JP2002076672A - Electromagnetic wave absorber - Google Patents

Electromagnetic wave absorber

Info

Publication number
JP2002076672A
JP2002076672A JP2000264120A JP2000264120A JP2002076672A JP 2002076672 A JP2002076672 A JP 2002076672A JP 2000264120 A JP2000264120 A JP 2000264120A JP 2000264120 A JP2000264120 A JP 2000264120A JP 2002076672 A JP2002076672 A JP 2002076672A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
film
resistance
conductors
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000264120A
Other languages
Japanese (ja)
Inventor
Kenichi Harakawa
健一 原川
Toshio Saito
俊夫 斉藤
Kenji Murata
健治 村田
Motoyasu Togashi
元康 冨樫
Yasushi Hoshino
康 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Nippon Sheet Glass Environment Amenity Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Takenaka Komuten Co Ltd
Nippon Sheet Glass Environment Amenity Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Takenaka Komuten Co Ltd, Nippon Sheet Glass Environment Amenity Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2000264120A priority Critical patent/JP2002076672A/en
Publication of JP2002076672A publication Critical patent/JP2002076672A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To widen the electromagnetic wave absorbing band of an electromagnetic wave absorber and, at the same time, to reduce the thickness of the absorber. SOLUTION: A reflecting film 18 is formed on an insulating substrate 14 of insulating substrates 12A, 12B, and 14 which are arranged in parallel with each other at fixed intervals and, at the same time, resistance films 16 and split conductive films 66 are respectively provided on the substrates 12A and 12B. Then the distance between the first resistance film 16 on the substrate 12A and the second resistance film 16 on the substrate 12B is made different from the distance between the second resistance film 16 and reflecting film 18. Consequently, the electromagnetic wave absorbing band of the electromagnetic wave absorber can be widened, because, when electromagnetic waves arrive from the substrate 12A side, the frequency f1 at which the electromagnetic wave reflected by the first reflecting film 16 and the electromagnetic wave reflected by the second resistance film 16 become opposite in phase, the frequency f2 at which the electromagnetic wave reflected by the first resistance film 16 and the electromagnetic wave reflected by the reflecting film 18 become opposite in phase, and the frequency f3 at which the electromagnetic wave reflected by the first resistance film 16 and the electromagnetic wave reflected by the reflecting film 18 become opposite in phase are different from each other. In addition, the thickness of the absorber can be reduced by the split conductive films 66.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電磁波吸収体に係
り、特に、吸収すべき電磁波に逆位相の電磁波を重畳す
ることで電磁波を吸収する電磁波吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave absorber, and more particularly, to an electromagnetic wave absorber that absorbs an electromagnetic wave by superimposing an electromagnetic wave having an opposite phase on the electromagnetic wave to be absorbed.

【0002】[0002]

【従来の技術】現在、電磁波(電波)はラジオ、TV、
携帯電話、無線通信等を始めとして様々な分野で利用さ
れているが、これらの電磁波が他の電磁波の妨害を受け
ることにより種々の不都合が生ずる所謂電波障害は従来
より問題となっている。この電波障害の原因となる電磁
波としては、ビルディングや鉄塔等の建築物で反射され
た電磁波や、電気・電子機器から放射される不要電磁波
等が挙げられる。このうち、特にVHFやUHF等のT
V周波数帯域の電磁波が建築物で反射し、受信アンテナ
に局から直接到来した電磁波(直接波)と建築物の外壁
で反射された電磁波(反射波)とが各々入射する等によ
り生ずるゴースト等の受信障害は、近年の高層ビルディ
ングの増加に伴って社会問題となっている。
2. Description of the Related Art At present, electromagnetic waves (radio waves) are radio, TV,
It is used in various fields such as mobile phones, wireless communications, and the like. However, so-called radio interference, which causes various inconveniences due to interference of these electromagnetic waves with other electromagnetic waves, has conventionally been a problem. Examples of the electromagnetic wave that causes the radio wave interference include an electromagnetic wave reflected by a building such as a building and a steel tower, and an unnecessary electromagnetic wave radiated from electric / electronic devices. Among them, especially T of VHF and UHF
The electromagnetic wave in the V frequency band is reflected by the building, and the ghost and the like caused by the electromagnetic wave (direct wave) directly arriving from the station and the electromagnetic wave (reflected wave) reflected by the outer wall of the building being incident on the receiving antenna, respectively. The reception obstacle has become a social problem with the increase of high-rise buildings in recent years.

【0003】電磁波を吸収するための電磁波吸収体とし
ては、従来より種々の構成が提案されており、例えば到
来した電磁波を反射、吸収及び透過させる吸収材と、到
来した電磁波を反射させる反射材を、吸収すべき電磁波
の波長の1/4に相当する距離を隔てて配置した構成の
λ/4型電磁波吸収体は、広く知られているフェライト
等の磁性体を利用した電磁波吸収体と比較して、軽量で
安価に製造できるという利点を有している。また、光透
過性を有する部材で構成することで、建築物の窓部に適
用することも可能である。
Various structures have been proposed as electromagnetic wave absorbers for absorbing electromagnetic waves. For example, an absorber for reflecting, absorbing, and transmitting an incoming electromagnetic wave, and a reflecting material for reflecting an incoming electromagnetic wave have been proposed. A λ / 4 type electromagnetic wave absorber having a configuration arranged at a distance corresponding to 1 / of the wavelength of the electromagnetic wave to be absorbed is compared with a widely known electromagnetic wave absorber using a magnetic material such as ferrite. Thus, it has the advantage of being lightweight and inexpensive to manufacture. In addition, by using a member having light transmissivity, it is also possible to apply to a window of a building.

【0004】また、λ/4型電磁波吸収体の吸収材と反
射材との間を空気で満たした構成では、比較的低周波の
VHF帯(例えば100MHz程度)の電磁波を吸収す
るために吸収材と反射材を75cm程度離間させる必要
があり、建築物の窓や壁等へ取付けるには厚みが厚過ぎ
るという欠点がある。このため、λ/4型電磁波吸収体
の吸収材と反射材との間に、ストライプ状または格子形
状にコーティングされた導電性被膜を配設することで、
吸収材と反射材との間の実効比誘電率を大きくする技術
も提案されている(特開平10−275997号公報参
照)。上記技術によれば、VHF帯の電磁波を吸収する
λ/4型電磁波吸収体を10cm程度の厚みで実現する
ことができる。
In a λ / 4 type electromagnetic wave absorber in which the space between the absorber and the reflector is filled with air, the absorber is used to absorb a relatively low-frequency electromagnetic wave in the VHF band (for example, about 100 MHz). And the reflector must be separated by about 75 cm, which is disadvantageous in that it is too thick to be attached to a window or a wall of a building. Therefore, by disposing a conductive coating coated in a stripe or lattice shape between the absorber and the reflector of the λ / 4 type electromagnetic wave absorber,
A technique for increasing the effective relative permittivity between the absorber and the reflector has also been proposed (see Japanese Patent Application Laid-Open No. 10-275997). According to the above technique, a λ / 4 type electromagnetic wave absorber that absorbs electromagnetic waves in the VHF band can be realized with a thickness of about 10 cm.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、λ/4
型電磁波吸収体は、上記のように吸収材と反射材との間
にストライプ状または格子形状の導電性被膜を配設した
構成も含め、反射材によって反射され吸収材を透過して
射出される電磁波が、吸収材によって反射されて射出さ
れる電磁波に対して逆位相となることを利用しているた
め、その吸収特性は、逆位相になる周波数を中心として
ごく狭い周波数帯域内の電磁波のみを高い吸収率で吸収
する特性を示す。このため、広い周波数帯域に亘って電
磁波を吸収することができない、という問題があった。
However, λ / 4
The electromagnetic wave absorber is reflected by the reflector and transmitted through the absorber, including the configuration in which the striped or lattice-shaped conductive coating is disposed between the absorber and the reflector as described above, and is emitted. Since the electromagnetic wave uses the fact that it has an opposite phase to the electromagnetic wave reflected and emitted by the absorber, its absorption characteristics are limited to electromagnetic waves within a very narrow frequency band centered on the opposite phase frequency. Shows the property of absorbing at a high absorption rate. Therefore, there is a problem that electromagnetic waves cannot be absorbed over a wide frequency band.

【0006】本発明は上記事実を考慮して成されたもの
で、電磁波吸収帯域の広帯域化及び薄型化を実現できる
電磁波吸収体を得ることが目的である。
[0006] The present invention has been made in view of the above facts, and has as its object to obtain an electromagnetic wave absorber capable of realizing a wider and thinner electromagnetic wave absorption band.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明に係る電磁波吸収体は、一定方向
に沿って配列され、各々到来した電磁波の一部を反射し
他の一部を透過させる複数の抵抗部材と、前記複数の抵
抗部材に対して前記一定方向に距離を隔てて配置され、
到来した電磁波を反射する反射部材と、前記複数の抵抗
部材の間及び前記反射部材と特定の抵抗部材の間の少な
くとも1箇所に設けられ、前記複数の抵抗部材及び前記
反射部材の配列方向と交差する方向に沿って間隔を空け
て配列された複数の導体と、を含んで構成されている。
Means for Solving the Problems To achieve the above object, the electromagnetic wave absorber according to the first aspect of the present invention is arranged along a predetermined direction, and reflects a part of the arriving electromagnetic wave to each other to reflect another part. A plurality of resistance members transmitting the portion, disposed at a distance in the predetermined direction with respect to the plurality of resistance members,
A reflection member for reflecting the arriving electromagnetic wave; and a reflection member provided at at least one position between the plurality of resistance members and between the reflection member and the specific resistance member, and intersects the arrangement direction of the plurality of resistance members and the reflection member. And a plurality of conductors arranged at intervals along the direction in which the conductors are arranged.

【0008】請求項1記載の発明では、到来した電磁波
の一部を反射し他の一部を透過させる複数の抵抗部材が
一定方向に沿って配列され、到来した電磁波を反射する
反射部材が、複数の抵抗部材に対して一定方向に距離を
隔てて配置されており、反射部材が配置されている側と
反対側(抵抗部材側)から電磁波が到来すると、到来し
た電磁波は、電磁波到来方向に沿って最上流に位置して
いる抵抗部材(以下、最上流の抵抗部材という)に入射
し、一部が最上流の抵抗部材によって反射され、他の一
部が最上流の抵抗部材を透過する。
According to the first aspect of the invention, a plurality of resistance members that reflect a part of the arriving electromagnetic wave and transmit the other part are arranged along a predetermined direction, and the reflecting member that reflects the arriving electromagnetic wave is: A plurality of resistance members are arranged at a distance in a certain direction, and when an electromagnetic wave arrives from the side opposite to the side where the reflection member is arranged (resistance member side), the arriving electromagnetic wave moves in the electromagnetic wave arrival direction. Along the uppermost resistance member (hereinafter, referred to as the uppermost resistance member), a part is reflected by the uppermost resistance member, and another part is transmitted through the uppermost resistance member. .

【0009】最上流の抵抗部材を透過した電磁波は、電
磁波到来方向に沿って最上流の抵抗部材よりも下流側に
位置している抵抗部材(以下、下流側の抵抗部材とい
う)に入射され、一部が下流側の抵抗部材によって反射
され、他の一部が下流側の抵抗部材を透過する。このよ
うに、抵抗部材側から到来した電磁波は、各抵抗部材の
配置位置で各々一部が反射され他の一部が透過する。ま
た、反射部材配置位置に到達した電磁波は抵抗部材側へ
反射される。従って、本発明に係る電磁波吸収体に抵抗
部材側より到来した電磁波は、互いに異なる位置で反射
された(すなわち伝播経路の長さが互いに異なる)n+
1種類(但しnは抵抗部材の数)の電磁波に分解される
ことになる。
The electromagnetic wave transmitted through the most upstream resistance member is incident on a resistance member (hereinafter, referred to as a downstream resistance member) located downstream of the most upstream resistance member along the arrival direction of the electromagnetic wave. A part is reflected by the downstream resistance member, and another part is transmitted through the downstream resistance member. As described above, the electromagnetic wave arriving from the resistance member side is partially reflected at the position where each resistance member is disposed, and the other part is transmitted. Further, the electromagnetic wave that has reached the position where the reflection member is disposed is reflected toward the resistance member. Therefore, the electromagnetic wave arriving from the resistance member side to the electromagnetic wave absorber according to the present invention is reflected at different positions (that is, the propagation paths have different lengths).
It is decomposed into one type (where n is the number of resistance members) of electromagnetic waves.

【0010】ここで、或る媒質を伝播する電磁波の波長
λは、電磁波の周波数をf、媒質の誘電率をε(=εS
ε0:εSは比誘電率、ε0は真空の誘電率)、媒質の透
磁率をμ(=μSμ0:μSは比透磁率、μ0は真空の透磁
率)とすると、 λ=1/f・√(εμ) …(1) であるので、波長λは媒質の誘電率に応じて変化する。
Here, the wavelength λ of an electromagnetic wave propagating through a certain medium is represented by f representing the frequency of the electromagnetic wave and ε (= ε S
ε 0 : ε S is relative permittivity, ε 0 is vacuum permittivity, and the magnetic permeability of the medium is μ (= μ S μ 0 : μ S is relative magnetic permeability, μ 0 is vacuum magnetic permeability). Since λ = 1 / f√ (εμ) (1), the wavelength λ changes according to the dielectric constant of the medium.

【0011】一方、n+1種類の電磁波から取り出した
任意の2種類の電磁波について考えると、この2種類の
電磁波のうち伝播経路が短い方の電磁波(便宜的に一次
電磁波という)の位相に対し、伝播経路が長い方の電磁
波(便宜的に二次電磁波という)の位相が略逆位相とな
る周波数帯域の電磁波については、一次電磁波に略逆位
相の二次電磁波が重畳されることで、λ/4型電磁波吸
収体と同様に、電磁波吸収体から射出される電磁波が減
衰・吸収される。そして、二次電磁波のみが伝播する経
路(一次電磁波は伝播しない経路)における実効比誘電
率(この実効比誘電率は、前記経路の長さや前記経路上
の媒質の誘電率等のパラメータによって定まる)に応じ
て変化する。
On the other hand, considering any two types of electromagnetic waves extracted from the (n + 1) types of electromagnetic waves, the phase of the electromagnetic wave having a shorter propagation path (referred to as a primary electromagnetic wave for convenience) out of the two types of electromagnetic waves, Regarding electromagnetic waves in a frequency band in which the phase of the longer electromagnetic wave (referred to as a secondary electromagnetic wave for the sake of convenience) is substantially opposite, the secondary electromagnetic wave having a substantially opposite phase is superimposed on the primary electromagnetic wave, so that λ / 4 The electromagnetic wave emitted from the electromagnetic wave absorber is attenuated and absorbed in the same manner as the type electromagnetic wave absorber. Then, an effective relative permittivity in a path through which only the secondary electromagnetic wave propagates (a path through which the primary electromagnetic wave does not propagate) (the effective relative permittivity is determined by parameters such as the length of the path and the dielectric constant of a medium on the path). It changes according to.

【0012】従って、複数の抵抗部材と反射部材を設け
た構成において、例えば複数の抵抗部材及び反射部材に
よって区画される複数の空間の実効比誘電率を各々相違
させれば、n+1種類の電磁波の組み合わせ数=(n+
1)!/[(n−1)!×2]と同数の周波数帯域において
各々電磁波の減衰・吸収が生ずることになり、電磁波吸
収帯域の広帯域化を実現できるが、抵抗部材を多重に設
けることに伴い、電磁波吸収体の厚みが更に増大する、
という問題がある。
Therefore, in a configuration in which a plurality of resistance members and a reflection member are provided, for example, if the effective relative dielectric constants of a plurality of spaces defined by the plurality of resistance members and the reflection member are different from each other, n + 1 types of electromagnetic waves can be obtained. Number of combinations = (n +
1)! / [(N-1)! × 2], the electromagnetic waves are attenuated and absorbed in the same number of frequency bands as described above, so that the electromagnetic wave absorption band can be broadened. However, the thickness of the electromagnetic wave absorber is further increased by providing multiple resistance members. Do
There is a problem.

【0013】このため、請求項1記載の発明では、複数
の抵抗部材及び反射部材の配列方向と交差する方向に沿
って間隔を空けて配列された複数の導体を、複数の抵抗
部材の間及び反射部材と特定の抵抗部材の間の少なくと
も1箇所に設けている。上記の複数の導体を抵抗部材の
間又は反射部材と抵抗部材の間に配置した場合、抵抗部
材の間又は反射部材と抵抗部材の間の実効比誘電率ε
effは、抵抗部材の間又は反射部材と抵抗部材の間に存
在する媒質の誘電率をεa,εb、複数の抵抗部材及び反
射部材の配列方向と交差する方向に沿った導体の幅及び
間隔をb,d、複数の抵抗部材及び反射部材の配列方向
に沿った導体の厚さをaとすると、次の(2)式で表さ
れる。
For this reason, according to the first aspect of the present invention, a plurality of conductors arranged at intervals along a direction intersecting the arrangement direction of the plurality of resistance members and the reflection member are formed between the plurality of resistance members and between the plurality of resistance members. It is provided at at least one position between the reflection member and the specific resistance member. When the plurality of conductors are arranged between the resistance members or between the reflection member and the resistance member, the effective relative permittivity ε between the resistance members or between the reflection member and the resistance member
eff is the dielectric constant of the medium existing between the resistance member or between the reflection member and the resistance member, ε a , ε b , the width of the conductor along the direction intersecting the arrangement direction of the plurality of resistance members and the reflection member and Assuming that the interval is b and d and the thickness of the conductor along the arrangement direction of the plurality of resistance members and the reflection members is a, it is expressed by the following equation (2).

【0014】[0014]

【数1】 (Equation 1)

【0015】上記の(2)式より明らかなように、抵抗
部材の間又は反射部材と抵抗部材の間の実効比誘電率ε
eff(抵抗部材の間又は反射部材と抵抗部材の間の誘電
率はこの実効比誘電率εeffに応じて変化する)は、複
数の抵抗部材及び反射部材の配列方向と交差する方向に
沿った導体の幅b、前記交差する方向に沿った間隔d、
及び抵抗部材及び反射部材の配列方向に沿った導体の厚
さaに応じて変化する。
As is apparent from the above equation (2), the effective relative permittivity ε between the resistive members or between the reflective member and the resistive members.
eff (the permittivity between the resistive members or between the reflective member and the resistive member changes according to the effective relative permittivity ε eff ) along a direction intersecting the arrangement direction of the plurality of resistive members and the reflective members. Conductor width b, spacing d along said intersecting direction,
And the thickness a of the conductor along the arrangement direction of the resistance member and the reflection member.

【0016】従って、請求項1記載の発明によれば、導
体の厚さa、導体の幅b及び間隔dの値を適切に設定す
ることで、複数の導体を設けた箇所(抵抗部材の間及び
反射部材と抵抗部材の間の少なくとも1箇所)の実効比
誘電率εeffを1よりも明らかに大きな値とする(εeff
≫1)ことを容易に実現できるので、電磁波吸収帯域の
広帯域化を目的として抵抗部材を複数設けた場合にも、
吸収すべき電磁波の周波数帯域に比して電磁波吸収体の
薄型化を実現することができる。
Therefore, according to the first aspect of the present invention, by appropriately setting the values of the thickness a of the conductor, the width b of the conductor, and the distance d, the location where a plurality of conductors are provided (between the resistance members) And the effective relative permittivity 反射eff of at least one portion between the reflection member and the resistance member) is set to a value clearly larger than 1 (ε eff
≫1) can be easily realized, so even when a plurality of resistance members are provided for the purpose of broadening the electromagnetic wave absorption band,
The thickness of the electromagnetic wave absorber can be reduced compared to the frequency band of the electromagnetic wave to be absorbed.

【0017】また、導体の厚さa、導体の幅b及び間隔
dの値を調整することで、複数の導体を設けた箇所の実
効比誘電率εeffを所望の値にすることを容易に実現で
きるので、所望の周波数帯域で電磁波の減衰・吸収が生
ずるように電磁波吸収体を構成することを容易に行うこ
とができる。
Further, by adjusting the values of the thickness a of the conductor, the width b of the conductor, and the interval d, it is easy to set the effective relative permittivity ε eff at the location where a plurality of conductors are provided to a desired value. Since it can be realized, it is easy to configure the electromagnetic wave absorber so that the electromagnetic wave is attenuated and absorbed in a desired frequency band.

【0018】なお、請求項1記載の発明において、複数
の抵抗部材及び反射部材によって区画された複数の区間
の実効比誘電率を互いに相違させることは、例えば請求
項2に記載したように、各区間を区画する部材の間隔、
各区間における複数の導体の有無、複数の抵抗部材及び
反射部材の配列方向に沿った複数の導体の位置、前記配
列方向と交差する方向に沿った前記導体の幅、前記配列
方向と交差する方向に沿った前記導体の間隙、及び前記
配列方向に沿った前記導体の厚さの少なくとも1つを相
違させることで実現できる。
In the first aspect of the present invention, the difference between the effective relative dielectric constants of a plurality of sections defined by the plurality of resistance members and the reflection member is, for example, as described in the second aspect. The interval between members that define the section,
Presence or absence of a plurality of conductors in each section, positions of a plurality of conductors along an arrangement direction of a plurality of resistance members and reflection members, widths of the conductors along a direction intersecting the arrangement direction, directions intersecting the arrangement direction And at least one of the thicknesses of the conductors along the arrangement direction is different.

【0019】上記からも明らかなように、請求項1に記
載の複数の導体を設けることで、複数の区間の実効比誘
電率を相違させる方法として、各区間を区画する部材の
間隔を相違させる方法以外に多数種の方法が生ずること
になり、複数の区間の実効比誘電率を互いに相違させる
ことを、電磁波吸収体の厚みの大幅な増加を招くことな
く実現することができる。
As is apparent from the above description, by providing a plurality of conductors according to the first aspect, as a method of making the effective relative permittivity of the plurality of sections different, the interval between members that partition each section is made different. In addition to the above-mentioned methods, various other methods will occur, and the effective relative dielectric constants of a plurality of sections can be made different from each other without causing a significant increase in the thickness of the electromagnetic wave absorber.

【0020】また、本発明に係る電磁波吸収体による電
磁波吸収帯域は、複数の抵抗部材及び反射部材によって
区画された複数の区間の実効比誘電率によって定まる。
このため、請求項3に記載したように、複数の抵抗部材
及び反射部材の間隔、複数の抵抗部材及び反射部材によ
って区画された複数の区間の各々における複数の導体の
有無、複数の抵抗部材及び反射部材の配列方向に沿った
複数の導体の位置、前記配列方向と交差する方向に沿っ
た導体の幅、配列方向と交差する方向に沿った導体の間
隙、及び前記配列方向に沿った前記導体の厚さの少なく
とも1つを、互いに異なる複数の周波数帯域の電磁波が
各々吸収されるように設定することが好ましい。これに
より、互いに異なる複数の周波数帯域(吸収すべき周波
数帯域)の電磁波が各々吸収されるように、本発明に係
る電磁波吸収体を構成することができる。
The electromagnetic wave absorption band of the electromagnetic wave absorber according to the present invention is determined by the effective relative permittivity of a plurality of sections defined by a plurality of resistance members and reflection members.
For this reason, as described in claim 3, the interval between the plurality of resistance members and the reflection member, the presence or absence of the plurality of conductors in each of the plurality of sections partitioned by the plurality of resistance members and the reflection member, the plurality of resistance members, Positions of the plurality of conductors along the arrangement direction of the reflection member, widths of the conductors along the direction intersecting the arrangement direction, gaps between the conductors along the direction intersecting the arrangement direction, and the conductors along the arrangement direction Is preferably set so that electromagnetic waves in a plurality of different frequency bands are absorbed. Thereby, the electromagnetic wave absorber according to the present invention can be configured such that electromagnetic waves in a plurality of different frequency bands (frequency bands to be absorbed) are respectively absorbed.

【0021】ところで、間隔を空けて複数の導体を一定
の方向に配列することで得られる誘電率((2)式によっ
て求まる実効比誘電率εeff)は、詳しくは複数の導体
の配列方向についての誘電率を表しており、この複数の
導体の配列方向についての誘電率は、偏波面の方向が複
数の導体の配列方向に沿った電磁波に作用する。
Incidentally, the permittivity (effective relative permittivity 率eff obtained by the equation (2)) obtained by arranging a plurality of conductors in a fixed direction at an interval is described in detail in the arrangement direction of the plurality of conductors. The dielectric constant in the arrangement direction of the plurality of conductors acts on an electromagnetic wave whose polarization plane is in the arrangement direction of the plurality of conductors.

【0022】先に説明した請求項1記載の発明の一態様
としては、複数の導体を、複数の抵抗部材及び反射部材
の配列方向と交差する単一の方向に沿って間隔を空けて
配列する構成(ストライプ状に導体を配置する構成)が
挙げられるが、この構成では、複数の導体を設けること
による実効比誘電率の増大が、偏波面の方向が前記単一
の方向に略直交している電磁波についてのみ作用するの
で、偏波面の方向が不定の電磁波(例えば円偏波の電磁
波)に対する吸収性能が非常に低く、また偏波面の方向
が前記単一の方向と略同一の電磁波の吸収帯域は、偏波
面の方向が前記単一の方向に略直交している電磁波の吸
収帯域と大きく相違することになる。
According to one aspect of the present invention, a plurality of conductors are arranged at intervals along a single direction intersecting the arrangement direction of a plurality of resistance members and reflection members. Although a configuration (a configuration in which conductors are arranged in a stripe shape) can be cited, in this configuration, the increase in the effective relative permittivity due to the provision of a plurality of conductors is caused by the fact that the direction of the polarization plane is substantially orthogonal to the single direction. Since it acts only on electromagnetic waves that are present, its absorption performance for electromagnetic waves with an indeterminate plane of polarization (for example, circularly polarized electromagnetic waves) is very low, and the absorption of electromagnetic waves whose direction of polarization is substantially the same as the single direction The band is greatly different from the absorption band of the electromagnetic wave in which the direction of the polarization plane is substantially orthogonal to the single direction.

【0023】このため、請求項4記載の発明は、請求項
1記載の発明において、複数の導体は、複数の抵抗部材
及び反射部材の配列方向と交差する第1方向に沿って間
隔を空けて配列されていると共に、前記配列方向及び第
1方向と各々交差する第2方向に沿って間隔を空けて配
列されていることを特徴としている。
Therefore, according to a fourth aspect of the present invention, in the first aspect of the present invention, the plurality of conductors are spaced apart along a first direction intersecting the arrangement direction of the plurality of resistance members and the reflection members. They are arranged and are arranged at intervals along a second direction that intersects the arrangement direction and the first direction.

【0024】請求項4記載の発明において、第1方向に
ついての実効比誘電率εeffは第1方向に沿った導体の
幅及び間隔(及び前記配列方向に沿った導体の厚さ)に
応じて変化し、第2方向についての実効比誘電率εeff
は第2方向に沿った導体の幅及び間隔(及び前記配列方
向に沿った導体の厚さ)に応じて変化する。従って、複
数の導体の第1方向に沿った導体の幅及び間隔、第2方
向に沿った導体の幅及び間隔を各々適切に設定すること
で、第1方向についての実効比誘電率εeff及び第2方
向についての実効比誘電率εeffを各々所望の値とする
ことができ、所望の広い周波数帯域に亘って電磁波を吸
収することを、電磁波の偏波面の方向の方向に拘わらず
実現することができる。
In the fourth aspect of the present invention, the effective relative permittivity ε eff in the first direction depends on the width and the interval of the conductors along the first direction (and the thickness of the conductors along the arrangement direction). And the effective relative permittivity ε eff in the second direction.
Varies according to the width and spacing of the conductors along the second direction (and the thickness of the conductors along the arrangement direction). Therefore, by appropriately setting the width and spacing of the conductors in the first direction of the plurality of conductors and the width and spacing of the conductors in the second direction, the effective relative permittivity ε eff and the The effective relative permittivity ε eff in the second direction can be set to a desired value, and absorption of an electromagnetic wave over a desired wide frequency band is realized regardless of the direction of the plane of polarization of the electromagnetic wave. be able to.

【0025】[0025]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態の一例を詳細に説明する。図1(A)には本発明
に係る電磁波吸収体としての電磁波吸収パネル10が示
されている。この電磁波吸収パネル10は、一定の間隔
を隔てて平行に配置された平板状で絶縁性材料から成る
絶縁性基板12A,12B,14を備えている。絶縁性
基板12A,12B,14は、公知の様々な絶縁性材料
の中から任意の材料を選択的に用いて平板状に形成する
ことで構成することができるが、電磁波吸収パネル10
が光透過性を有することが求められている場合(例えば
電磁波吸収パネル10を建築物の窓部として用いる等の
場合)には、例えばガラス、或いは光透過性を有するビ
ニールやプラスチック等の材料で構成することができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1A shows an electromagnetic wave absorbing panel 10 as an electromagnetic wave absorber according to the present invention. The electromagnetic wave absorbing panel 10 has flat insulating substrates 12A, 12B and 14 made of an insulating material and arranged in parallel at a predetermined interval. The insulating substrates 12A, 12B, and 14 can be formed by selectively using an arbitrary material from various known insulating materials to form a flat plate.
Is required to have a light transmitting property (for example, when the electromagnetic wave absorbing panel 10 is used as a window of a building), for example, a material such as glass or a light transmitting vinyl or plastic is used. Can be configured.

【0026】絶縁性基板14のうち、絶縁性基板12
A,12B側の面には導電性被膜(反射膜)18が形成
されている。反射膜18は、到来した電磁波の殆どを反
射するように導電率(面抵抗値)が調整されている。反
射膜18に好適な面抵抗値は単位面積当り1μΩ〜30
Ω程度であり、より好ましくは単位面積当り10mΩ〜
20Ω程度であるが、電磁波吸収パネル10が光透過性
を有することが求められていないのであれば面抵抗値を
より小さくすることができ、到来した電磁波の反射割合
をより高くすることができる。
Of the insulating substrate 14, the insulating substrate 12
A conductive film (reflection film) 18 is formed on the surfaces on the sides A and 12B. The conductivity (surface resistance) of the reflective film 18 is adjusted so that most of the arriving electromagnetic waves are reflected. The sheet resistance suitable for the reflection film 18 is 1 μΩ to 30 μm per unit area.
Ω, more preferably 10 mΩ per unit area.
Although it is about 20 Ω, if the electromagnetic wave absorbing panel 10 is not required to have optical transparency, the sheet resistance can be made smaller, and the reflection ratio of the incoming electromagnetic wave can be made higher.

【0027】一方、絶縁性基板12A,12Bは同一の
構成であるので、以下ではこれらを絶縁性基板12と総
称して説明する。絶縁性基板12の絶縁性基板14側に
は、絶縁性基板12と所定の間隔を隔てて絶縁性基板1
2と平行に、ガラス等の公知の絶縁性材料から成る絶縁
性基板60が配置されている。絶縁性基板12,60の
間隙には、図1(B)に示すように、絶縁性基板12側
から順に、導電性被膜(抵抗膜)16、絶縁性フィルム
層62、分割導電体層64が順に形成されており、これ
らの絶縁性基板12,60、抵抗膜16、絶縁性フィル
ム層62、分割導電体層64は、所謂合わせガラスと同
様に一体化されている。
On the other hand, since the insulating substrates 12A and 12B have the same configuration, they will be hereinafter collectively referred to as the insulating substrate 12. On the insulating substrate 14 side of the insulating substrate 12, the insulating substrate 1 is separated from the insulating substrate 12 by a predetermined distance.
In parallel with 2, an insulating substrate 60 made of a known insulating material such as glass is arranged. As shown in FIG. 1B, a conductive film (resistive film) 16, an insulating film layer 62, and a divided conductor layer 64 are arranged in the gap between the insulating substrates 12 and 60 in this order from the insulating substrate 12 side. These insulating substrates 12 and 60, the resistive film 16, the insulating film layer 62, and the divided conductor layer 64 are integrated in the same manner as a so-called laminated glass.

【0028】抵抗膜16は、電磁波が到来すると、その
一部を吸収すると共に他の一部を反射し、残りを透過さ
せるように、導電率(単位面積当りの抵抗値:面抵抗
値)が調整されている。抵抗膜16に好適な面抵抗値は
単位面積当り50Ω〜3000Ω程度であり、より好ま
しくは単位面積当り200Ω〜1500Ω程度である。
The resistance film 16 has a conductivity (resistance per unit area: sheet resistance) so that when an electromagnetic wave arrives, it absorbs a part of the electromagnetic wave, reflects another part, and transmits the other part. Has been adjusted. The sheet resistance suitable for the resistance film 16 is about 50Ω to 3000Ω per unit area, and more preferably about 200Ω to 1500Ω per unit area.

【0029】また、分割導電体層64としては、例えば
図2(A)に示す構成又は図2(B)に示す構成を採用
することができる。図2(A)に示す分割導電体層64
は、一定の厚みの扁平な長尺状で、長手方向が抵抗膜1
6と反射膜18の並ぶ方向に直交する一定の方向(図1
の紙面に垂直な方向、図2の矢印A方向:以下、第2方
向という)に沿うように配置された複数の導電膜66
が、幅方向(図1及び図2の矢印B方向、抵抗膜16と
反射膜18の並ぶ方向及び第2方向と各々直交する第1
方向)に隣り合う導電膜66と各々間隔dを空けて配列
されて構成されている。なお、導電膜66の幅bは好ま
しくはb≦50cmである。
As the divided conductor layer 64, for example, the configuration shown in FIG. 2A or the configuration shown in FIG. 2B can be adopted. The divided conductor layer 64 shown in FIG.
Is a flat and long shape having a certain thickness, and the longitudinal direction is the resistance film 1.
1 and a certain direction orthogonal to the direction in which the reflection film 18 is arranged (FIG. 1).
2, a plurality of conductive films 66 arranged along a direction perpendicular to the plane of FIG.
Are perpendicular to the width direction (the direction of arrow B in FIGS. 1 and 2, the direction in which the resistive film 16 and the reflective film 18 are arranged, and the second direction, respectively).
And the conductive films 66 adjacent to each other in the direction (direction). Note that the width b of the conductive film 66 is preferably b ≦ 50 cm.

【0030】また、図2(B)に示す分割導電体層64
は、一定の厚みの扁平な矩形状の多数個の導電膜66が
第1方向及び第2方向に沿ってマトリクス状に配置さ
れ、第1方向及び第2方向に隣り合う導電膜66と各々
間隔dを空けて配列されて構成されている。なお、図2
(A)及び図2(B)に示す導電膜66は本発明に係る
導体に対応しており、特に図2(B)に示す導電膜66
は請求項4に記載の導体に対応している。なお、図2
(B)において、第1方向に沿った導電膜66の幅b1
は好ましくはb1≦50cmであり、第2方向に沿った
導電膜66の幅b2も好ましくはb2≦50cmである。
The divided conductor layer 64 shown in FIG.
A plurality of flat rectangular conductive films 66 having a constant thickness are arranged in a matrix along the first direction and the second direction, and each of the conductive films 66 is spaced apart from the conductive film 66 adjacent in the first direction and the second direction. They are arranged so as to be separated by d. Note that FIG.
The conductive film 66 shown in FIGS. 2A and 2B corresponds to the conductor according to the present invention, and in particular, the conductive film 66 shown in FIG.
Corresponds to the conductor according to claim 4. Note that FIG.
In (B), the width b 1 of the conductive film 66 along the first direction is shown.
Is preferably b 1 ≦ 50 cm, and the width b 2 of the conductive film 66 along the second direction is also preferably b 2 ≦ 50 cm.

【0031】また、導電膜66に好適な面抵抗値は単位
面積当り1μΩ〜40Ω程度であり、より好ましくは単
位面積当り10mΩ〜20Ω程度である。また、導電膜
66が形成された絶縁性基板の絶縁抵抗値RdはRd≧
30kΩである。
The sheet resistance suitable for the conductive film 66 is about 1 μΩ to 40 Ω per unit area, and more preferably about 10 mΩ to 20 Ω per unit area. The insulation resistance value Rd of the insulating substrate on which the conductive film 66 is formed is Rd ≧
30 kΩ.

【0032】なお、図2(B)のように導体(導電膜6
6)を2次元に配列する構成において、導体の配列方向
としての2方向(第1方向及び第2方向)は必ずしも直
交している必要はなく、前記2方向は互いに交差する方
向であればよい。
As shown in FIG. 2B, a conductor (conductive film 6) is used.
In the configuration in which 6) are arranged two-dimensionally, the two directions (first direction and second direction) as the arrangement direction of the conductors do not necessarily need to be orthogonal, and the two directions may be directions that intersect each other. .

【0033】また、本実施形態に係る電磁波吸収パネル
10では、絶縁性基板12Aに一体化された絶縁性基板
60と絶縁性基板12Bとの間、及び、絶縁性基板12
Bに一体化された絶縁性基板60と反射膜18との間が
乾燥空気で満たされているが、これに代えて樹脂材料を
封入したり、或いは絶縁性材料や強誘電性材料を設けて
もよい。
Further, in the electromagnetic wave absorbing panel 10 according to the present embodiment, between the insulating substrate 60 integrated with the insulating substrate 12A and the insulating substrate 12B, and between the insulating substrate 12B and the insulating substrate 12B.
The space between the insulating substrate 60 integrated with B and the reflective film 18 is filled with dry air. Instead, a resin material is filled in, or an insulating material or a ferroelectric material is provided. Is also good.

【0034】なお、抵抗膜16、反射膜18及び導電膜
66は、公知の様々な導電性材料の中から任意の材料を
選択的に用いて構成することができるが、電磁波吸収パ
ネル10が光透過性を有することが求められている場合
には、例えば酸化スズ(SnO2)を主成分とする透明
導電膜、酸化インジウム(In23)を主成分とする透
明導電膜、酸化チタン(TiOX:x=1〜2.5)を
主成分とする透明導電膜、窒化チタン(TiNX:x=
0.5〜2)を主成分とする透明導電膜、Ag,Au,
Cu,Alの何れかを主成分とする金属膜が好適であ
る。上記のような透明導電膜や金属膜は、太陽光に含ま
れる近赤外光を反射すると共に、熱線の輻射量が低いと
いう特性を有しているため、上記の材料を用いて構成し
た電磁波吸収パネル10を建築物の窓部に用いること
で、室内の冷暖房の省エネルギー化も実現できる。
The resistance film 16, the reflection film 18, and the conductive film 66 can be formed by using any of various known conductive materials. In the case where transparency is required, for example, a transparent conductive film mainly containing tin oxide (SnO 2 ), a transparent conductive film mainly containing indium oxide (In 2 O 3 ), and titanium oxide ( A transparent conductive film mainly composed of TiO x : x = 1 to 2.5), titanium nitride (TiN x : x =
0.5 to 2) as a main component, a transparent conductive film, Ag, Au,
A metal film containing Cu or Al as a main component is preferable. Since the transparent conductive film and the metal film as described above have a property of reflecting near-infrared light included in sunlight and having a low radiation amount of heat rays, an electromagnetic wave formed using the above-described material is used. By using the absorbing panel 10 for a window of a building, energy saving of indoor cooling and heating can be realized.

【0035】また、本実施形態に係る電磁波吸収パネル
10は、絶縁性基板12Aに一体化された抵抗膜16
(以下、便宜的に第1の抵抗膜16という)と絶縁性基
板12Bに一体化された抵抗膜16(以下、便宜的に第
2の抵抗膜16という)の距離と、第2の抵抗膜16と
反射膜18の距離が相違されている。なお、これは第1
の抵抗膜16と第2の抵抗膜16の間の実効比誘電率
を、第2の抵抗膜16と反射膜18の間の実効比誘電率
と相違させることが目的であるので、上記に代えて、絶
縁性基板12Aに一体化された分割導電体層64(以
下、便宜的に第1の分割導電体層64という)と絶縁性
基板12Bに一体化された分割導電体層64(以下、便
宜的に第2の分割導電体層64という)について、第1
方向に沿った導電膜66の幅b、間隔d、及び抵抗膜1
6と反射膜18の配列方向に沿った厚さa、或いは抵抗
膜と反射膜の間隔(第1の抵抗膜16と第2の抵抗膜1
6の間隔と、第2の抵抗膜16と反射膜18の間隔)の
少なくとも1つを異ならせてもよい。このように、分割
導電体層64を設けることで、第1の抵抗膜16と第2
の抵抗膜16の間の実効比誘電率を、第2の抵抗膜16
と反射膜18の間の実効比誘電率と相違させることを容
易に実現することができる。
Further, the electromagnetic wave absorbing panel 10 according to the present embodiment has the resistance film 16 integrated with the insulating substrate 12A.
(Hereinafter referred to as a first resistive film 16 for convenience) and a distance between the resistive film 16 (hereinafter referred to as a second resistive film 16 for convenience) integrated with the insulating substrate 12B and the second resistive film The distance between the reflective film 16 and the reflective film 18 is different. This is the first
The purpose is to make the effective relative permittivity between the second resistive film 16 and the second resistive film 16 different from the effective relative permittivity between the second resistive film 16 and the reflective film 18. Thus, the divided conductor layer 64 (hereinafter, referred to as a first divided conductor layer 64 for convenience) integrated with the insulating substrate 12A and the divided conductor layer 64 (hereinafter, referred to as the first divided conductor layer 64) integrated with the insulating substrate 12B. For convenience, it is referred to as a second divided conductor layer 64).
The width b of the conductive film 66 along the direction, the interval d, and the resistance film 1
6 and the distance between the resistive film and the reflective film (the first resistive film 16 and the second resistive film 1).
6 and a distance between the second resistive film 16 and the reflective film 18). By providing the divided conductor layer 64 in this manner, the first resistance film 16 and the second
The effective relative permittivity between the first resistive film 16 and the second resistive film 16
It can be easily realized that the effective relative permittivity is different from that between the reflective film 18 and the reflective film 18.

【0036】本実施形態の作用を説明する。電磁波吸収
パネル10は例えば建築物の窓部等に配設される。な
お、配設する電磁波吸収パネル10が、分割導電体層6
4として図2(A)に示す構成(長尺状の導電膜66か
ら成る分割導電体層64)を採用した電磁波吸収パネル
10であれば、第2方向(導電膜66の配列方向)が、
前記建築物に到来する電磁波の偏波面の方向に略一致す
る向き(例えば垂直偏波の電磁波が到来する場合には、
図1の上下方向が建築物の上下方向に一致する向き)
で、かつ絶縁性基板12A側より電磁波が到来するよう
に配設される。
The operation of the present embodiment will be described. The electromagnetic wave absorbing panel 10 is disposed, for example, in a window of a building. It should be noted that the electromagnetic wave absorbing panel 10 to be provided has the divided conductor layer 6
In the case of the electromagnetic wave absorbing panel 10 employing the configuration shown in FIG. 2A (the divided conductive layer 64 made of the long conductive film 66) as the fourth example, the second direction (the arrangement direction of the conductive film 66) is as follows.
A direction substantially matching the direction of the plane of polarization of the electromagnetic wave arriving at the building (for example, when a vertically polarized electromagnetic wave arrives,
The direction in which the vertical direction in Fig. 1 matches the vertical direction of the building)
And the electromagnetic wave comes from the insulating substrate 12A side.

【0037】電磁波吸収パネル10が上記のように建築
物に配設された状態で建築物に電磁波が到来すると、図
3に示すように、到来電磁波(図3に示す電磁波E0
は絶縁性基板12Aを透過して第1の抵抗膜16に入射
され、一部が第1の抵抗膜16により電磁波吸収パネル
10外へ一次射出電磁波Er01として反射されると共
に、一部が第1の抵抗膜16によって吸収され、残りは
第1の抵抗膜16を透過し電磁波Et11として絶縁性基
板12B側へ射出される。
When an electromagnetic wave arrives at a building in a state where the electromagnetic wave absorbing panel 10 is disposed on the building as described above, the incoming electromagnetic wave (electromagnetic wave E 0 shown in FIG. 3) as shown in FIG.
Is transmitted through the insulating substrate 12A and is incident on the first resistive film 16, a part of which is reflected by the first resistive film 16 to the outside of the electromagnetic wave absorbing panel 10 as a primary emission electromagnetic wave Er01 , and a part is The remainder is absorbed by the first resistive film 16 and the remainder is transmitted through the first resistive film 16 and emitted as electromagnetic waves Et11 toward the insulating substrate 12B.

【0038】この電磁波Et11は、第1の分割導電体層
64を透過して絶縁性基板12Bに入射され、絶縁性基
板12Bを透過して第2の抵抗膜16に入射される。そ
して、一部が第2の抵抗膜16により第1の抵抗膜16
側へ電磁波Er11として反射されると共に、一部が第2
の抵抗膜16によって吸収され、残りは第2の抵抗膜1
6を透過し電磁波Et21として反射膜18側へ射出され
る。
The electromagnetic wave Et 11 passes through the first divided conductive layer 64 and is incident on the insulating substrate 12B, passes through the insulating substrate 12B and is incident on the second resistance film 16. Then, a part of the first resistance film 16 is formed by the second resistance film 16.
Is reflected to the side as electromagnetic wave E r11 , and partially
And the rest is absorbed by the second resistive film 1.
6 and is emitted to the reflection film 18 side as an electromagnetic wave Et21 .

【0039】第2の抵抗膜16により第1の抵抗膜16
側へ反射された電磁波Er11は、第1の分割導電体層6
4を再び透過して第1の抵抗膜16に入射され、一部が
第1の抵抗膜16を透過し電磁波吸収パネル10外へ二
次射出電磁波Er02として射出されると共に、一部が第
1の抵抗膜16によって吸収され、残りは第1の抵抗膜
16によって第2の抵抗膜16側へ反射される。
The first resistive film 16 is formed by the second resistive film 16.
The electromagnetic wave E r11 reflected to the side is applied to the first divided conductor layer 6.
4 again, is incident on the first resistive film 16, a part is transmitted through the first resistive film 16, is emitted out of the electromagnetic wave absorbing panel 10 as the secondary emission electromagnetic wave E r02 , and a part is the second emission electromagnetic wave E r02 . The light is absorbed by the first resistive film 16, and the rest is reflected by the first resistive film 16 toward the second resistive film 16.

【0040】一方、第2の抵抗膜16を透過した電磁波
t21は、第2の分割導電体層64を透過して反射膜1
8に入射され、反射膜18によってその殆どが反射さ
れ、第2の分割導電体層64を再び透過し、電磁波E
r21として第2の抵抗膜16に入射される。第2の抵抗
膜16に入射された電磁波Er21は、一部が第2の抵抗
膜16を透過し第1の抵抗膜16側へ電磁波Er12とし
て射出されると共に、一部が抵抗膜16によって吸収さ
れ、残りは抵抗膜16によって反射膜18側へ反射され
射出される。
On the other hand, the electromagnetic wave Et 21 transmitted through the second resistance film 16 transmits through the second divided conductor layer 64 and is reflected by the reflection film 1.
8, most of the light is reflected by the reflection film 18, passes through the second divided conductor layer 64 again, and receives the electromagnetic wave E.
The light is incident on the second resistance film 16 as r21 . A part of the electromagnetic wave E r21 incident on the second resistance film 16 passes through the second resistance film 16 and is emitted to the first resistance film 16 side as an electromagnetic wave E r12 , and a part of the resistance wave 16 And the rest is reflected by the resistive film 16 toward the reflective film 18 and emitted.

【0041】また、第2の抵抗膜16を透過して第1の
抵抗膜16側へ射出された電磁波E r12は、第1の分割
導電体層64を透過して第1の抵抗膜16に入射され、
一部が第1の抵抗膜16を透過し電磁波吸収パネル10
外へ三次射出電磁波Er03として射出されると共に、一
部が第1の抵抗膜16によって吸収され、残りは第1の
抵抗膜16によって第2の抵抗膜16側へ反射される。
The second resistive film 16 transmits through the first resistive film
Electromagnetic wave E emitted to the resistance film 16 side r12Is the first split
The light passes through the conductor layer 64 and is incident on the first resistance film 16,
Part of the electromagnetic wave absorbing panel 10 is transmitted through the first resistive film 16.
Tertiary emission electromagnetic wave E outr03Injected as
Portion is absorbed by the first resistive film 16 and the rest is
The light is reflected by the resistance film 16 toward the second resistance film 16.

【0042】上記の現象が繰り返されることで、電磁波
吸収パネル10に到来した電磁波は、一次射出電磁波〜
MAX次電磁波(理論的にはnMAX=∞)に分割されて電
磁波吸収パネル10から射出されるので、抵抗膜16が
形成された絶縁性基板12側から到来した電磁波吸収パ
ネル10の反射係数Γは、
By repeating the above phenomenon, the electromagnetic wave arriving at the electromagnetic wave absorbing panel 10 is changed from the primary emission electromagnetic wave to
Since (theoretically n MAX = ∞) n MAX order electromagnetic wave is divided into emitted from the electromagnetic wave absorption panel 10, the reflection coefficient of the electromagnetic wave absorbing panel 10 coming from the resistance film 16 is formed the insulating substrate 12 side Γ

【0043】[0043]

【数2】 (Equation 2)

【0044】となる。Is as follows.

【0045】ここで、第1の抵抗膜16や第2の抵抗膜
16に入射された電磁波は、その一部が抵抗膜16によ
って吸収されることで抵抗膜16を透過又は抵抗膜16
で反射されて射出される電磁波の電界強度が小さくな
る。n次射出電磁波の次数nの値が大きくなるに伴って
抵抗膜16への入射回数も増大するので、抵抗膜16に
おける電磁波の吸収率αの値にも依存するが、次数nの
値が大きい高次の射出電磁波(例えばn≧3の射出電磁
波)は電界強度が非常に小さくなるために無視できる。
Here, the electromagnetic waves incident on the first resistive film 16 and the second resistive film 16 are partially absorbed by the resistive film 16 so that they pass through the resistive film 16 or pass through the resistive film 16.
The electric field intensity of the electromagnetic wave reflected and emitted by the light source is reduced. Since the number of times that the order n of the n-th emitted electromagnetic wave is incident on the resistive film 16 increases as the value of the order n increases, the value of the order n is large, although it depends on the value of the absorptivity α of the electromagnetic wave in the resistive film 16. Higher-order emitted electromagnetic waves (e.g., emitted electromagnetic waves with n ≧ 3) can be neglected because the electric field intensity becomes very small.

【0046】また、本実施形態に係る電磁波吸収パネル
10は、複数の抵抗膜16が設けられており、第1の抵
抗膜16と第2の抵抗膜16の距離と、第2の抵抗膜1
6と反射膜18の距離が相違されているので、第1の抵
抗膜16で反射されて射出される一次射出電磁波Er01
と第2の抵抗膜16で反射されて射出される二次射出電
磁波Er02とが略逆位相となる電磁波の周波数f1、第1
の抵抗膜16で反射されて射出される一次射出電磁波E
r01と反射膜18で反射されて射出される三次射出電磁
波Er03とが略逆位相となる電磁波の周波数f2、及び第
1の抵抗膜16で反射されて射出される一次射出電磁波
r01と反射膜18で反射されて射出される三次射出電
磁波Er03とが略逆位相となる電磁波の周波数f3は互い
に相違し、中心周波数f1、f2、f3の各周波数帯域で
各々電磁波の減衰・吸収が生ずるので、電磁波吸収帯域
の広帯域化を実現できる。
Further, the electromagnetic wave absorbing panel 10 according to the present embodiment is provided with a plurality of resistive films 16, the distance between the first resistive film 16 and the second resistive film 16, and the second resistive film 1.
6 and the reflection film 18 are different in distance, so that the primary emission electromagnetic wave E r01 reflected and emitted by the first resistance film 16 is emitted.
And the secondary emission electromagnetic wave E r02 reflected and emitted by the second resistance film 16 has a frequency f 1 of an electromagnetic wave having substantially the opposite phase.
Primary emission electromagnetic wave E reflected and emitted by the resistive film 16 of FIG.
r01 and a tertiary emission electromagnetic wave E r03 reflected and emitted by the reflective film 18 have a frequency f 2 of an electromagnetic wave having substantially opposite phase, and a primary emission electromagnetic wave E r01 reflected and emitted by the first resistive film 16. The frequency f 3 of the electromagnetic wave that is substantially opposite in phase to the tertiary emission electromagnetic wave E r03 reflected and emitted by the reflection film 18 is different from each other, and the frequency f 3 of each of the center frequencies f 1 , f 2 , and f 3 is different. Since attenuation and absorption occur, the band of the electromagnetic wave absorption band can be widened.

【0047】更に、本実施形態に係る電磁波吸収パネル
10では、第1の抵抗膜16と第2の抵抗膜16の間、
及び第2の抵抗膜16と反射膜18との間に分割導電体
層64が各々配設されているため、第1の抵抗膜16と
第2の抵抗膜16の間、及び第2の抵抗膜16と反射膜
18との間の導電膜66の配列方向(分割導電体層64
が図2(A)に示す長尺状の導電膜66で構成されてい
る場合には第2方向、分割導電体層64が図2(B)に
示す矩形状の導電膜66で構成されている場合には第1
方向及び第2方向)についての実効比誘電率は非常に高
い値となる。
Further, in the electromagnetic wave absorbing panel 10 according to the present embodiment, between the first resistance film 16 and the second resistance film 16,
Since the divided conductor layers 64 are provided between the second resistive film 16 and the reflective film 18, respectively, between the first resistive film 16 and the second resistive film 16 and between the first resistive film 16 and the second resistive film 16. The arrangement direction of the conductive film 66 between the film 16 and the reflective film 18 (the divided conductive layer 64
2A is formed of a long conductive film 66 shown in FIG. 2A, the divided conductor layer 64 in the second direction is formed of a rectangular conductive film 66 shown in FIG. If there is first
Direction and the second direction) have a very high value.

【0048】すなわち、分割導電体層64に電磁波が到
来すると、個々の導電膜66に多数の分極が生ずると共
に、この分極の発生に伴って個々の導電膜66内部の電
場が0となるように反分極電場が誘起される。また、分
割導電体層64に電磁波が到来すると、到来した電磁波
の偏波面の方向に沿って個々の導電膜66内を電荷が移
動するが、この電荷の移動は偏波面の方向に沿った導電
膜66の端部で止まるために、間隙を隔てて隣り合う導
電膜66の端部に互いに極性の異なる電荷が蓄積され
る。第1の抵抗膜16と第2の抵抗膜16の間の実効比
誘電率、及び第2の抵抗膜16と反射膜18との間の実
効比誘電率は、上述した反分極電場、及び、隣り合う導
電膜66の端部に逆極性の電荷が蓄積されることで生ず
るクーロン相互作用によって増大する。
That is, when an electromagnetic wave arrives at the divided conductor layer 64, a large number of polarizations are generated in the individual conductive films 66, and the electric field inside the individual conductive films 66 becomes zero with the occurrence of the polarization. An anti-polarization electric field is induced. Further, when an electromagnetic wave arrives at the divided conductor layer 64, charges move in the individual conductive films 66 along the direction of the plane of polarization of the incoming electromagnetic wave, and the movement of the charges is caused by conduction along the direction of the plane of polarization. Since the film stops at the end of the film 66, charges having different polarities are accumulated at the ends of the adjacent conductive films 66 with a gap therebetween. The effective relative permittivity between the first resistive film 16 and the second resistive film 16 and the effective relative permittivity between the second resistive film 16 and the reflective film 18 are determined by the above-described anti-polarization electric field, It is increased by Coulomb interaction caused by accumulation of charges of opposite polarity at the ends of adjacent conductive films 66.

【0049】また、本実施形態に係る電磁波吸収パネル
10は、絶縁性フィルム層62の厚みw(すなわち抵抗
膜16と導電膜66との距離w)が分割導電体層64の
導電膜66の間隔d以下とされているので、電磁波の到
来に伴って抵抗膜16と導電膜66との間にクーロン相
互作用が生じ、抵抗膜16と反射膜18との間の実効比
誘電率が非常に高い値になる。
Also, in the electromagnetic wave absorbing panel 10 according to the present embodiment, the thickness w of the insulating film layer 62 (ie, the distance w between the resistive film 16 and the conductive film 66) is determined by the distance between the conductive films 66 of the divided conductive layer 64. d, the Coulomb interaction occurs between the resistive film 16 and the conductive film 66 with the arrival of the electromagnetic wave, and the effective relative permittivity between the resistive film 16 and the reflective film 18 is very high. Value.

【0050】これに伴って、第1の抵抗膜16と第2の
抵抗膜16の間、第2の抵抗膜16と反射膜18との間
を往復伝播する電磁波の波長も、その周波数に比して非
常に短くなる(電磁波Etnの波長は実効比誘電率の平方
根に反比例する)ため、電磁波の減衰・吸収が生ずる周
波数帯域(中心周波数f1、f2、f3の各周波数帯域)
に比して絶縁性基板12Aと絶縁性基板14の間隔が非
常に小さくなる。従って、本実施形態に係る電磁波吸収
パネル10は、広い周波数帯域(中心周波数f 1、f2
3の各周波数帯域)の電磁波に対して十分な電磁波吸
収性能が得られると共に、吸収すべき周波数帯域に比し
て絶縁性基板12A,14の間隔を非常に小さくするこ
と、すなわち大幅な薄型化が可能となる。
Accordingly, the first resistive film 16 and the second resistive film 16
Between the resistive films 16 and between the second resistive film 16 and the reflective film 18
The wavelength of the electromagnetic wave that propagates back and forth through the
Always shorter (electromagnetic wave EtnIs the square of the effective dielectric constant
Because it is inversely proportional to the root).
Wavenumber band (center frequency f1, FTwo, FThreeEach frequency band)
The distance between the insulating substrate 12A and the insulating substrate 14 is smaller than that of FIG.
Always smaller. Therefore, the electromagnetic wave absorption according to the present embodiment
The panel 10 has a wide frequency band (center frequency f 1, FTwo,
fThreeSufficient electromagnetic wave absorption for each frequency band
Performance, and compared to the frequency band to be absorbed.
The distance between the insulating substrates 12A and 14 is extremely small.
That is, the thickness can be significantly reduced.

【0051】また、分割導電体層64として、図2
(A)に示すように、長尺状の導電膜66を配列した構
成を採用した場合、電磁波吸収パネル10によって吸収
される電磁波は、偏波面の方向が第2方向(導電膜66
の配列方向)に略一致している電磁波のみであるが、分
割導電体層64として、図2(B)に示すように、矩形
状の導電膜66をマトリクス状に配列した構成を採用し
た場合には、電磁波吸収パネル10に到来した電磁波
を、該電磁波の偏波面の方向に拘わらず高い吸収率で吸
収することができる。
As the divided conductor layer 64, FIG.
As shown in (A), when the configuration in which the long conductive films 66 are arranged is adopted, the direction of the polarization plane of the electromagnetic wave absorbed by the electromagnetic wave absorbing panel 10 is the second direction (the conductive film 66).
In the case where a configuration in which rectangular conductive films 66 are arranged in a matrix as the divided conductive layers 64 is adopted as the divided conductive layers 64, as shown in FIG. Thus, the electromagnetic wave arriving at the electromagnetic wave absorbing panel 10 can be absorbed at a high absorption rate regardless of the direction of the polarization plane of the electromagnetic wave.

【0052】また、先に説明したように、光透過性を有
する部材で電磁波吸収パネル10を構成すれば、光透過
性を有する電磁波吸収パネル10を得ることができるの
で、建築物の窓部等のように光透過性の確保が要求され
る部位に配設することも可能となる。
Further, as described above, if the electromagnetic wave absorbing panel 10 is made of a member having a light transmitting property, the electromagnetic wave absorbing panel 10 having a light transmitting property can be obtained. It is also possible to dispose them at a site where light transmission is required.

【0053】なお、電磁波が到来したときの第1の抵抗
膜16と第2の抵抗膜16の間の実効比誘電率、及び第
2の抵抗膜16と反射膜18との間の実効比誘電率は、
抵抗膜16と導電膜66との距離wが小さくなるに従っ
て高くなるが、電磁波の到来に伴って発生する電界の電
界強度によっては、第1の抵抗膜16と導電膜66との
間、及び第2の抵抗膜16と導電膜66との間に絶縁破
壊が生じて導電電流が流れる可能性がある。このため、
抵抗膜16と導電膜66との距離wは、到来する電磁波
の強度等も勘案し、抵抗膜16と導電膜66との間に絶
縁破壊が生じることを阻止できる最小距離以上で、なる
べく小さな値とすることが電磁波吸収パネル10の薄型
化の点から望ましい。
The effective relative permittivity between the first resistive film 16 and the second resistive film 16 when an electromagnetic wave arrives, and the effective relative permittivity between the second resistive film 16 and the reflective film 18 The rate is
The distance w increases as the distance w between the resistive film 16 and the conductive film 66 decreases. However, depending on the electric field intensity of the electric field generated with the arrival of the electromagnetic wave, the distance between the first resistive film 16 and the conductive film 66 and the 2 between the resistive film 16 and the conductive film 66, and a conductive current may flow. For this reason,
The distance w between the resistive film 16 and the conductive film 66 should be as small as possible and not less than the minimum distance that can prevent the occurrence of dielectric breakdown between the resistive film 16 and the conductive film 66 in consideration of the intensity of the incoming electromagnetic wave. It is desirable to make the electromagnetic wave absorbing panel 10 thinner.

【0054】また、上記の実施形態において、公知の絶
縁性材料から成る絶縁性フィルム層62に代えて、強誘
電材料から成る強誘電フィルム層を設ければ、抵抗膜1
6と反射膜18との間の実効比誘電率を更に高くするこ
とができ、電磁波吸収パネル10の更なる薄型化を実現
できるので好ましい。
In the above embodiment, if a ferroelectric film layer made of a ferroelectric material is provided instead of the insulating film layer 62 made of a known insulating material,
This is preferable because the effective relative dielectric constant between the first and second reflective films 6 and 18 can be further increased, and the electromagnetic wave absorbing panel 10 can be further reduced in thickness.

【0055】なお、上記では第1の抵抗層16と第2の
抵抗層16の間、及び第2の抵抗層16と反射層18の
間に各々分割導電体層64を設けた例を説明したが、本
発明はこれに限定されるものではなく、例として図4
(A)に示すように、第1の抵抗層16と第2の抵抗層
16の間にのみ分割導電体層を設けてもよいし、例とし
て図4(B)に示すように、第2の抵抗層16と反射層
18の間にのみ分割導電体層を設けてもよい。また、抵
抗層の数も「2」に限られるものではなく、3個以上の
抵抗層を設けてもよいことは言うまでもない。
In the above, an example in which the divided conductor layers 64 are provided between the first resistance layer 16 and the second resistance layer 16 and between the second resistance layer 16 and the reflection layer 18 has been described. However, the present invention is not limited to this, and as an example, FIG.
As shown in FIG. 4A, a divided conductor layer may be provided only between the first resistance layer 16 and the second resistance layer 16, or as an example, as shown in FIG. May be provided only between the resistive layer 16 and the reflective layer 18. Also, the number of resistance layers is not limited to “2”, and it goes without saying that three or more resistance layers may be provided.

【0056】また、上記では絶縁性基板12,60の間
隙に、抵抗膜16、絶縁性フィルム層62及び分割導電
体層64を順に形成した構成を例に説明したが、これに
限定されるものではなく、分割導電体層64を絶縁性フ
ィルム層62にプリントすることで、絶縁性フィルム層
62上に分割導電体層64を形成することにより、絶縁
性基板60を省略した構成を採用することも可能であ
る。
In the above description, a configuration in which the resistive film 16, the insulating film layer 62, and the divided conductor layer 64 are sequentially formed in the gap between the insulating substrates 12, 60 has been described as an example. However, the present invention is not limited to this. Instead, a configuration in which the insulating substrate 60 is omitted by forming the divided conductor layer 64 on the insulating film layer 62 by printing the divided conductor layer 64 on the insulating film layer 62 is adopted. Is also possible.

【0057】[0057]

【発明の効果】以上説明したように本発明は、到来した
電磁波の一部を反射し他の一部を透過させる複数の抵抗
部材を一定方向に沿って配列すると共に、複数の抵抗部
材に対して一定方向に距離を隔てて配置し、複数の抵抗
部材及び反射部材の配列方向と交差する方向に沿って間
隔を空けて配列された複数の導体を、複数の抵抗部材の
間及び反射部材と特定の抵抗部材の間の少なくとも1箇
所に設けたので、電磁波吸収帯域の広帯域化及び薄型化
を実現できる、という優れた効果を有する。
As described above, according to the present invention, a plurality of resistance members for reflecting a part of an incoming electromagnetic wave and transmitting the other part are arranged along a certain direction, A plurality of conductors arranged at a distance in a certain direction and arranged at intervals along a direction intersecting the arrangement direction of the plurality of resistance members and the reflection member, between the plurality of resistance members and the reflection member. Since it is provided at at least one position between the specific resistance members, it has an excellent effect that the electromagnetic wave absorption band can be widened and thinned.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (A)は本実施形態に係る電磁波吸収パネル
の概略断面図、(B)は(A)の部分拡大図である。
FIG. 1A is a schematic sectional view of an electromagnetic wave absorbing panel according to the embodiment, and FIG. 1B is a partially enlarged view of FIG.

【図2】 分割導電体層の構成の一例を示す平面図であ
る。
FIG. 2 is a plan view illustrating an example of a configuration of a divided conductor layer.

【図3】 本実施形態に係る電磁波吸収パネルによる電
磁波吸収の原理を説明するための概念図である。
FIG. 3 is a conceptual diagram illustrating the principle of electromagnetic wave absorption by the electromagnetic wave absorbing panel according to the embodiment.

【図4】 (A)及び(B)は電磁波吸収パネルの他の
構成例を示す概略図である。
FIGS. 4A and 4B are schematic diagrams showing another configuration example of the electromagnetic wave absorbing panel.

【符号の説明】[Explanation of symbols]

10 電磁波吸収パネル 16 抵抗膜 18 反射膜 64 分割導電体層 66 導電膜 DESCRIPTION OF SYMBOLS 10 Electromagnetic wave absorption panel 16 Resistive film 18 Reflective film 64 Split conductive layer 66 Conductive film

フロントページの続き (72)発明者 原川 健一 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 斉藤 俊夫 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 村田 健治 東京都港区海岸2−1−7 日本板硝子東 京ビル 日本板硝子株式会社内 (72)発明者 冨樫 元康 東京都港区芝1−11−11 日本板硝子環境 アメニティ株式会社内 (72)発明者 星野 康 東京都港区芝1−11−11 日本板硝子環境 アメニティ株式会社内 Fターム(参考) 5E321 AA33 AA41 AA44 BB21 BB23 BB25 BB41 BB51 GG11 5J020 EA03 EA05 EA07 EA10 Continuing on the front page (72) Inventor Kenichi Harakawa 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Research Institute of Takenaka Corporation (72) Inventor Toshio Saito 1-5-1, Otsuka 1, Inzai City, Chiba Pref. Takenaka Corporation Technical Research Institute (72) Inventor Kenji Murata 2-1-7 Coast, Minato-ku, Tokyo Nippon Sheet Glass Tokyo Building Nippon Sheet Glass Co., Ltd. (72) Inventor Motoyasu Togashi 1-11-1-11, Shiba, Minato-ku, Tokyo Nippon Sheet Glass Environment Amenity Co., Ltd. (72) Inventor Yasushi Hoshino 1-11-11 Shiba, Minato-ku, Tokyo F-term (reference) 5E321 AA33 AA41 AA44 BB21 BB23 BB25 BB41 BB51 GG11 5J020 EA03 EA05 EA05 EA07 EA10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一定方向に沿って配列され、各々到来し
た電磁波の一部を反射し他の一部を透過させる複数の抵
抗部材と、 前記複数の抵抗部材に対して前記一定方向に距離を隔て
て配置され、到来した電磁波を反射する反射部材と、 前記複数の抵抗部材の間及び前記反射部材と特定の抵抗
部材の間の少なくとも1箇所に設けられ、前記複数の抵
抗部材及び前記反射部材の配列方向と交差する方向に沿
って間隔を空けて配列された複数の導体と、 を含む電磁波吸収体。
1. A plurality of resistance members arranged along a certain direction, each reflecting a part of an arriving electromagnetic wave and transmitting the other part, and a distance in the certain direction with respect to the plurality of resistance members. A reflection member that is disposed at a distance and reflects an incoming electromagnetic wave; and a reflection member that is provided between the plurality of resistance members and at least one location between the reflection member and a specific resistance member, wherein the plurality of resistance members and the reflection member are provided. And a plurality of conductors arranged at intervals along a direction intersecting the arrangement direction of the electromagnetic wave absorber.
【請求項2】 前記複数の抵抗部材及び前記反射部材に
よって区画された複数の区間の実効誘電率が互いに相違
するように、各区間を区画する部材の間隔、各区間にお
ける前記複数の導体の有無、前記複数の抵抗部材及び前
記反射部材の配列方向に沿った前記複数の導体の位置、
前記配列方向と交差する方向に沿った前記導体の幅、前
記配列方向と交差する方向に沿った前記導体の間隙、及
び前記配列方向に沿った前記導体の厚さの少なくとも1
つが相違されていることを特徴とする請求項1記載の電
磁波吸収体。
2. An interval between members that define each section, and the presence or absence of the plurality of conductors in each section, so that effective resistances of a plurality of sections defined by the plurality of resistance members and the reflection member are different from each other. Positions of the plurality of conductors along the arrangement direction of the plurality of resistance members and the reflection member,
At least one of a width of the conductor along a direction intersecting the arrangement direction, a gap between the conductors along a direction intersecting the arrangement direction, and a thickness of the conductor along the arrangement direction
The electromagnetic wave absorber according to claim 1, wherein the two are different.
【請求項3】 互いに異なる複数の周波数帯域の電磁波
が各々吸収されるように、前記複数の抵抗部材及び前記
反射部材の間隔、前記複数の抵抗部材及び前記反射部材
によって区画された複数の区間の各々における前記複数
の導体の有無、前記複数の抵抗部材及び前記反射部材の
配列方向に沿った前記複数の導体の位置、前記配列方向
と交差する方向に沿った前記導体の幅、前記配列方向と
交差する方向に沿った前記導体の間隙、及び前記配列方
向に沿った前記導体の厚さの少なくとも1つが設定され
ていることを特徴とする請求項1記載の電磁波吸収体。
3. An interval between the plurality of resistance members and the reflection member, and a plurality of sections defined by the plurality of resistance members and the reflection member such that electromagnetic waves in a plurality of different frequency bands are absorbed. The presence or absence of the plurality of conductors in each, the position of the plurality of conductors along the arrangement direction of the plurality of resistance members and the reflection member, the width of the conductors along a direction intersecting the arrangement direction, the arrangement direction and 2. The electromagnetic wave absorber according to claim 1, wherein at least one of a gap between the conductors along the intersecting direction and a thickness of the conductor along the arrangement direction is set. 3.
【請求項4】 前記複数の導体は、前記複数の抵抗部材
と前記反射部材の配列方向と交差する第1方向に沿って
間隔を空けて配列されていると共に、前記配列方向及び
前記第1方向と各々交差する第2方向に沿って間隔を空
けて配列されていることを特徴とする請求項1記載の電
磁波吸収体。
4. The plurality of conductors are arranged at intervals along a first direction intersecting the arrangement direction of the plurality of resistance members and the reflection member, and are arranged in the arrangement direction and the first direction. The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorbers are arranged at intervals along a second direction intersecting with each other.
JP2000264120A 2000-08-31 2000-08-31 Electromagnetic wave absorber Withdrawn JP2002076672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264120A JP2002076672A (en) 2000-08-31 2000-08-31 Electromagnetic wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264120A JP2002076672A (en) 2000-08-31 2000-08-31 Electromagnetic wave absorber

Publications (1)

Publication Number Publication Date
JP2002076672A true JP2002076672A (en) 2002-03-15

Family

ID=18751582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264120A Withdrawn JP2002076672A (en) 2000-08-31 2000-08-31 Electromagnetic wave absorber

Country Status (1)

Country Link
JP (1) JP2002076672A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010420A (en) * 2008-06-27 2010-01-14 Mitsubishi Cable Ind Ltd Radio wave absorber
WO2021199920A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Impedance matching film and radio wave absorber
WO2021199921A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Radio wave absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010420A (en) * 2008-06-27 2010-01-14 Mitsubishi Cable Ind Ltd Radio wave absorber
WO2021199920A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Impedance matching film and radio wave absorber
WO2021199921A1 (en) * 2020-03-30 2021-10-07 日東電工株式会社 Radio wave absorber

Similar Documents

Publication Publication Date Title
US5364685A (en) Laminated panel with low reflectance for radio waves
JP3243789B2 (en) Radio wave absorbing panel
JP2002506596A (en) Transparent sheets, especially windowpanes with coatings and radiation windows
JP2003069282A (en) Specified electromagnetic wave transmitting plate
US20060202883A1 (en) Electromagnetic radiation absorber
JP6965989B2 (en) Electromagnetic wave propagation control member, electromagnetic wave propagation control structure, sash with electromagnetic wave propagation control member, and window structure
JP4474759B2 (en) Radio wave shield with multiple frequency selectivity
JP2002076681A (en) Electromagnetic wave absorbing body and method for absorbing the same
JP2002076672A (en) Electromagnetic wave absorber
JPH09148782A (en) Transparent electromagnetic wave absorbing/shielding material
JP2002076678A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
JP4314831B2 (en) Radio wave absorber
JP2002076679A (en) Electromagnetic wave absorber
JP2023113772A (en) glass body
JP2002076671A (en) Electromagnetic wave absorber and method for absorbing electromagnetic wave
KR100886064B1 (en) Electromagnetic wave absorbing plate
JPH0640752A (en) Radio wave transmissive and heat ray reflecting glass for vehicle
JP2002151885A (en) Radio wave absorbing panel and method for manufacturing the same
EP4115042A1 (en) Glazing unit
JP4857500B2 (en) Radio wave absorber
Habib et al. An efficient FSS absorber for WLAN security
JP2005079247A (en) Electric wave absorber
JP2003078276A (en) Radio wave absorber
JP2002076676A (en) Wave absorptive panel
JP2004363138A (en) Wave absorber/reflector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106