JP2002020822A - Metal matrix composite material and its production method - Google Patents

Metal matrix composite material and its production method

Info

Publication number
JP2002020822A
JP2002020822A JP2000210711A JP2000210711A JP2002020822A JP 2002020822 A JP2002020822 A JP 2002020822A JP 2000210711 A JP2000210711 A JP 2000210711A JP 2000210711 A JP2000210711 A JP 2000210711A JP 2002020822 A JP2002020822 A JP 2002020822A
Authority
JP
Japan
Prior art keywords
particles
composite material
metal
metal matrix
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000210711A
Other languages
Japanese (ja)
Inventor
Kazusane Otake
和実 大竹
Kazuaki Sato
和明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000210711A priority Critical patent/JP2002020822A/en
Publication of JP2002020822A publication Critical patent/JP2002020822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metal matrix composite material in which new TaC particles different from the conventional ones are dispersed as a crystal particle refining agent and to provide its production method. SOLUTION: This metal matrix composite material has a cast structure in which TaC particles are dispersed into a metal matrix material composed of Al or an Al alloy, and in which the crystal particles are refined compared with the case of the cast structure composed of only the same metal matrix material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属基材中に粒子
が分散している金属基複合材料およびその製造方法に関
する。
[0001] The present invention relates to a metal-based composite material in which particles are dispersed in a metal substrate, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車の低燃費化、高性能化のためには
軽量化が必要であり、鉄系部品をアルミニウム系部品に
置き換える研究開発が進められている。その際、アルミ
ニウム系材料は鉄系材料に比べて強度が劣るため、高強
度化が必要になる。しかし、一般に材料は強度の上昇に
伴い延性が低下するため、所定部品形状への塑性加工が
困難になり、高強度アルミニウム系部品で鉄系部品を置
換できる対象は限られている。
2. Description of the Related Art In order to reduce the fuel consumption and enhance the performance of automobiles, it is necessary to reduce the weight. Research and development for replacing iron-based parts with aluminum-based parts are being pursued. At this time, since the strength of the aluminum-based material is lower than that of the iron-based material, it is necessary to increase the strength. However, in general, the ductility of a material is reduced with an increase in strength, so that plastic working into a predetermined component shape becomes difficult, and there are only a limited number of objects that can replace a high-strength aluminum-based component with an iron-based component.

【0003】そこで、アルミニウム系部品で置換できる
対象を拡大するために、結晶粒の微細化により延性を向
上させることが重要になる。従来、アルミニウム系鋳造
材料の高強度化の手段として、アルミニウムまたはアル
ミニウム合金の基材中に強化材としてTiC粒子等を分
散させる分散強化法が知られている(例えば、特開昭6
3−83239号公報、特許第2734891号)。
Therefore, in order to expand the range of objects that can be replaced with aluminum-based parts, it is important to improve ductility by making crystal grains finer. Conventionally, as a means for increasing the strength of an aluminum-based casting material, a dispersion strengthening method in which TiC particles or the like as a reinforcing material is dispersed in a base material of aluminum or an aluminum alloy is known (for example, see Japanese Unexamined Patent Publication No.
3-83239, Japanese Patent No. 2734891).

【0004】一方、アルミニウム系鋳造材料の結晶粒微
細化の手段として、鋳造時に溶湯中に結晶粒微細化剤と
してTiC粒子、Al3 Ti粒子を添加することが行わ
れている(例えば、特開平10−204555号公
報)。このように、TiC粒子等は強化材として作用す
ると同時に結晶粒微細化剤としても作用するため、強度
と延性とを同時に向上させる手段として極めて有用であ
る。
On the other hand, as a means for refining the crystal grains of an aluminum-based casting material, TiC particles and Al 3 Ti particles are added as a crystal grain refining agent to a molten metal at the time of casting (see, for example, Japanese Patent Application Laid-Open No. 10-204555). As described above, TiC particles and the like act as a reinforcing material and at the same time act as a crystal grain refining agent, and thus are extremely useful as a means for simultaneously improving strength and ductility.

【0005】ここで、強化材かつ結晶粒微細化剤として
作用するためには粒子が十分に微細であることが必要で
ある。しかし、微細粒子を粉末の状態で基材金属の溶湯
中に直接取り込ませることは困難である。そのため、上
記いずれの従来技術においても、先ず基材金属中にその
場生成(in-situ 生成)により微細粒子を生成・分散さ
せた成形体を形成し、この成形体を基材金属の別の溶湯
中に装入することにより、成形体の基材金属を溶解させ
ると同時に微細粒子を溶湯中に分散させ、凝固させるこ
とにより最終的な分散強化複合材料を得ている。
Here, the particles must be sufficiently fine in order to act as a reinforcing material and a grain refiner. However, it is difficult to directly incorporate the fine particles in the form of powder into the molten metal of the base metal. Therefore, in any of the above prior arts, first, a molded body in which fine particles are generated and dispersed by in-situ generation (in-situ generation) in a base metal is formed, and this molded body is separated into another base metal. By charging the molten metal in the molten metal, the base metal of the molded body is dissolved, and at the same time, fine particles are dispersed in the molten metal and solidified to obtain a final dispersion-reinforced composite material.

【0006】このように、その場生成により微細粒子を
生成させることが前提となるため、強化作用と結晶粒微
細化作用とを発現する微細粒子の化学組成も必然的に制
限を受ける。従来、強化材としての分散粒子は種々知ら
れているが、そのうちで結晶粒微細化剤として知られて
いる実用上有効な分散粒子は上述のTiC粒子、Al3
Ti粒子のみであり、結晶粒微細化剤として有効な更に
別の粒子の開発が望まれていた。
[0006] As described above, since it is premised that fine particles are generated by in-situ generation, the chemical composition of the fine particles exhibiting a strengthening action and a crystal grain refining action is necessarily limited. Conventionally, various types of dispersed particles as a reinforcing material have been known. Among them, the practically effective dispersed particles known as a crystal grain refining agent are the above-described TiC particles and Al 3.
It has been desired to develop still other particles which are only Ti particles and are effective as a crystal grain refiner.

【0007】[0007]

【発明が解決しようとする課題】本発明は、結晶粒微細
化剤として従来とは異なる新規な粒子を分散させた金属
基複合材料およびその製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a metal matrix composite material in which novel particles different from the conventional one are dispersed as a crystal grain refining agent, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の金属基複合材料は、AlまたはAl合金
から成る金属基材中にTaC粒子が分散している鋳造組
織を有し、該金属基材のみから成る鋳造組織に比べて結
晶粒が微細化していることを特徴とする。本発明の金属
基複合材料を製造する方法は、AlまたはAl合金の粉
末と、Ta粉末と、C粉末との圧粉成形体を形成する工
程、上記成形体にAlまたはAl合金の第1の溶湯を含
浸する工程、上記含浸済の成形体を熱処理することによ
り、該成形体中にTaC粒子をその場生成させる工程、
上記生成したTaC粒子を含む成形体をAlまたはAl
合金の第2の溶湯中に装入することにより、該成形体中
のTaC粒子を該第2の溶湯中に分散させる工程、およ
び上記第2の溶湯を凝固させる工程、を含むことを特徴
とする。
In order to achieve the above object, the metal matrix composite of the present invention has a cast structure in which TaC particles are dispersed in a metal substrate made of Al or an Al alloy. It is characterized in that the crystal grains are finer than in a cast structure composed of only the metal substrate. The method for producing a metal-based composite material according to the present invention includes a step of forming a powder compact of Al or Al alloy powder, a Ta powder, and a C powder, and forming a first compact of Al or Al alloy on the compact. Impregnating the molten metal, heat-treating the impregnated compact to generate TaC particles in the compact in situ,
The formed body containing the generated TaC particles is made of Al or Al
A step of charging the alloy into a second molten metal to disperse the TaC particles in the molded body in the second molten metal, and a step of solidifying the second molten metal. I do.

【0009】[0009]

【発明の実施の形態】本発明者は、その場生成による種
々の粒子を分散させた金属基複合材料について、結晶粒
微細化作用を調べた結果、従来知られていたTiC粒
子、Al3 Ti粒子以外に、TaC粒子が顕著な結晶粒
微細化作用を有することを新規に見出して本発明を完成
させた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has investigated the crystal grain refining effect of a metal matrix composite material in which various particles generated by in-situ generation have been dispersed, and as a result, has found that TiC particles, Al 3 Ti In addition to the particles, the present inventors have newly found that TaC particles have a remarkable crystal grain refining action, and completed the present invention.

【0010】[0010]

【実施例】結晶粒の微細化の主要因である異質凝固核に
ついては未だ十分に解明されておらず、どのような粒子
が凝固核となるかは推定できない。そこで本発明者は、
その場(in-situ)生成により種々の炭化物、硼化物、酸
化物、窒化物の微粒子(以下「in-situ 粒子」と略称)
を作製し、これを分散させたアルミニウム基複合材料に
ついて結晶粒微細化作用を調べた。
EXAMPLES The heterogeneous solidification nuclei, which are the main factors in the refinement of crystal grains, have not yet been sufficiently elucidated, and it is not possible to estimate what particles will be solidification nuclei. Therefore, the present inventor
Fine particles of various carbides, borides, oxides, and nitrides by in-situ generation (hereinafter abbreviated as "in-situ particles")
Was prepared, and the effect of crystal grain refinement was examined on an aluminum-based composite material in which this was dispersed.

【0011】図1に、アルミニウム基複合材料の製造工
程(1)〜(4)を示す。工程(1)において、生成さ
せるin-situ 粒子の種類に応じて、それぞれ図中に示し
た原料粉末を用いて圧粉成形体を作製した。工程(2)
において、成形体を750℃のAl溶湯中に30秒間浸
漬して、空隙部にAl溶湯を含浸させた(炭化物、硼化
物についてのみ実施)。
FIG. 1 shows steps (1) to (4) for producing an aluminum-based composite material. In the step (1), a green compact was produced using the raw material powders shown in the figure according to the type of in-situ particles to be generated. Step (2)
In the above, the molded body was immersed in a 750 ° C. molten aluminum for 30 seconds to impregnate the gap with the molten aluminum (implemented only for carbides and borides).

【0012】工程(3)において、上記含浸済の各成形
体に、昇温速度5℃/min 、保持温度800〜1500
℃、Ar雰囲気の熱処理を施し、それぞれin-situ 粒子
を生成させた。反応後の組織をX線回折および走査電子
顕微鏡(SEM)により観察して生成相を同定した。な
お、いずれの成形体についても、in-situ 粒子の体積率
は25 vol%とした。
In step (3), each of the impregnated compacts is heated at a rate of 5 ° C./min and maintained at a temperature of 800 to 1500.
A heat treatment was performed in an Ar atmosphere at ℃ to generate in-situ particles. The structure after the reaction was observed by X-ray diffraction and scanning electron microscope (SEM) to identify the generated phase. The volume ratio of the in-situ particles was set to 25 vol% in each of the molded bodies.

【0013】表1に、in-situ 粒子の種類および粒径、
原料粉末の種類および粒径、反応生成過程をまとめて示
す。
Table 1 shows the types and particle sizes of the in-situ particles,
The types and particle sizes of the raw material powders and the reaction generation process are shown together.

【0014】[0014]

【表1】 生成したin-situ 粒子の粒径は0.2〜2μm であっ
た。この粒径は、in-situ 生成よらずに粒子粉末を溶湯
に添加して得られる分散粒子の最小粒径が10μm 程度
であるのに比べて、非常に微細である。また、一般に、
in-situ 粒子は原料粉末の粒径や形状に影響されるが、
炭化物(TiC,TaC,HfC,ZrC)および硼化
物(ZrB2 ,TiB2 )は、原料粉末よりもはるかに
微細な粒子が生成した。一方、AlN,Al2 3 の粒
径は、原料粉末とほぼ同等であった。この相違は、表1
中に示したように前者が遷移化合物の生成を経由して間
接的に最終化合物が生成するのに対して、後者は原料粉
末から直接最終化合物が生成するという、生成過程の相
違と対応している。
[Table 1] The particle size of the generated in-situ particles was 0.2 to 2 μm. This particle size is much finer than the minimum particle size of the dispersed particles obtained by adding the particle powder to the molten metal without in-situ generation, which is about 10 μm. Also, in general,
In-situ particles are affected by the particle size and shape of the raw material powder,
Carbides (TiC, TaC, HfC, ZrC) and borides (ZrB 2 , TiB 2 ) produced much finer particles than the raw material powder. On the other hand, the particle diameters of AlN and Al 2 O 3 were almost equal to those of the raw material powder. This difference is shown in Table 1.
In contrast to the former, the final compound is generated indirectly via the formation of transition compounds, whereas the latter is generated directly from the raw material powder, as shown in the figure. I have.

【0015】最後に、工程(4)において、上記in-sit
u 粒子を含む成形体を750℃のAl−4.5%Cu合
金溶湯に添加し、5分間攪拌した。これにより、成形体
のAlは合金溶湯中に溶解し、成形体中のin-situ 粒子
が合金溶湯中に分散した。その後、溶湯温度750℃に
てJIS4号舟型に鋳造して、凝固後に取り出し、アル
ミニウム基複合材料を得た。なお、アルミニウム基複合
材料中の各化合物粒子の分散量は1 vol%とした。
Finally, in step (4), the in-sit
The compact containing the u particles was added to a molten Al-4.5% Cu alloy at 750 ° C and stirred for 5 minutes. As a result, Al of the compact was dissolved in the molten alloy, and in-situ particles in the compact were dispersed in the molten alloy. Thereafter, it was cast into a JIS No. 4 boat at a melt temperature of 750 ° C., taken out after solidification, and an aluminum-based composite material was obtained. The dispersion amount of each compound particle in the aluminum-based composite material was 1 vol%.

【0016】表2に、上記のアルミニウム基複合材料に
ついて、平均結晶粒径を測定した結果を、粒子無添加の
場合(同表中、「in-situ 粒子」の欄に「Al」と表
示)と比較して示す。
Table 2 shows the results of measuring the average crystal grain size of the above-mentioned aluminum-based composite material in the case where no particles were added (in the table, "Al" is shown in the column of "in-situ particles"). Shown in comparison with.

【0017】[0017]

【表2】 同表に示したように、従来のTiC粒子、本発明のTa
C粒子の添加により、結晶粒が著しく微細化した(同表
中「○」で表示)。これに対して、TiB2 粒子、Zr
C粒子、HfC粒子、ZrB2 粒子では微細化の効果は
少なく(同表中「△」で表示)、更にAl2 3 粒子、
AlN粒子では微細化の効果はほとんど認められなかっ
た(同表中「×」で表示)。
[Table 2] As shown in the table, the conventional TiC particles, the Ta of the present invention
With the addition of the C particles, the crystal grains were remarkably refined (indicated by “○” in the same table). In contrast, TiB 2 particles, Zr
C particles, HfC particles, (displayed in the table "△") less the effect of refining the ZrB 2 particles, further Al 2 O 3 particles,
AlN particles hardly exhibited a refining effect (indicated by "x" in the table).

【0018】特に、本発明のTaC粒子は従来のTiC
粒子と全く同等の結晶粒微細化作用があることが分か
る。すなわち、粒子無添加のAlの結晶粒径が3mmで
あったのに対して、本発明のTaC粒子あるいは従来の
TiC粒子のいずれの添加によっても、結晶粒径が0.
05mmと顕著に微細化している。表2には、基材Al
とin-situ 粒子について結晶構造および格子定数も併せ
て示す。
In particular, the TaC particles of the present invention are made of a conventional TiC
It can be seen that there is a crystal grain refining effect exactly equivalent to that of the particles. That is, while the crystal grain size of Al with no particles added was 3 mm, the crystal grain size was 0.1 mm by addition of either the TaC particles of the present invention or the conventional TiC particles.
The size is remarkably reduced to 05 mm. Table 2 shows the substrate Al
The crystal structure and lattice constant of the and in-situ particles are also shown.

【0019】本発明のTaCは従来のTiCと同様に基
材Alと同じく面心立方の結晶構造を有し、かつ基材A
lとの格子定数のずれは従来のTiCが6.6%、本発
明のTaCが9.7%と、いずれも基材Alに近い格子
定数を有する。この結果は、分散させる粒子が、基材金
属と同じ結晶構造を有し、基材金属に近い格子定数を有
する場合に、結晶粒微細化作用が得られることを示唆し
ている。
The TaC of the present invention has the same face-centered cubic crystal structure as the substrate Al, similarly to the conventional TiC.
The deviation of the lattice constant from 1 is 6.6% for the conventional TiC and 9.7% for the TaC of the present invention, all of which have lattice constants close to those of the base material Al. This result suggests that when the particles to be dispersed have the same crystal structure as the base metal and have a lattice constant close to that of the base metal, a crystal grain refinement effect can be obtained.

【0020】また、表2の結果から、結晶粒微細化作用
が得られる格子定数のずれの範囲は、基材Alと同じ面
心立方の結晶構造については、概ね10%以内と見積も
ることができる。
Further, from the results in Table 2, it can be estimated that the range of the shift of the lattice constant for obtaining the crystal grain refining action is generally within 10% for the same face-centered cubic crystal structure as the base material Al. .

【0021】[0021]

【発明の効果】本発明によれば、結晶粒微細化剤として
従来とは異なる新規なTaC粒子を分散させた金属基複
合材料およびその製造方法が提供される。
According to the present invention, there is provided a metal matrix composite material in which a novel TaC particle different from the conventional one is dispersed as a crystal grain refiner, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明のAl基複合材料を製造する方
法を示す工程図である。
FIG. 1 is a process chart showing a method for producing an Al-based composite material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B22F 3/24 B22F 3/24 C 3/26 3/26 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // B22F 3/24 B22F 3/24 C 3/26 3/26 C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl合金から成る金属基材中
にTaC粒子が分散している鋳造組織を有し、該金属基
材のみから成る鋳造組織に比べて結晶粒が微細化してい
ることを特徴とする金属基複合材料。
1. It has a casting structure in which TaC particles are dispersed in a metal substrate made of Al or an Al alloy, and has a crystal grain finer than a casting structure made of only the metal substrate. Characteristic metal matrix composite material.
【請求項2】 請求項1記載の金属基複合材料の製造方
法であって、 AlまたはAl合金の粉末と、Ta粉末と、C粉末との
圧粉成形体を形成する工程、 上記成形体にAlまたはAl合金の第1の溶湯を含浸す
る工程、 上記含浸済の成形体を熱処理することにより、該成形体
中にTaC粒子をその場生成させる工程、 上記生成したTaC粒子を含む成形体をAlまたはAl
合金の第2の溶湯中に装入することにより、該成形体中
のTaC粒子を該第2の溶湯中に分散させる工程、およ
び上記第2の溶湯を凝固させる工程、を含むことを特徴
とする金属基複合材料の製造方法。
2. The method for producing a metal-based composite material according to claim 1, wherein a step of forming a green compact of an Al or Al alloy powder, a Ta powder, and a C powder is performed. A step of impregnating a first molten metal of Al or an Al alloy, a step of heat-treating the impregnated compact to generate TaC particles in the compact in situ, and a step of forming the compact including the generated TaC particles in the compact. Al or Al
A step of charging the alloy into a second molten metal to disperse the TaC particles in the molded body in the second molten metal, and a step of solidifying the second molten metal. Of producing a metal matrix composite material.
JP2000210711A 2000-07-06 2000-07-06 Metal matrix composite material and its production method Pending JP2002020822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210711A JP2002020822A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210711A JP2002020822A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Publications (1)

Publication Number Publication Date
JP2002020822A true JP2002020822A (en) 2002-01-23

Family

ID=18706940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210711A Pending JP2002020822A (en) 2000-07-06 2000-07-06 Metal matrix composite material and its production method

Country Status (1)

Country Link
JP (1) JP2002020822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152189A (en) * 2020-03-24 2021-09-30 東洋アルミニウム株式会社 Aluminum based powder for metal lamination molding, method for producing the same and metal laminated-molded article produced therefrom

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152189A (en) * 2020-03-24 2021-09-30 東洋アルミニウム株式会社 Aluminum based powder for metal lamination molding, method for producing the same and metal laminated-molded article produced therefrom

Similar Documents

Publication Publication Date Title
JP5826219B2 (en) Method for making a metal article having other additive components without melting
US6033622A (en) Method for making metal matrix composites
RU2329122C2 (en) Method of items production from metal alloys without melting
CN109072349A (en) Iron content, silicon, vanadium and copper and the aluminium alloy wherein with large volume of ceramic phase
JP2003518195A (en) Powder mixtures and composite powders, their preparation and their use in composites
EP2385884A2 (en) A method for forming high strength aluminum alloys containing l12 intermetallic dispersoids
JP5951636B2 (en) Improved aluminum alloy powder metal with transition elements
JP2002020822A (en) Metal matrix composite material and its production method
JP3084512B2 (en) Intermetallic compound reinforced magnesium-based composite material and method for producing the same
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
JP2002020823A (en) Metal matrix composite material and its production method
KR20020071286A (en) Composition and Method for making high volume reinforced Al composite by using dipping process
JP2001200322A (en) Metal matrix composite and producing method therefor
JP3417217B2 (en) Method for producing titanium carbide particle-dispersed metal matrix composite material
JP3417666B2 (en) Member having Al-based intermetallic compound reinforced composite part and method of manufacturing the same
JPH079113A (en) Production of composite material
JPH032337A (en) Manufacture of aluminum alloy composite material
JPH0987778A (en) Production of magnesium base composite material
JPH0625793A (en) Fe-cu-ni compound powder for powder metallurgy and its manufacture as well as sintered body using the same powder
JPH05214477A (en) Composite material and its manufacture
JP4135191B2 (en) Method for producing partially composite light metal parts and preform used therefor
JPH08134576A (en) Aluminum alloy for die casting
JPH0633165A (en) Manufacture of sintered titanium alloy
JPH10158764A (en) Aluminum base composite material excellent in coagulation resistance and strength and its production
JPH06279903A (en) Cobalt-based alloy sintered compact and its production