication system, and communication method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200081628A (en) 2018-12-27 2020-07-08 삼성디스플레이 주식회사 Display apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004502978A (en) * 2000-07-10 2004-01-29 テヒニシェ・ウニベルジテート・ブラウンシュバイク・カロロ−ビルヘルミナ Optical element
WO2006088063A1 (en) * 2005-02-18 2006-08-24 Mitsubishi Cable Industries, Ltd. Radio wave shielding body
US7898499B2 (en) 2005-02-18 2011-03-01 Mitsubishi Cable Industries, Ltd. Electromagnetic wave shielding body
JP2007096228A (en) * 2005-09-30 2007-04-12 Mitsubishi Cable Ind Ltd Radio wave shielding body
US7639205B2 (en) 2005-09-30 2009-12-29 Mitsubishi Cable Industries, Ltd. Radio wave shield
GB2452665B (en) * 2006-06-02 2010-11-24 Mitsubishi Cable Ind Ltd Radio shielding partitioning plane material and method for manufacturing the same
JP2008041687A (en) * 2006-08-01 2008-02-21 Mitsubishi Cable Ind Ltd Electromagnetic shield
US9727762B2 (en) 2013-08-22 2017-08-08 Fujitsu Limited Wireless communication module, wireless communication system, and communication method

Also Published As

Publication number Publication date
JP3180899B2 (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US6788256B2 (en) Concealed antenna assembly
KR100315537B1 (en) Window glass with electronic shield performance
CN101010999A (en) Wave absorber
US11346779B2 (en) Optically transparent and quasi-transparent reflectarrays for 5G applications
JP7511134B2 (en) Planar antenna, antenna laminate, and vehicle window glass
CN112117550B (en) Wave absorbing unit structure
JP2003069282A (en) Specified electromagnetic wave transmitting plate
JP3180899B2 (en) Radio wave shielding sheet and radio wave shielding area in building
JPH1168374A (en) Electromagnetic-wave shielding body, panel and blind
JP2004140194A (en) Radio wave absorber effective to multifrequency band
JP2005244043A (en) Radio wave absorber
JPH11195890A (en) New conductive bipolar element pattern which reflects electromagnetic wave of frequency in specific range, and frequency selective electromagnetic wave shielding material comprising it
JPH10126091A (en) Window glass with electromagnetic shielding capability
JP3141098B2 (en) Electromagnetic shielding building
JPH11330773A (en) Electromagnetic shielding body and window member thereof
JPH10126090A (en) Electromagnetic shield film
JP4857501B2 (en) Radio wave absorber
JP4857500B2 (en) Radio wave absorber
JP2003124673A (en) Film having electromagnetic wave shielding properties
JP2000196288A (en) Electromagnetic shielding structure
JP3033020B2 (en) Window electromagnetic shielding structure
JP2005079247A (en) Electric wave absorber
JPH10335877A (en) Electromagnetic shielding method having frequency selectivity
JP3266018B2 (en) Flow plate with electromagnetic shielding performance
JPH10169336A (en) Electro-magnetic shield blind

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees