JP2002020466A - Method for peeling conductive electrolytic polymer film - Google Patents

Method for peeling conductive electrolytic polymer film

Info

Publication number
JP2002020466A
JP2002020466A JP2000201177A JP2000201177A JP2002020466A JP 2002020466 A JP2002020466 A JP 2002020466A JP 2000201177 A JP2000201177 A JP 2000201177A JP 2000201177 A JP2000201177 A JP 2000201177A JP 2002020466 A JP2002020466 A JP 2002020466A
Authority
JP
Japan
Prior art keywords
polymer film
electrode
conductive polymer
electrolytic
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000201177A
Other languages
Japanese (ja)
Other versions
JP4362213B2 (en
Inventor
Kunihiko Shimizu
邦彦 清水
Isato Ueda
勇人 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Toppan Circuit Solutions Toyama Inc
Original Assignee
NEC Toppan Circuit Solutions Toyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Toyama Inc filed Critical NEC Toppan Circuit Solutions Toyama Inc
Priority to JP2000201177A priority Critical patent/JP4362213B2/en
Publication of JP2002020466A publication Critical patent/JP2002020466A/en
Application granted granted Critical
Publication of JP4362213B2 publication Critical patent/JP4362213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple and easy method for peeling a conductive polymer film formed on an electric supply unit simultaneously when a conductive polymer film is subjected to electrolytic polymerization. SOLUTION: An electric supply unit 6 covered with a conductive polymer film 30a through electrolytic polymerization is immersed in an electrolyte 3a, and a DC voltage is applied between a counter electrode 2a and the unit 6 in such a manner that the unit 6 is an anode, thus causing the electrolytic oxidation of the polymer film 30a to chemically deteriorate it. A mechanical vibration by, e.g. an ultrasonic vibration or air bubbling is then imparted to the surface of the unit 6 to peel the deteriorated conductive polymer film 30b from the surface of the unit 6. The deformation of the unit 6 and the occurrence of surface marring can be prevented by this method, so that the unit 6 can be repeatedly used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電解重合した導電性
高分子膜の剥離方法に関し、特に電気二重層コンデンサ
の集電体や固体電解コンデンサペレットのプレコート
(固体電解質)等の導電性基体表面に電解重合で導電性
高分子膜を形成する際に使用された給電体に同時に被覆
された導電性高分子膜を剥離する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for peeling a conductive polymer film which has been electrolytically polymerized, and more particularly to a method for removing a conductive substrate surface such as a current collector of an electric double layer capacitor or a precoat (solid electrolyte) of a solid electrolytic capacitor pellet. The present invention relates to a method for peeling off a conductive polymer film simultaneously coated on a power feeder used when forming a conductive polymer film by electrolytic polymerization.

【0002】[0002]

【従来の技術】近年、導電性高分子が電気二重層コンデ
ンサの集電体や固体電解コンデンサの固体電解質として
使用されるようになっている。
2. Description of the Related Art In recent years, conductive polymers have been used as current collectors for electric double layer capacitors and solid electrolytes for solid electrolytic capacitors.

【0003】導電性高分子の形成方法には、化学重合法
と電解重合法がある。前者は、主として基体が電気絶縁
性の場合に使用される方法で、酸化剤とモノマーとの混
合低温溶液に基体を浸漬するか、または酸化剤、モノマ
ーに交互に浸漬、乾燥、洗浄することにより基体表面に
導電性高分子膜が化学重合形成される。後者の方法は、
基体が導電性の場合に使用される。例えば導電性の基体
を支持電解質、ドーパント、モノマー等を含む水溶液中
に浸漬してこれに給電体を接触させ、給電体と対向電極
間に給電体がアノードになるように直流電圧を所定の時
間印加すると、基体表面に導電性高分子膜が電解重合さ
れる。
[0003] As a method for forming a conductive polymer, there are a chemical polymerization method and an electrolytic polymerization method. The former is a method used mainly when the substrate is electrically insulating, by immersing the substrate in a mixed low-temperature solution of an oxidizing agent and a monomer, or by immersing, drying, and washing alternately with an oxidizing agent and a monomer. A conductive polymer film is formed on the surface of the substrate by chemical polymerization. The latter method is
Used when the substrate is conductive. For example, a conductive substrate is immersed in an aqueous solution containing a supporting electrolyte, a dopant, a monomer, and the like, and a feeder is brought into contact with the immersion, and a DC voltage is applied for a predetermined time between the feeder and the counter electrode so that the feeder becomes an anode. When applied, the conductive polymer film is electrolytically polymerized on the substrate surface.

【0004】電解重合法は電解液の劣化が少なく、膜厚
のコントロールがしやすいために、コンデンサの製造方
法で広く使用されるようになっている。
[0004] The electrolytic polymerization method has been widely used in a method of manufacturing a capacitor because the electrolytic solution is less likely to deteriorate and the film thickness is easily controlled.

【0005】次に、導電性高分子膜を固体電解コンデン
サの固体電解質に使用する場合の導電性高分子膜の電解
重合法について図4を参照して説明する。まず、タンタ
ル線等の陽極リード7を植立したタンタル金属等の弁作
用金属粉末焼結体を陽極酸化した後、化学重合法のより
ポリピロール等の導電性高分子膜のプレコート膜を被覆
してペレット5を形成する。このペレット5を図4
(a)の電解槽10中の電解重合液(例えば、6wt%
p―トルエンスルホン酸ナトリウムと2wt%ピロール
の混合水溶液)中に浸漬する。次いで直流電源20を使
用して、ペレットの表面にステンレス等の金属材料から
なる給電体6を接触または近接させて給電体6をアノー
ド、対向電極2(ステンレス等の金属電極)をカソード
として直流電圧を所定の時間印加して、図4(b)のよ
うにペレット5表面に導電性高分子膜30を被覆する。
Next, a method for electrolytically polymerizing a conductive polymer film when the conductive polymer film is used as a solid electrolyte of a solid electrolytic capacitor will be described with reference to FIG. First, after anodic oxidation of a valve action metal powder sintered body of tantalum metal or the like in which the anode lead 7 of a tantalum wire or the like is implanted, a prepolymer film of a conductive polymer film such as polypyrrole is coated by a chemical polymerization method. A pellet 5 is formed. This pellet 5 is shown in FIG.
(A) The electrolytic polymerization solution (for example, 6 wt%) in the electrolytic cell 10
(a mixed aqueous solution of sodium p-toluenesulfonate and 2 wt% pyrrole). Then, using a DC power supply 20, a power supply 6 made of a metal material such as stainless steel is brought into contact with or close to the surface of the pellet, and the power supply 6 is used as an anode and the counter electrode 2 (metal electrode made of stainless steel or the like) as a cathode. Is applied for a predetermined time to cover the surface of the pellet 5 with the conductive polymer film 30 as shown in FIG.

【0006】[0006]

【発明が解決しようとする課題】上記のペレットに給電
体を接触させて導電性高分子膜の電解質を電解重合する
方法においては、図4(b)のように、給電体6の重合
液3浸漬部分にも当然導電性高分子膜30が同時に被覆
されることになる。
In the above-described method of contacting a feeder with a pellet and electrolytically polymerizing the electrolyte of the conductive polymer film, as shown in FIG. Of course, the conductive polymer film 30 is simultaneously coated on the immersion part.

【0007】ペレット5の表面に導電性高分子膜30を
安定した膜厚で被覆するためには、給電体6表面をなる
べく一定な状態に保持する必要があり、また給電体6を
ペレットに近接させて電解重合する場合には、給電体と
ペレットとの距離の制御も重要になる。そのために、電
解重合で給電体6表面に析出した導電性高分子膜30は
剥離して再使用される必要がある。
In order to coat the conductive polymer film 30 with a stable film thickness on the surface of the pellet 5, it is necessary to keep the surface of the power supply 6 as constant as possible. When electrolytic polymerization is performed by controlling the distance, control of the distance between the power supply and the pellets is also important. Therefore, the conductive polymer film 30 deposited on the surface of the power supply body 6 by the electrolytic polymerization needs to be peeled and reused.

【0008】給電体6表面から導電性高分子膜を剥離す
る方法としては引掻き、熱分解等によって機械的に剥離
する方法があるが、給電体に熱変形やキズ等が発生等し
やすく、次回使用する場合にペレットにキズや欠け等が
発生する原因となっていた。ペレット表面のキズや欠け
を防ぐために、給電体を使い捨てにして再使用しない方
法もあるが、製造コストや環境負荷増加の問題となって
いた。
As a method of peeling the conductive polymer film from the surface of the power supply 6, there is a method of mechanically peeling by scratching, thermal decomposition, or the like. However, the power supply tends to be thermally deformed or scratched. In the case of using the pellets, the pellets may be damaged or chipped. In order to prevent the surface of the pellet from being scratched or chipped, there is a method in which the power supply is disposable and is not reused, but this has been a problem of an increase in manufacturing cost and environmental load.

【0009】熱分解によって機械的に剥離する例とし
て、特許第2718353号公報には、固体電解コンデ
ンサの陽極リードに析出した導電性高分子膜を熱処理に
よって分解する方法が開示されているが、これを上記の
固体電解コンデンサの電解質を電解重合する際に給電体
に析出した導電性高分子膜を除去する方法として使用す
ることが考えられるが、給電体が酸化したり、導電性高
分子膜の熱分解で生成した膜で給電体表面が絶縁化され
る場合があり、繰り返し給電体を使用するためには給電
体を薬品処理する必要があった。
As an example of mechanical peeling by thermal decomposition, Japanese Patent No. 2718353 discloses a method in which a conductive polymer film deposited on an anode lead of a solid electrolytic capacitor is decomposed by heat treatment. It is conceivable to use as a method of removing the conductive polymer film deposited on the power supply when the electrolyte of the solid electrolytic capacitor is electrolytically polymerized. In some cases, the surface of the power supply is insulated by a film generated by thermal decomposition, and it was necessary to chemically treat the power supply in order to use the power supply repeatedly.

【0010】本発明の目的は、導電性高分子膜を固体電
解コンデンサのペレットやその他の導電性基体表面に電
解重合する際に、給電体表面に同時に析出した電解重合
導電性高分子膜の剥離方法の上記の従来技術の問題点を
解決した簡便な剥離方法を提供することにある。
An object of the present invention is to remove an electropolymerized conductive polymer film simultaneously deposited on the surface of a feeder when an electroconductive polymer film is electrolytically polymerized on pellets of a solid electrolytic capacitor or other conductive substrates. An object of the present invention is to provide a simple peeling method which solves the above-mentioned problems of the prior art.

【0011】[0011]

【課題を解決するための手段】本発明の電解重合導電性
高分子膜の剥離方法は、重合性モノマーおよび第1の支
持電解質を含む第1の電解液中に、所望の導電性高分子
膜を形成する導電性の基体,この基体と電気的に導通す
る第1の電極および該第1の電極の対向電極として作用
する第2の電極を浸漬する工程と、前記第1の電極を前
記基体に接触または近接させ、前記第1の電極をアノー
ド、前記第2の電極をカソードとして、所定の時間電解
して、前記基体表面に第1の導電性高分子膜を電解重合
により形成する工程と、前記第1の電極を前記第1の溶
液から取出し洗浄した後、前記第1の電極を第2の電解
液に浸漬して該第2の電解液中の前記第1の電極をアノ
ード、前記第1の電極の対向電極として作用する第3の
電極をカソードとして、所定の時間電解して前記第1の
電極表面に前記基体表面の前記第1の導電性高分子膜の
被覆の際に同時に形成された第2の導電性高分子膜を電
解酸化する工程と、前記第2の電解液中または第3の電
解液中で前記第1の電極表面から機械的振動により前記
第2の導電性高分子膜を剥離する工程とを含むことを特
徴として構成される。
According to the present invention, there is provided a method for stripping an electropolymerized conductive polymer film, comprising the steps of: preparing a desired conductive polymer film in a first electrolytic solution containing a polymerizable monomer and a first supporting electrolyte; Dipping a conductive substrate forming a first electrode, a first electrode electrically connected to the substrate, and a second electrode acting as a counter electrode to the first electrode; Forming a first conductive polymer film on the surface of the substrate by electrolytic polymerization, wherein the first electrode is used as an anode and the second electrode is used as a cathode for a predetermined time, and Removing the first electrode from the first solution, washing the first electrode in a second electrolytic solution, and immersing the first electrode in the second electrolytic solution as an anode; A third electrode acting as a counter electrode of the first electrode is referred to as a cathode. Electrolytically oxidizing a second conductive polymer film formed simultaneously with the first electrode surface at the time of coating the first conductive polymer film on the substrate surface for a predetermined time. And peeling off the second conductive polymer film from the surface of the first electrode in the second electrolyte solution or the third electrolyte solution by mechanical vibration. You.

【0012】上記の本発明の構成において、前記重合性
モノマーとして、ピロール,チオフェン,フランまたは
それらの誘導体を使用することができ、また前記基体と
しては金属またはTa,AlまたはNbからなる弁作用
金属等を陽極酸化酸化した絶縁性材料等に導電性高分子
化学重合膜が被着されたものを使用することができる。
In the structure of the present invention, pyrrole, thiophene, furan or a derivative thereof can be used as the polymerizable monomer, and the base is a metal or a valve-acting metal made of Ta, Al or Nb. A conductive polymer chemically polymerized film adhered to an insulating material or the like obtained by anodizing the above can be used.

【0013】前記第1の電極としてはステンレススチー
ル等の化学的に安定で難溶性の電極を使用することがで
きる。
As the first electrode, a chemically stable and poorly soluble electrode such as stainless steel can be used.

【0014】前記第1の電解液の前記第1の支持電解質
としてはp―トルエンスルホン酸等のアルキルベンゼン
スルホン酸またはアルキルナフタレンスルホン酸,また
はそれらのアルカリを使用できる。
As the first supporting electrolyte of the first electrolytic solution, an alkylbenzenesulfonic acid such as p-toluenesulfonic acid or an alkylnaphthalenesulfonic acid, or an alkali thereof can be used.

【0015】また、上記の本発明の構成において、前記
第2の電解液としては、前記第1の電解液から前記重合
性モノマーを除いた水溶液、硫酸または燐酸水溶液等の
電解によって水の電解反応以外の反応が生じにくい水溶
液を使用することができる。
In the above structure of the present invention, the second electrolytic solution may be an aqueous solution obtained by removing the polymerizable monomer from the first electrolytic solution, or an aqueous solution of sulfuric acid or phosphoric acid by electrolysis of water. Other aqueous solutions in which reactions do not easily occur can be used.

【0016】上記の本発明の構成において、前記第1の
電極から前記第2の導電性高分子膜を前記機械的振動で
剥離する方法としては、エアーバブリング法または超音
波振動法を使用することができる。
In the above structure of the present invention, as a method for separating the second conductive polymer film from the first electrode by the mechanical vibration, an air bubbling method or an ultrasonic vibration method is used. Can be.

【0017】本発明では、前記第1の導電性高分子膜を
前記導電性基体表面に電解重合する際に使用された前記
第1の電極(給電体)に同時に形成された前記第2の導
電性高分子膜を電解酸化により脆化および前記第1の電
極との密着性を低下させ、バブリングまたは超音波振動
により前記第1の電極から容易に剥離することができ
る。前記第1の電極(給電体)の表面にキズ等の欠陥生
成を抑制して、再使用することができる。
In the present invention, the second conductive film simultaneously formed on the first electrode (feeder) used when the first conductive polymer film is electrolytically polymerized on the surface of the conductive substrate. The conductive polymer film can be embrittled by electrolytic oxidation and reduced in adhesion to the first electrode, and can be easily separated from the first electrode by bubbling or ultrasonic vibration. Generation of defects such as scratches on the surface of the first electrode (feeder) can be suppressed and reused.

【0018】[0018]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0019】図1は本発明の第1の実施の形態の電解重
合導電性高分子膜の剥離方法における基体表面に導電性
高分子膜を電解重合する工程を説明するための電解装置
の概略構成図である。図2は図1(b)の工程に続く給
電体(第1の電極)表面の電解重合された導電性高分子
膜を電解酸化で劣化させる工程を説明するための電解装
置の概略構成図である。また、図3は図2(b)の工程
に続く電解酸化で劣化された電解重合導電性高分子膜を
給電体(第1の電極)表面から機械的振動により剥離す
る工程を説明するための電解装置の概略構成図である。
FIG. 1 is a schematic configuration of an electrolytic apparatus for explaining a step of electrolytically polymerizing a conductive polymer film on a substrate surface in a method for stripping an electropolymerized conductive polymer film according to a first embodiment of the present invention. FIG. FIG. 2 is a schematic configuration diagram of an electrolysis apparatus for explaining a process of deteriorating the electropolymerized conductive polymer film on the surface of the power supply (first electrode) by electrolytic oxidation following the process of FIG. is there. FIG. 3 is a view for explaining a step of peeling the electropolymerized conductive polymer film deteriorated by electrolytic oxidation from the surface of the power supply (first electrode) by mechanical vibration following the step of FIG. 2B. It is a schematic structure figure of an electrolysis device.

【0020】本実施の形態では、導電性高分子膜を電解
重合で被覆する基体としては金属(金属板または金属め
っき)または絶縁性材料表面に導電性高分子膜を化学重
合して導電化した材料が使用できるが、図1〜図3では
Ta,Nbからなる弁作用金属焼結体またはAlのエッ
チング箔を陽極酸化し、この表面に導電性高分子膜をプ
リコートして導電化した固体電解コンデンサのペレット
5に固体電解質として導電性高分子膜を電解重合する場
合を例として説明する。
In the present embodiment, a conductive polymer film is coated on the surface of a metal (metal plate or metal plating) or an insulating material by chemically polymerizing the conductive polymer film to make it conductive. Although a material can be used, in FIGS. 1 to 3, a valved metal sintered body made of Ta and Nb or an etched foil of Al is anodized, and the surface is pre-coated with a conductive polymer film to make it conductive. An example in which a conductive polymer film is electrolytically polymerized as a solid electrolyte on a capacitor pellet 5 will be described.

【0021】まず、Ta金属粉末成形体に陽極リード7
を埋め込み公知の技術により焼結した。この焼結体を陽
極酸化して表面に酸化タンタルを形成した。さらに酸化
タンタル表面に化学重合によりポリピロールの導電性高
分子膜をプリコートしペレット5を形成した。
First, an anode lead 7 is formed on a Ta metal powder compact.
Was embedded and sintered by a known technique. This sintered body was anodized to form tantalum oxide on the surface. Further, a conductive polymer film of polypyrrole was precoated on the tantalum oxide surface by chemical polymerization to form pellets 5.

【0022】次に、図1(a)のように、ペレット5、
対向電極2を重合液3(第1の電解液)が入っている電
解槽10中にセットし、さらに化学的に安定な難溶性の
給電体6(例えばステンレススチール製)をペレット5
に接触するようにセットした。
Next, as shown in FIG.
The counter electrode 2 is set in an electrolytic cell 10 containing a polymer solution 3 (first electrolytic solution), and a chemically stable hardly soluble power supply 6 (for example, made of stainless steel) is pelletized.
It was set so that it would contact.

【0023】続いて直流電源20を使用して,対向電極
2(カソード)と給電体6(アノード)間に直流電圧を
所定の時間印加してペレット5の表面に図1(b)のよ
うに導電性高分子膜30を電解重合する。この電解重合
工程では、同時に給電体6の重合液と接触した表面には
導電性重合膜30aが析出する。導電性高分子が電解重
合したペレット5はグラファイトペースト、銀ペースト
を焼き付けた後、陰極引き出しリードを接着し樹脂モー
ルド等により外装して固体電解コンデンサとして製品化
される。
Subsequently, a DC voltage is applied between the counter electrode 2 (cathode) and the power feeder 6 (anode) for a predetermined time by using the DC power supply 20 to apply a DC voltage to the surface of the pellet 5 as shown in FIG. The conductive polymer film 30 is electrolytically polymerized. In this electrolytic polymerization step, a conductive polymer film 30a is simultaneously deposited on the surface of the power supply 6 that has come into contact with the polymerization liquid. The pellet 5 in which the conductive polymer is electrolytically polymerized is produced as a solid electrolytic capacitor by baking graphite paste and silver paste, bonding a cathode lead, and packaging the resin with a resin mold or the like.

【0024】重合液3としては、ピロール,チオフェ
ン,フランまたはそれらの誘導体の重合性モノマーとp
―トルエンスルホン酸,ナフタレンスルホン酸,ベンゼ
ンスルホン酸またはそれらのアルカリ塩のような支持電
解質を含む溶液が使用できる。例えば、0.05Mピロ
ールおよび0.3Mp―トルエンスルホン酸水溶液の重
合液3等を使用して給電体6と対向電極2間に直流電圧
6Vを約30分間印加して導電性高分子膜30,30a
が電解重合される。電解重合する際の給電体6の電極電
位は1.0V(銀/塩化銀標準電極基準)とした。
The polymerization solution 3 includes a polymerizable monomer of pyrrole, thiophene, furan or a derivative thereof and p
A solution containing a supporting electrolyte such as toluenesulfonic acid, naphthalenesulfonic acid, benzenesulfonic acid or an alkali salt thereof can be used. For example, using a polymer solution 3 of 0.05 M pyrrole and 0.3 M p-toluenesulfonic acid aqueous solution or the like, a DC voltage of 6 V is applied between the power supply 6 and the counter electrode 2 for about 30 minutes, and the conductive polymer film 30a
Is electrolytically polymerized. The electrode potential of the power supply 6 during the electropolymerization was set to 1.0 V (based on a silver / silver chloride standard electrode).

【0025】次に、給電体6をペレット5から離した
後、図2(a)に示すように、0.3Mp―トルエンス
ルホン酸水溶液(電導度16mS/cm)等の電解液3
a中に給電体6を浸漬した。次いで図2(b)のよう
に、直流電源20aを使用して対向電極2a間に直流電
圧を印加して給電体6上の導電性高分子膜30aを電解
酸化して劣化させる。この電解酸化浴電圧としては10
Vとして10分間印加して導電性高分子膜30aを電解
酸化した。給電体6の表面からは酸素ガスも発生した。
図2(b)の符号30bは劣化導電性高分子膜を示す。
Next, after the power feeder 6 is separated from the pellet 5, as shown in FIG. 2A, an electrolytic solution 3 such as a 0.3Mp-toluenesulfonic acid aqueous solution (conductivity: 16 mS / cm) is used.
The power supply 6 was immersed in a. Next, as shown in FIG. 2B, a DC voltage is applied between the counter electrodes 2a using the DC power supply 20a to electrolytically oxidize and deteriorate the conductive polymer film 30a on the power supply 6. The electrolytic oxidation bath voltage is 10
V was applied for 10 minutes to electrolytically oxidize the conductive polymer film 30a. Oxygen gas was also generated from the surface of the power supply 6.
Reference numeral 30b in FIG. 2B indicates a deteriorated conductive polymer film.

【0026】次に図3のように、給電体6に超音波振動
子50を使用して超音波50aを付与して振動させて給
電体6から劣化導電性高分子膜30bを剥離する。
Next, as shown in FIG. 3, the ultrasonic wave 50a is applied to the power supply 6 using the ultrasonic vibrator 50 and vibrated to peel off the deteriorated conductive polymer film 30b from the power supply 6.

【0027】このように、本発明では、給電体6表面に
電解重合で析出した導電性高分子膜は電解酸化によって
化学的に劣化(脆化)しており、密着性も低下して超音
波50aの付与によって給電体にキズの発生を抑制して
容易に剥離でき、給電体を繰り返し使用することができ
る。
As described above, according to the present invention, the conductive polymer film deposited on the surface of the power feeder 6 by electrolytic polymerization is chemically degraded (brittle) due to electrolytic oxidation, and the adhesiveness is also reduced, resulting in an ultrasonic wave. By providing 50a, the generation of scratches on the power supply body can be suppressed, the power supply body can be easily peeled off, and the power supply body can be used repeatedly.

【0028】上記の実施の形態では給電体6表面から機
械的振動により電解酸化で劣化した導電性高分子膜を剥
離する方法として超音波振動法を使用したが、エアーを
給電体表面に吹付ける方法(エアーバブリング法)によ
っても電解酸化で劣化した導電性高分子膜を給電体表面
から容易に剥離することができる。
In the above-described embodiment, the ultrasonic vibration method is used as a method for peeling the conductive polymer film deteriorated by electrolytic oxidation due to mechanical vibration from the surface of the power supply 6, but air is blown to the surface of the power supply. The conductive polymer film deteriorated by electrolytic oxidation can be easily peeled off from the surface of the power feeder by the method (air bubbling method).

【0029】次に本発明の第2の実施の形態の電解重合
導電性高分子膜の剥離方法について説明する。
Next, a method of peeling the electropolymerized conductive polymer film according to the second embodiment of the present invention will be described.

【0030】本実施の形態では、上記の第1の実施の形
態において給電体6の表面の導電性高分子膜30aの電
解酸化の電解液3aのとしてp―トルエンスルホン酸水
溶液等の代わりに燐酸水溶液(電導度150μS/c
m)または硫酸水溶液(電導度150μS/cm)を使用
する場合である。本実施の形態においても上記の第1の
実施の形態と同様に給電体の表面から電解重合で形成さ
れた導電性高分子膜を容易に剥離することができた。
In this embodiment, phosphoric acid is used instead of p-toluenesulfonic acid aqueous solution or the like as the electrolytic solution 3a for electrolytic oxidation of the conductive polymer film 30a on the surface of the power supply 6 in the first embodiment. Aqueous solution (conductivity 150μS / c
m) or an aqueous sulfuric acid solution (conductivity 150 μS / cm). Also in the present embodiment, the conductive polymer film formed by electrolytic polymerization could be easily peeled off from the surface of the power supply in the same manner as in the first embodiment.

【0031】[0031]

【発明の効果】以上説明したように、本発明では次の効
果が得られる。 (1)給電体表面に電解重合で析出した導電性高分子膜
を電解液中で電解酸化して化学的に劣化させた後、超音
波振動またはエアーバブリングのよる機械振動を給電体
に付与することにより給電体表面から容易に剥離するこ
とができ、給電体の変形やキズの発生が防止できること
によって給電体を繰り返し使用ができ、固体電解コンデ
ンサ等の電解質として導電性高分子膜を使用する場合の
製造コストを低減できる。 (2)導電性高分子膜を給電体から剥離する場合、給電
体の変形やキズ発生が防止できるために固体電解コンデ
ンサのペレット等の基体表面に析出した導電性高分子膜
のキズ等の欠陥が低減し、該導電性高分子膜の品質を向
上することができる。
As described above, according to the present invention, the following effects can be obtained. (1) After the conductive polymer film deposited on the surface of the feeder by electrolytic polymerization is electrolytically oxidized in an electrolytic solution and chemically deteriorated, mechanical vibration by ultrasonic vibration or air bubbling is applied to the feeder. When the conductive polymer film is used as an electrolyte for a solid electrolytic capacitor and the like, it can be easily peeled off from the surface of the power supply body, and the power supply body can be used repeatedly because deformation and scratches of the power supply body can be prevented. Manufacturing cost can be reduced. (2) When the conductive polymer film is peeled from the power supply, defects such as scratches of the conductive polymer film deposited on the surface of the base such as a pellet of a solid electrolytic capacitor can be prevented because deformation and scratches of the power supply can be prevented. And the quality of the conductive polymer film can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の電解重合導電性高分子膜
の剥離方法における基体表面に導電性高分子膜を電解重
合する工程を説明するための電解装置の概略構成図であ
る。
FIG. 1 is a schematic configuration diagram of an electrolytic apparatus for explaining a step of electrolytically polymerizing a conductive polymer film on a substrate surface in a method for removing an electropolymerized conductive polymer film according to an embodiment of the present invention.

【図2】図1(b)の工程に続く給電体表面の電解重合
導電性高分子膜を電解酸化する工程を説明するための電
解装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an electrolytic apparatus for explaining a step of electrolytically oxidizing an electropolymerized conductive polymer film on a power supply body surface following the step of FIG. 1B.

【図3】図2(b)の工程に続く電解酸化された電解重
合導電性高分子膜を給電体(第1の電極)表面から剥離
する工程を説明するための電解装置の概略構成図であ
る。
FIG. 3 is a schematic configuration diagram of an electrolysis apparatus for illustrating a step of peeling an electrolytically oxidized electropolymerized conductive polymer film from the surface of a power feeder (first electrode) following the step of FIG. 2 (b). is there.

【図4】従来の導電性高分子膜の電解重合方法とその給
電体からの剥離方法の工程を説明するための電解装置の
概略構成図である。
FIG. 4 is a schematic configuration diagram of an electrolysis apparatus for describing steps of a conventional method of electrolytic polymerization of a conductive polymer film and a method of peeling the conductive polymer film from a power supply body.

【符号の説明】[Explanation of symbols]

2,2a 対向電極 3 重合液 3a 電解液 5 ペレット 6 給電体 7 陽極リード 10,10a 電解槽 20,20a 直流電源 30,30a 導電性高分子膜 30b 劣化導電性高分子膜 50 超音波振動子 50a 超音波 2, 2a Counter electrode 3 Polymer solution 3a Electrolyte solution 5 Pellet 6 Feeder 7 Anode lead 10, 10a Electrolyte bath 20, 20a DC power supply 30, 30a Conductive polymer film 30b Degraded conductive polymer film 50 Ultrasonic vibrator 50a Ultrasonic

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重合性モノマーおよび第1の支持電解質
を含む第1の電解液中に、所望の導電性高分子膜を形成
する導電性の基体,この基体と電気的に導通する第1の
電極および該第1の電極の対向電極として作用する第2
の電極を浸漬する工程と、前記第1の電極を前記基体に
接触または近接させ、前記第1の電極をアノード、前記
第2の電極をカソードとして、所定の時間電解して、前
記基体表面に第1の導電性高分子膜を電解重合により形
成する工程と、前記第1の電極を前記第1の溶液から取
出し洗浄した後、前記第1の電極を第2の電解液に浸漬
して該第2の電解液中の前記第1の電極をアノード、前
記第1の電極の対向電極として作用する第3の電極をカ
ソードとして、所定の時間電解して前記第1の電極表面
に前記基体表面の前記第1の導電性高分子膜の被覆の際
に同時に形成された第2の導電性高分子膜を電解酸化す
る工程と、前記第2の電解液中または第3の電解液中で
前記第1の電極表面から機械的振動により前記第2の導
電性高分子膜を剥離する工程とを含むことを特徴とする
電解重合導電性高分子膜の剥離方法。
An electroconductive substrate for forming a desired electroconductive polymer film in a first electrolytic solution containing a polymerizable monomer and a first supporting electrolyte; An electrode and a second electrode acting as a counter electrode of the first electrode
And immersing the electrode, the first electrode is brought into contact with or close to the base, the first electrode is used as an anode, the second electrode is used as a cathode, electrolysis is performed for a predetermined time, and the surface of the base is Forming a first conductive polymer film by electrolytic polymerization, removing the first electrode from the first solution, washing the first electrode, immersing the first electrode in a second electrolytic solution, Using the first electrode in the second electrolyte as an anode and the third electrode acting as a counter electrode of the first electrode as a cathode, electrolysis is performed for a predetermined time, and the surface of the base is formed on the surface of the first electrode. Electrolytically oxidizing the second conductive polymer film formed simultaneously with the coating of the first conductive polymer film of the above, and in the second electrolyte solution or the third electrolyte solution, The second conductive polymer film is peeled off from the first electrode surface by mechanical vibration. Peeling method of electrolytic polymerization conductive polymer film which comprises a step of.
【請求項2】 前記重合性モノマーがピロール,チオフ
ェン,フランまたはそれらの誘導体であることを特徴と
する請求項1記載の電解重合導電性高分子膜の剥離方
法。
2. The method according to claim 1, wherein the polymerizable monomer is pyrrole, thiophene, furan or a derivative thereof.
【請求項3】 前記第1の支持電解質がp―トルエンス
ルホン酸等のアルキルベンゼンスルホン酸またはアルキ
ルナフタレンスルホン酸,またはそれらのアルカリ塩の
中から選ばれた一つであることを特徴とする請求項1記
載の電解重合導電性高分子膜の剥離方法。
3. The method according to claim 1, wherein the first supporting electrolyte is one selected from the group consisting of alkylbenzenesulfonic acid and alkylnaphthalenesulfonic acid such as p-toluenesulfonic acid, and alkali salts thereof. The method for stripping an electropolymerized conductive polymer film according to claim 1.
【請求項4】 前記基体が金属または絶縁性材料に導電
性高分子化学重合膜が被着されたものであることを特徴
とする請求項1,2または3記載の電解重合導電性高分
子膜の剥離方法。
4. The electropolymerized conductive polymer film according to claim 1, wherein the base is a metal or an insulating material on which a conductive polymer chemical polymer film is adhered. Peeling method.
【請求項5】 前記絶縁性材料がTa,AlまたはNb
からなる弁作用金属を陽極酸化したものであることを特
徴とする請求項3記載の電解重合導電性高分子膜の剥離
方法。
5. The method according to claim 1, wherein the insulating material is Ta, Al or Nb.
4. The method for stripping an electropolymerized conductive polymer film according to claim 3, wherein the valve action metal is anodized.
【請求項6】 前記第1の電極が難溶性金属電極である
ことを特徴とする請求項1〜5のいずれかに記載の電解
重合導電性高分子膜の剥離方法。
6. The method for stripping an electropolymerized conductive polymer film according to claim 1, wherein the first electrode is a poorly soluble metal electrode.
【請求項7】 前記第2の電解液が前記第1の電解液か
ら前記重合性モノマーを除いた水溶液から構成されるこ
とを特徴とする請求項1記載の電解重合導電性高分子膜
の剥離方法。
7. The peeling of the electropolymerized conductive polymer film according to claim 1, wherein the second electrolytic solution is composed of an aqueous solution obtained by removing the polymerizable monomer from the first electrolytic solution. Method.
【請求項8】 前記第2の電解液が硫酸または燐酸水溶
液であることを特徴とする請求項1記載の電解重合導電
性高分子膜の剥離方法。
8. The method according to claim 1, wherein the second electrolyte is an aqueous solution of sulfuric acid or phosphoric acid.
【請求項9】 前記第1の電極から前記第2の導電性高
分子膜を前記機械的振動で剥離する方法としてエアーバ
ブリング法または超音波振動法を使用することを特徴と
する請求項1記載の電解重合導電性高分子膜の剥離方
法。
9. The method according to claim 1, wherein an air bubbling method or an ultrasonic vibration method is used as a method for peeling the second conductive polymer film from the first electrode by the mechanical vibration. A method for stripping an electropolymerized conductive polymer film.
JP2000201177A 2000-07-03 2000-07-03 Method for peeling electropolymerized conductive polymer film Expired - Lifetime JP4362213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201177A JP4362213B2 (en) 2000-07-03 2000-07-03 Method for peeling electropolymerized conductive polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201177A JP4362213B2 (en) 2000-07-03 2000-07-03 Method for peeling electropolymerized conductive polymer film

Publications (2)

Publication Number Publication Date
JP2002020466A true JP2002020466A (en) 2002-01-23
JP4362213B2 JP4362213B2 (en) 2009-11-11

Family

ID=18698915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201177A Expired - Lifetime JP4362213B2 (en) 2000-07-03 2000-07-03 Method for peeling electropolymerized conductive polymer film

Country Status (1)

Country Link
JP (1) JP4362213B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119631A (en) * 2005-10-28 2007-05-17 Achilles Corp Manufacturing process of electroconductive polymer fine particle and the electroconductive polymer fine particle
CN108793065A (en) * 2018-06-25 2018-11-13 太原理工大学 A kind of preparation method for the MEMS supercapacitor that medium film thickness is controllable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119631A (en) * 2005-10-28 2007-05-17 Achilles Corp Manufacturing process of electroconductive polymer fine particle and the electroconductive polymer fine particle
CN108793065A (en) * 2018-06-25 2018-11-13 太原理工大学 A kind of preparation method for the MEMS supercapacitor that medium film thickness is controllable
CN108793065B (en) * 2018-06-25 2020-09-15 太原理工大学 Preparation method of MEMS (micro-electromechanical systems) supercapacitor with controllable dielectric film thickness

Also Published As

Publication number Publication date
JP4362213B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
EP0336299B1 (en) Solid electrolytic capacitor and method for manufacturing the same
US5189770A (en) Method of making solid electrolyte capacitor
JP2810418B2 (en) Method for manufacturing solid electrolytic capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP4362213B2 (en) Method for peeling electropolymerized conductive polymer film
JPH05166681A (en) Manufacture of solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001102258A (en) Method for manufacturing conductive polymer film
JPH0467767B2 (en)
JP2003234249A (en) Electrochemical storage device and its manufacturing method
JP2741072B2 (en) Method for manufacturing solid electrolytic capacitor
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0547611A (en) Production of solid electrolytic capacitor
JP2000353641A (en) Manufacture of solid electronic element
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JP2745612B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0693420B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0453117A (en) Solid electrolytic capacitor and its manufacture
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JP2001102257A (en) Method for manufacturing solid electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH09148193A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140821

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term