JP2002015954A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JP2002015954A
JP2002015954A JP2000197384A JP2000197384A JP2002015954A JP 2002015954 A JP2002015954 A JP 2002015954A JP 2000197384 A JP2000197384 A JP 2000197384A JP 2000197384 A JP2000197384 A JP 2000197384A JP 2002015954 A JP2002015954 A JP 2002015954A
Authority
JP
Japan
Prior art keywords
terminal
electric double
layer capacitor
sealing member
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197384A
Other languages
Japanese (ja)
Other versions
JP4637325B2 (en
Inventor
Makoto Higashibetsupu
誠 東別府
Kenji Shimazu
健児 島津
Shinya Matsuno
真也 松野
Kazuo Ikuta
和雄 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000197384A priority Critical patent/JP4637325B2/en
Publication of JP2002015954A publication Critical patent/JP2002015954A/en
Application granted granted Critical
Publication of JP4637325B2 publication Critical patent/JP4637325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a long service life electric double-layer capacitor which can suppress heating terminals of a collector and cells, even when charging/ discharging is made with a large current. SOLUTION: The capacitor 1 comprises cells 5, each composed of a laminate of two polarizable electrodes 2 containing active carbon, a separator 3 interposed between the electrodes 2, 2, and collectors 4, 4 laminated on the opposite surfaces of the electrodes 2 to the surfaces at the separator 3, a sealing member 7 for sealing the cell 5, and sheet-like terminals 4a a part of them projecting out from the sealing member 7. The main surface of the terminal 4a is formed with a rough surface and/or rugged notches are formed into the side ends of the terminals 4a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、電気二重層コン
デンサに関し、特に高電圧用電源として好適な電気二重
層コンデンサに関するものである。
The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor suitable as a high-voltage power supply.

【0002】[0002]

【従来技術】 電気二重層コンデンサは、電極と電解液
との界面においてイオンの分極によりできる電気二重層
を利用したコンデンサであり、コンデンサと電池の両方
の機能を兼ね備えたものであり、従来のコンデンサと比
較して大容量の静電容量を充電できるとともに、急速充
放電が可能であることから、小型のメモリーバックアッ
プ電源や自動車の駆動源等、大容量モータなどの補助電
源として注目されている。
2. Description of the Related Art An electric double layer capacitor is a capacitor using an electric double layer formed by polarization of ions at an interface between an electrode and an electrolyte, and has both functions of a capacitor and a battery. In addition to being able to charge a large amount of electrostatic capacity and capable of rapid charging and discharging as compared with the above, it has attracted attention as an auxiliary power supply for a large-capacity motor, such as a small memory backup power supply or a driving source of a car.

【0003】かかる電気二重層コンデンサの一般的な例
としては、活性炭および電解液を含有する2枚の分極性
電極間に絶縁性の多孔質体からなるセパレータを介装
し、前記分極性電極の前記セパレータ側の面とは反対の
表面それぞれに金属箔等からなる集電体を配設した積層
体からなるセルが複数層積層されてプラスチックや熱可
塑性樹脂等の絶縁体からなる封止部材内に収納、封止さ
れた構成からなる積層型の電気二重層コンデンサが知ら
れている。
[0003] As a general example of such an electric double layer capacitor, a separator made of an insulating porous material is interposed between two polarizable electrodes containing activated carbon and an electrolytic solution, and the polarizable electrode is formed. In a sealing member made of an insulator such as a plastic or a thermoplastic resin, a plurality of cells each made of a stacked body in which a current collector made of a metal foil or the like is arranged on each surface opposite to the surface on the separator side are stacked. There is known a multilayer electric double-layer capacitor having a configuration housed and sealed.

【0004】一方、上記構成の電気二重層コンデンサと
して、特に起動時等の瞬時に非常に大きなエネルギーが
必要な部品へのエネルギー供給用電源として注目されて
おり、例えば、数A〜数百Aという大電流を急速充放電
できることが知られている。
On the other hand, the electric double-layer capacitor having the above structure has attracted attention as a power supply for supplying energy to components that require a very large amount of energy instantaneously, for example, at the time of start-up. It is known that a large current can be rapidly charged and discharged.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来の電気二重層コンデンサでは、封止部材内に密封
された構造になっているため、数A〜数百Aという大電
流で急速充放電させた場合、特に集電体および端子に発
生するジュール熱がセル積層体内部に蓄積されてしま
い、電解液が分解して静電容量が低下し、電気二重層コ
ンデンサの信頼性が低下するという問題があった。
However, the conventional electric double layer capacitor described above has a structure sealed in a sealing member, so that it can be rapidly charged and discharged with a large current of several A to several hundred A. In this case, Joule heat generated in the current collectors and terminals is accumulated in the cell stack, and the electrolytic solution is decomposed, the capacitance is reduced, and the reliability of the electric double layer capacitor is reduced. was there.

【0006】本発明は、上記課題に対してなされたもの
で、その目的は、大容量の充放電に際しても効率的に放
熱して電気二重層コンデンサ内部の発熱を抑制でき、電
気二重層コンデンサの信頼性を高めることができるとと
もに、小型で生産性の高い高寿命の積層型の電気二重層
コンデンサを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to efficiently discharge heat even when charging and discharging a large capacity, thereby suppressing heat generation inside the electric double layer capacitor. An object of the present invention is to provide a multilayer electric double-layer capacitor that can be improved in reliability and has a small size and high productivity and a long life.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記課題
に対して検討した結果、集電体と連結する端子の表面お
よび側端部を凹凸状に形成して端子の表面積を増すこと
により、簡単な構造で電気二重層コンデンサ内に発生し
た熱を効率よく外部へ放熱でき、小型で、生産性が高く
信頼性の高い電気二重層コンデンサとなることを知見し
た。
The present inventors have studied the above problems and found that the surface and side edges of the terminal connected to the current collector are formed in an uneven shape to increase the surface area of the terminal. As a result, it has been found that the heat generated in the electric double layer capacitor can be efficiently radiated to the outside with a simple structure, resulting in a small, highly productive and highly reliable electric double layer capacitor.

【0008】すなわち、本発明の電気二重層コンデンサ
は、活性炭を含有する2枚の分極性電極と、該分極性電
極間に介装されるセパレータと、前記分極性電極の前記
セパレータ側の面とは反対の表面それぞれに積層される
集電体との積層体からなるセルを封止する封止部材と、
前記集電体の周縁部の一部に一体的に設けられ、その一
部が前記封止部材の外部に突出するシート状の端子とを
具備するものであって、前記シート状の端子の主平面を
凹凸面によって形成するか、および/または前記シート
状の端子の側端部に凹凸状の切り欠きを形成したことを
特徴とするものである。
That is, the electric double layer capacitor of the present invention comprises two polarizable electrodes containing activated carbon, a separator interposed between the polarizable electrodes, and a surface of the polarizable electrode on the separator side. A sealing member for sealing a cell made of a laminate with a current collector laminated on each of the opposite surfaces,
A sheet-like terminal provided integrally with a part of a peripheral portion of the current collector and projecting outside the sealing member; and a main terminal of the sheet-like terminal. A flat surface is formed by an uneven surface, and / or an uneven cutout is formed at a side end of the sheet-like terminal.

【0009】ここで、前記セルが複数層積層されるとと
もに、前記集電体の周縁部に複数の端子が1つおきに前
記封止部材の外部で連結されてなることが望ましい。
Here, it is preferable that a plurality of the cells are stacked, and a plurality of terminals are connected to the periphery of the current collector every other outside the sealing member.

【0010】[0010]

【発明の実施の形態】本発明の電気二重層コンデンサの
一例についての概略断面図を図1に示す。図1によれ
ば、電気二重層コンデンサ1は、正極および負極をなす
平面が矩形のシート状の分極性電極2、2間に、平面が
矩形のシート状のセパレータ3が配設、介在しており、
また、分極性電極2、2のセパレータが配設された面の
反対面には、正極および負極をなす平面が矩形のシート
状の集電体4、4がそれぞれ積層、接着され、分極性電
極2、2、セパレータ3、集電体4、4の積層体が一単
位のセル5を構成している。
FIG. 1 is a schematic sectional view showing an example of an electric double layer capacitor according to the present invention. According to FIG. 1, an electric double layer capacitor 1 has a rectangular sheet-like separator 3 disposed and interposed between a sheet-like polarizable electrode 2 and a rectangular sheet-like plane forming a positive electrode and a negative electrode. Yes,
On the other surface of the polarizable electrodes 2 and 2 opposite to the surface on which the separators are provided, current collectors 4 and 4 each having a rectangular sheet-like plane forming a positive electrode and a negative electrode are laminated and bonded, respectively. The laminate of 2, 2, the separator 3, and the current collectors 4, 4 constitutes one unit cell 5.

【0011】ここで、分極性電極2を構成する活性炭質
構造体は、高い比表面積を有する活性炭を含有し、前記
活性炭を結合するための結合剤を配合したものが好適に
使用でき、静電容量向上、内部抵抗低減、放熱性向上の
点でこれを炭化処理したものであってもよい。また、電
気二重層コンデンサ1の高静電容量を維持し、構造体と
して必要な強度を得るためには、前記活性炭の比表面積
が1000〜3000m2/gであることが望ましい。
Here, as the activated carbonaceous structure constituting the polarizable electrode 2, an activated carbon having a high specific surface area and containing a binder for binding the activated carbon can be suitably used. It may be carbonized to improve capacity, reduce internal resistance, and improve heat dissipation. Also, in order to maintain the high capacitance of the electric double layer capacitor 1 and obtain the necessary strength as a structure, it is desirable that the activated carbon has a specific surface area of 1,000 to 3,000 m 2 / g.

【0012】なお、前記結合剤として添加される炭素成
分は、前記活性炭粒子間に存在するが、前記炭化処理を
施す場合には、前記活性炭質構造体に占める割合が5〜
50重量%であることが好ましく、これにより前記活性
炭粒子間の焼結性及び結合性を高めることができる。
Although the carbon component added as the binder is present between the activated carbon particles, when the carbonization treatment is performed, the ratio of the carbon component to the activated carbonaceous structure is 5 to 5.
The content is preferably 50% by weight, whereby the sinterability and bonding between the activated carbon particles can be enhanced.

【0013】さらに、分極性電極2は円板、矩形状(図
1では矩形状)の板状体等であることが好ましく、電気
二重層コンデンサ1の製造時の取り扱いや使用時の振
動、衝撃等に耐えうる機械的強度という信頼性の点でJ
ISR1601に準じた室温における3点曲げ強度が3
0kPa以上、特に60kPa以上であることが好まし
い。また、分極性電極2の厚みは、内部抵抗の低減の観
点から1.5mm以下、特に0.6mm以下であること
が好ましい。
Further, the polarizable electrode 2 is preferably a disk, a rectangular (in FIG. 1, rectangular) plate-like body, or the like. J in terms of reliability of mechanical strength that can withstand
Three-point bending strength at room temperature according to ISR1601 is 3
It is preferably at least 0 kPa, particularly preferably at least 60 kPa. Further, the thickness of the polarizable electrode 2 is preferably 1.5 mm or less, particularly preferably 0.6 mm or less from the viewpoint of reducing the internal resistance.

【0014】また、セパレータ3は、パルプやポリエチ
レン、ポリプロピレン、ポリビニリデンフロライド(P
VdF)等の有機フィルムまたはガラス繊維不織布及び
セラミックスなどを用いることができ、分極性電極2間
を絶縁するために形成されるものであるが、分極性電極
2内に含有される電解液中のイオンを透過させることが
できる多孔質体により形成される。なお、セパレータ3
の厚みは、ショート等を防止し、内部抵抗を低減するた
めに0.02〜0.15mmの厚みが好ましい。
The separator 3 is made of pulp, polyethylene, polypropylene, polyvinylidene fluoride (P
An organic film such as VdF) or a glass fiber nonwoven fabric and ceramics can be used, and are formed to insulate the polarizable electrodes 2 from each other. It is formed of a porous body through which ions can pass. The separator 3
Is preferably 0.02 to 0.15 mm in order to prevent a short circuit or the like and reduce the internal resistance.

【0015】さらに、分極性電極2およびセパレータ3
内部には、硫酸や硝酸等の水溶液や、エチレンカーボネ
ート(EC)、プロピレンカーボネート(PC)、ブチ
レンカーボネート(BC)、γ−ブチロラクトン(γ−
BL)、N,N−ジメチルホルムアミド、スルホラン、
3−メチルスルホラン等の非水溶媒とテトラエチルアン
モニウムテトラフルオロボレート等の4級アンモニウム
塩、4級スルホニウム塩、4級ホスホニウム塩等の電解
質を組み合わせた非水系電解液等の電解液が含浸される
が、本発明において分解電圧の高い非水系電解液を用い
ることが望ましい。なお、前記電解質の前記非水系溶媒
に対する溶解量は、安定して高い静電容量を得るために
0.5〜2mol/lであることが望ましい。
Further, the polarizable electrode 2 and the separator 3
An aqueous solution of sulfuric acid or nitric acid, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), γ-butyrolactone (γ-
BL), N, N-dimethylformamide, sulfolane,
An electrolyte such as a non-aqueous electrolyte obtained by combining a non-aqueous solvent such as 3-methylsulfolane and an electrolyte such as a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate or a quaternary sulfonium salt or a quaternary phosphonium salt is impregnated. In the present invention, it is desirable to use a non-aqueous electrolyte having a high decomposition voltage. The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.5 to 2 mol / l in order to stably obtain a high capacitance.

【0016】また、集電体4は、導電性を有するアルミ
ニウム、チタン、タンタル、白金、金等の金属箔、ステ
ンレス鋼などにより形成され、分極性電極2、2間で電
荷をやり取りするが、特に放熱性および分解電圧の高い
非水系電解液に対する耐食性の点でアルミニウムを主体
とする金属箔からなることが望ましい。また、集電体4
の厚みは内部抵抗を低減するためには薄いものが好まし
いが組立時の取り扱いなどによる破損を考慮すると0.
02〜0.10mm程度が望ましい。
The current collector 4 is made of conductive metal foil such as aluminum, titanium, tantalum, platinum, or gold, or stainless steel, and exchanges electric charges between the polarizable electrodes 2 and 2. In particular, it is desirable to use a metal foil mainly composed of aluminum from the viewpoint of heat dissipation and corrosion resistance to a non-aqueous electrolyte having a high decomposition voltage. The current collector 4
The thickness is preferably thin in order to reduce the internal resistance, but in consideration of breakage due to handling during assembly, etc.
About 02 to 0.10 mm is desirable.

【0017】そして、本発明によれば、集電体4の周縁
部(一辺)の一部(図1では隅部)には、シート状の端
子4aが集電体4と一体的に形成されているが、本発明
によれば、端子4aの主平面を凹凸面によって形成する
か、および/または前記シート状の端子4aの側端部に
凹凸状の切り欠きを形成したことが大きな特徴であり、
これによって、電気二重層コンデンサ1から大電流を放
電する際にも端子4aでの発熱を効率よく放熱でき、電
気二重層コンデンサ1内部の温度上昇を抑制して電解液
の劣化及び分極性電極の部分的な破壊を防止できる結
果、電気二重層コンデンサ1の寿命を長くできるととも
に、信頼性を高めることができる。
According to the present invention, a sheet-like terminal 4 a is formed integrally with the current collector 4 at a part (corner in FIG. 1) of the peripheral portion (one side) of the current collector 4. However, according to the present invention, a major feature is that the main plane of the terminal 4a is formed by an uneven surface and / or an uneven cutout is formed at a side end of the sheet-like terminal 4a. Yes,
As a result, even when a large current is discharged from the electric double layer capacitor 1, the heat generated at the terminal 4a can be efficiently radiated, the temperature rise inside the electric double layer capacitor 1 is suppressed, and the deterioration of the electrolytic solution and the polarization electrode As a result of being able to prevent partial destruction, the life of the electric double layer capacitor 1 can be extended and the reliability can be improved.

【0018】ここで、端子4aの形状は、図2の集電体
4と端子4aの側面図及び平面図に示すように、(a)
端子4aの表面粗さ(Ra)を0.5μm以上、特に
0.5〜2μmと高めたもの、(b)端子4aの主平面
がジグザグ状に形成されたもの、(c)端子4aの主平
面が波状に形成されたもの、(d)端子4aの側端部に
凹凸状の切り欠きを設けたものの1種または2種以上が
好適に使用できる。なお、端子4aの抵抗の上昇を防止
しつつ端子4aの比表面積を高めて放熱性を高めるため
には、前記凹凸の凸部の高さが1〜3mmであることが
望ましく、また、前記凹凸の頂部間のピッチが1〜5m
mであることが望ましい。
Here, as shown in the side view and the plan view of the current collector 4 and the terminal 4a in FIG.
A terminal 4a having a surface roughness (Ra) of 0.5 μm or more, particularly 0.5 to 2 μm, (b) a terminal 4a having a main surface formed in a zigzag shape, (c) a terminal 4a One type or two or more types having a flat surface formed in a wavy shape, and (d) having a concave or convex cutout at the side end of the terminal 4a can be suitably used. In order to increase the specific surface area of the terminal 4a and improve heat dissipation while preventing an increase in the resistance of the terminal 4a, it is desirable that the height of the projections of the irregularities is 1 to 3 mm. The pitch between the tops is 1-5m
m is desirable.

【0019】また、上記構造のうち、(b)〜(d)に
よれば、端子4aを別の部材に接続する場合や後述する
ように端子4a同士を収束する際に集電体4と端子4a
との界面に発生する応力集中を緩和して端子4aの短絡
を防止できる効果もある。
According to (b) to (d) of the above structure, when the terminal 4a is connected to another member or when the terminals 4a converge as described later, the current collector 4 and the terminal 4a
There is also an effect that the concentration of stress generated at the interface with the terminal 4 can be reduced to prevent the short circuit of the terminal 4a.

【0020】なお、図1によれば、複数の集電体4のそ
れぞれの端子4aは積層体の同じ辺に設け、かつ隣接す
る集電体4の端子4aが同一辺内の異なる位置に設けら
れている。すなわち、一層おきに同じ部位(図面では隅
部)に設け、集電体4の端子4aが交互に正極用端子お
よび負極用端子を構成するようにセル5が複数層積層さ
れてセル積層体6を形成している。そして、同じ部位に
設けられた2組の端子同士をそれぞれ接触または接合し
て、それぞれ正極用端子および負極用端子を形成してい
る。なお、正極用端子と負極用端子は短絡を防止するた
めに接触しない位置に配設されている。
According to FIG. 1, the terminals 4a of the plurality of current collectors 4 are provided on the same side of the laminate, and the terminals 4a of the adjacent current collectors 4 are provided at different positions on the same side. Have been. That is, a plurality of cells 5 are stacked so that the terminals 4a of the current collector 4 alternately form the positive terminal and the negative terminal, and the cells 5 are stacked in a cell stack 6 Is formed. Then, two sets of terminals provided at the same site are contacted or joined to each other to form a positive terminal and a negative terminal, respectively. In addition, the positive electrode terminal and the negative electrode terminal are disposed at positions where they do not contact to prevent a short circuit.

【0021】また、図1においては、セル積層体6は電
解液を封止、保持するため、セル積層体6の外周部に形
成される封止部材7によって封止固定されている。封止
部材7の形状は、放熱性、衝撃緩衝性および電気二重層
コンデンサ1の小型化の点で、厚み0.5〜3mmであ
ることが望ましい。
In FIG. 1, the cell stack 6 is sealed and fixed by a sealing member 7 formed on the outer periphery of the cell stack 6 in order to seal and hold the electrolytic solution. The shape of the sealing member 7 is desirably 0.5 to 3 mm in thickness in terms of heat dissipation, shock absorbing properties, and miniaturization of the electric double layer capacitor 1.

【0022】また、封止部材7としては、熱伝導率が高
い絶縁体、具体的には、シリコンゴム、ウレタンゴム、
ブタジエンゴム等のゴム、またはアルミナ、ムライト、
窒化アルミニウム、窒化ケイ素、炭化ケイ素等のセラミ
ックスの群から選ばれる少なくとも1種からなることが
望ましく、また、これらが2層以上積層されたものであ
ってもよい。中でもセル積層体6を封止部材7電解液注
入口9内に収納する組立工程においてセル積層体6中の
分極性電極2が破損することなく容易に組立できる点
で、弾性体であるシリコンゴム、ウレタンゴム、ブタジ
エンゴムが望ましく、特に、高熱伝導性、高絶縁性およ
び機械的強度の向上の点で熱伝導率が1W/m・K以上
のシリコンゴムが最適である。なお、熱伝導率を高める
上では、熱伝導率が3W/m・K以上の上述したセラミ
ックスからなることが望ましい。
The sealing member 7 is made of an insulator having a high thermal conductivity, specifically, silicone rubber, urethane rubber,
Rubber such as butadiene rubber, or alumina, mullite,
It is desirable to be made of at least one kind selected from the group of ceramics such as aluminum nitride, silicon nitride, silicon carbide and the like, and they may be laminated two or more layers. Above all, in the assembling step of accommodating the cell laminate 6 in the sealing member 7 and the electrolyte inlet 9, the polarizable electrode 2 in the cell laminate 6 can be easily assembled without being damaged. , Urethane rubber and butadiene rubber are desirable, and silicon rubber having a thermal conductivity of 1 W / m · K or more is most preferable in terms of high thermal conductivity, high insulation and improvement in mechanical strength. In order to increase the thermal conductivity, it is desirable that the ceramics be made of the above-described ceramics having a thermal conductivity of 3 W / m · K or more.

【0023】さらに、封止部材7のうち、セル積層体6
の上下面に位置する封止部材7は、セル積層体6をかし
めてセル積層体6の保形性を高めるとともに、分極性電
極2、セパレータ3および集電体4間の接触状態を良好
にして電気二重層コンデンサ1の内部抵抗を低減する作
用をなすために、剛性の高い、鉄、ステンレス、アルミ
ニウム、銅、チタン等の金属等他の部材にて形成しても
よく、この場合、他の部材は封止部材7にねじ止め等に
より固定、封止される。
Further, among the sealing members 7, the cell laminate 6
The sealing members 7 located on the upper and lower surfaces of the cell caulk the cell laminate 6 to enhance the shape retention of the cell laminate 6 and improve the contact state between the polarizable electrode 2, the separator 3 and the current collector 4. In order to reduce the internal resistance of the electric double layer capacitor 1, the electric double layer capacitor 1 may be formed of another member having high rigidity, such as metal such as iron, stainless steel, aluminum, copper, and titanium. Are fixed and sealed to the sealing member 7 by screwing or the like.

【0024】また、封止部材7の外周面には電解液を分
極性電極2およびセパレータ3内に注入、含浸せしめる
ための電解液注入口9を形成し、例えば、電解液注入口
9からセル積層体6内に付着した水分を除去した後、非
水系電解液を注入して封止することにより、電気二重層
コンデンサ1内の水分量を低減して電解液の劣化を防止
し、電気二重層コンデンサ1の信頼性を高めることがで
きる。
An electrolytic solution inlet 9 for injecting and impregnating the electrolytic solution into the polarizable electrode 2 and the separator 3 is formed on the outer peripheral surface of the sealing member 7. After removing moisture adhering to the inside of the laminated body 6, a non-aqueous electrolytic solution is injected and sealed to reduce the amount of moisture in the electric double layer capacitor 1 to prevent the electrolytic solution from deteriorating. The reliability of the multilayer capacitor 1 can be improved.

【0025】さらに、図1によれば、複数の端子4aが
1つおきに封止部材7内で収束され、封止部材7から端
子4aの収束体の先端部が突出して形成されている。本
発明によれば、放熱性を高めるために端子4aの先端部
が、特に5mm以上、さらに10mm以上封止部材7壁面
に設けられた貫通孔から外部へ突出するように形成され
ている。
Further, according to FIG. 1, a plurality of terminals 4a are converged in the sealing member 7 every other one, and the tip of the converging body of the terminal 4a protrudes from the sealing member 7. According to the present invention, in order to enhance heat dissipation, the tip of the terminal 4a is formed so as to protrude to the outside from a through-hole provided in the wall surface of the sealing member 7, particularly 5 mm or more, more preferably 10 mm or more.

【0026】また、本発明によれば、端子4aの取り出
し方法はこれに限られるものではなく、例えば、図3に
示す電気二重層コンデンサ10のように、複数の端子4
aを封止部材7に形成した複数の貫通孔内にそれぞれ挿
入し、端子4aの先端を封止部材7の壁面内または外面
に形成した導体層11に封止部材7の外部で連結して接
続してもよく、これによって封止部材7の外面に位置す
る導体層11での放熱性を高めて電気二重層コンデンサ
10全体の放熱性を高めることができる。
Further, according to the present invention, the method of taking out the terminal 4a is not limited to this. For example, as shown in FIG.
a is inserted into each of the plurality of through holes formed in the sealing member 7, and the tip of the terminal 4 a is connected to the conductor layer 11 formed in the wall surface or the outer surface of the sealing member 7 outside the sealing member 7. Connection may be made, whereby the heat radiation of the conductor layer 11 located on the outer surface of the sealing member 7 can be increased, and the heat radiation of the entire electric double layer capacitor 10 can be increased.

【0027】また、導体層11は、放熱性を高めるため
に、上述した端子4aのように側端部に凹凸状の切り欠
きを形成したものであることが望ましい。
It is desirable that the conductor layer 11 be formed with a notch having an uneven shape at the side end, as in the terminal 4a described above, in order to enhance heat dissipation.

【0028】[0028]

【実施例】(実施例)BET値が2000m2/gの活
性炭粉末試料100重量部に対して、ポリビニルブチラ
ール(PVB)を50重量部混合して高速混合攪拌機に
て攪拌し、得られた粉体を40メッシュでメッシュパス
を行った後、ロール成形によってシート状成形体を作製
した。前記シートから所定の形状にカットして固形状活
性炭電極を形成するための成形体を作製した後、真空
中、900℃で熱処理を行い、50mm×50mm、厚
み0.5mmの活性炭質構造体を作製した。
(Example) 50 parts by weight of polyvinyl butyral (PVB) was mixed with 100 parts by weight of an activated carbon powder sample having a BET value of 2000 m 2 / g, and the mixture was stirred by a high-speed mixing stirrer. After the body was subjected to a mesh pass with 40 mesh, a sheet-like formed body was produced by roll forming. After forming a molded body for forming a solid activated carbon electrode by cutting the sheet into a predetermined shape, a heat treatment is performed at 900 ° C. in vacuum to form an activated carbonaceous structure having a size of 50 mm × 50 mm and a thickness of 0.5 mm. Produced.

【0029】一方、パルプ製の50mm×50mm、厚
み50μmのセパレータと、50mm×50mmで、そ
の一辺の端部に幅10mmの端子を備えた厚み50μm
のアルミニウム箔からなる集電体とを準備し、集電体−
分極性電極−セパレータ−分極性電極(−集電体)を一
単位セルとしてセル9層を積層したセル積層体を作製し
た。なお、アルミニウム集電体は表1に示すような形状
のものを使用した。セル積層体は両端面それぞれに集電
体が位置するように配設し、セル積層体は集電体10
枚、分極性電極18枚、セパレータ9枚にて構成される
ものとした。また、セルの積層時には端子がセル積層体
の同じ側面から突出し、かつ隣接する各端子が反対の隅
部に交互に配設されるようにして積層した。
On the other hand, a 50 mm × 50 mm separator made of pulp and having a thickness of 50 μm, and a 50 mm × 50 mm thickness having a terminal having a width of 10 mm at one end of one side thereof.
And a current collector made of aluminum foil.
A cell laminate was prepared in which nine layers of cells were laminated using the polarizing electrode-separator-polarizable electrode (-collector) as one unit cell. The aluminum current collector used had a shape as shown in Table 1. The cell stack is disposed such that the current collector is located on each of both end faces, and the cell stack is provided with a current collector 10.
And 18 polarizable electrodes and 9 separators. In stacking the cells, the terminals were protruded from the same side surface of the cell stack, and adjacent terminals were alternately arranged at opposite corners.

【0030】次に、該セル積層体の端子突出面以外の側
面に厚み1mmのシリコンゴム製で、8つの隅部には長
手方向に貫通する貫通孔を形成し枠状の封止部材を配設
した。そして、セル積層体の外周表面に突出した同じ隅
部に位置する各端子同士をそれぞれ超音波溶接によって
接続して、正極用端子および負極用端子とした後、それ
ぞれガスケットの外周側面へ7mm長さ突出させた。
(ガスケット内部の端子長さ3mm)。
Next, a 1 mm thick silicon rubber is formed on the side surface of the cell laminate other than the terminal protruding surface, and through-holes penetrating in the longitudinal direction are formed at eight corners, and a frame-shaped sealing member is provided. Established. Then, each terminal located at the same corner protruding from the outer peripheral surface of the cell laminate is connected to each other by ultrasonic welding to form a positive electrode terminal and a negative electrode terminal. Protruded.
(Terminal length 3 mm inside gasket).

【0031】さらに、セル積層体およびガスケットの両
端面に60mm×60mm×8mmのアルミニウム製で
隅部に貫通孔を有する封止部材の一部である加圧板を積
層するとともに、該加圧板および前記ガスケットを貫通
する貫通孔を位置合わせして、該貫通孔内にステンレス
からなるネジ部材を挿入し、ネジ止めによって加圧板お
よびセル積層体をかしめ圧0.2MPaとなるようにか
しめ、封止した。
Further, a pressure plate which is a part of a sealing member made of aluminum of 60 mm × 60 mm × 8 mm and having a through hole at a corner is laminated on both end surfaces of the cell laminate and the gasket. The through-hole penetrating the gasket was aligned, a screw member made of stainless steel was inserted into the through-hole, and the pressure plate and the cell stack were caulked by screwing to a pressure of 0.2 MPa and sealed. .

【0032】そして、ガスケットを真空雰囲気下で10
0℃で乾燥した後、ガスケットの外周部に設けた電解液
注入口から1mol/lのテトラエチルアンモニウムテ
トラフルオロボレート(Et4NBF4)の炭酸プロピレ
ン(PC)溶液からなる非水系電解液を注入して、分極
性電極およびセパレータ内に電解液を含浸させた後、電
解液注入口を封止した。
Then, the gasket is placed in a vacuum atmosphere for 10 minutes.
After drying at 0 ° C., a 1 mol / l non-aqueous electrolyte solution of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) propylene carbonate (PC) solution was injected from an electrolyte injection port provided at the outer periphery of the gasket. Then, the electrolyte was impregnated into the polarizable electrode and the separator, and then the electrolyte injection port was sealed.

【0033】得られた電気二重層コンデンサ100個に
対して、端子の断線不良が発生した個数を求め、良品率
(%)を算出した。また、70℃、3.0Vで、電流5
0Aにて充放電をそれぞれ50時間づつ行い、ガスケッ
ト内壁面に挿入した熱電対にてセル積層体の温度を測定
した。さらに、上記重放電を1000時間続けた前後の
静電容量の変化率を測定した。結果は表1に示した。
With respect to 100 of the obtained electric double layer capacitors, the number of defective terminals was determined, and the yield rate (%) was calculated. Also, at 70 ° C. and 3.0 V, a current of 5
Charging and discharging were performed at 0 A for 50 hours each, and the temperature of the cell stack was measured with a thermocouple inserted into the inner wall surface of the gasket. Furthermore, the rate of change in capacitance before and after the heavy discharge was continued for 1000 hours was measured. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から、端子を平板状に形成し、端子の
側端部に凹凸を形成しない試料No.1では、端子の集
電体との界面にクラックが生じやすく良品率が低く、セ
ル積層体の温度が上昇して静電容量の低下が大きかっ
た。
From Table 1, it can be seen that Sample No. having the terminals formed in a flat plate shape and having no irregularities on the side end portions of the terminals. In No. 1, cracks were likely to occur at the interface of the terminal with the current collector, the yield was low, and the temperature of the cell stack increased and the capacitance decreased significantly.

【0036】これに対して、本発明に従いシート状の端
子の主平面を凹凸面に形成した試料No.2〜15で
は、いずれも良品率が80%以上と高く、また、100
0時間後の静電容量の低下率が30%以下と長寿命とな
ることが示唆された。
On the other hand, in the case of the sample No. in which the main surface of the sheet-like terminal was formed on the uneven surface according to the present invention. In Nos. 2 to 15, the non-defective rate was as high as 80% or more.
It was suggested that the life was prolonged when the rate of decrease in capacitance after 0 hour was 30% or less.

【0037】(実施例2)実施例1の試料No.4の端
子それぞれを厚み1mmのアルミナセラミックスからな
る枠状のガスケットに設けられた貫通孔に挿入し、ガス
ケット外面に形成した主平面の表面粗さ(Ra)が10
0μm、側端部にピッチ2mm、高さ2mmの凹凸面を
形成した導体層と接続する以外は実施例1と同様に電気
二重層コンデンサを作製し、評価した結果、良品率90
%、温度70℃、静電容量の変化率が−10%であり、
端子の放熱性が向上していることがわかった。
(Example 2) Sample No. 1 of Example 1 4 were inserted into through holes provided in a frame-shaped gasket made of alumina ceramic having a thickness of 1 mm, and the surface roughness (Ra) of the main plane formed on the outer surface of the gasket was 10%.
An electric double layer capacitor was manufactured and evaluated in the same manner as in Example 1 except that it was connected to a conductor layer having a concave and convex surface having a pitch of 2 mm and a height of 2 mm at the side end portions.
%, Temperature 70 ° C., change rate of capacitance is −10%,
It was found that the heat radiation of the terminals was improved.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明の電気二重層
コンデンサでは、集電体の周縁部に一体的に設けられシ
ート状の端子の主平面を凹凸面によって形成するか、お
よび/または前記シート状の端子の側端部に凹凸状の切
り欠きを形成することによって、端子に発生する熱の放
熱性を高めて電気二重層コンデンサ内部の加熱を防止す
ることができることから、電気二重層コンデンサの温度
上昇に伴う電解液の分解を抑制して長寿命化することが
できる。
As described above in detail, in the electric double layer capacitor of the present invention, the main surface of the sheet-like terminal provided integrally with the peripheral portion of the current collector is formed by an uneven surface, and / or By forming an uneven cutout at the side end of the sheet-shaped terminal, it is possible to enhance the heat dissipation of the heat generated in the terminal and prevent the inside of the electric double-layer capacitor from being heated. The decomposition of the electrolytic solution accompanying the rise in the temperature of the capacitor can be suppressed, and the life can be prolonged.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電気二重層コンデンサの一例を示す概
略断面図である。
FIG. 1 is a schematic sectional view showing an example of an electric double layer capacitor of the present invention.

【図2】本発明の電気二重層コンデンサの集電体と端子
の形状を説明するための平面図および側面図である。
FIG. 2 is a plan view and a side view for explaining the shapes of a current collector and terminals of the electric double layer capacitor of the present invention.

【図3】本発明の他の電気二重層コンデンサの一例を示
す概略断面図である。
FIG. 3 is a schematic sectional view showing an example of another electric double layer capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1、10・・・電気二重層コンデンサ 2・・・分極性電極 3・・・セパレータ 4・・・集電体 4a・・端子 5・・・セル 6・・・セル積層体 7・・・封止部材 9・・・電解液注入口 11・・導体層 1, 10 ... Electric double layer capacitor 2 ... Polarizable electrode 3 ... Separator 4 ... Current collector 4a ... Terminal 5 ... Cell 6 ... Cell laminate 7 ... Seal Stop member 9 ・ ・ ・ Electrolyte injection port 11 ・ ・ Conductor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生田 和雄 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Kazuo Ikuta 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活性炭を含有する2枚の分極性電極と、該
分極性電極間に介装されるセパレータと、前記分極性電
極の前記セパレータ側の面とは反対の表面それぞれに積
層される集電体との積層体からなるセルを封止する封止
部材と、前記集電体の周縁部の一部に一体的に設けら
れ、その一部が前記封止部材の外部に突出するシート状
の端子とを具備する電気二重層コンデンサであって、前
記シート状の端子の主平面を凹凸面によって形成する、
および/または前記シート状の端子の側端部に凹凸状の
切り欠きを形成することを特徴とする電気二重層コンデ
ンサ。
1. A polarizer comprising: two polarizable electrodes containing activated carbon; a separator interposed between the polarizable electrodes; and a surface opposite to the separator-side surface of the polarizable electrode. A sealing member for sealing a cell formed of a laminate with a current collector, and a sheet integrally provided on a part of a peripheral portion of the current collector, a part of which protrudes outside the sealing member An electric double-layer capacitor comprising: a terminal; and a main surface of the sheet-like terminal formed by an uneven surface.
And / or an electric double layer capacitor characterized by forming an uneven cutout at a side end of the sheet-like terminal.
【請求項2】前記セルが複数層積層されるとともに、前
記集電体の周縁部に複数の端子が1つおきに前記封止部
材の外部で連結されてなることを特徴とする請求項1ま
たは2記載の電気二重層コンデンサ。
2. The cell according to claim 1, wherein a plurality of the cells are laminated, and a plurality of terminals are connected to the periphery of the current collector every other one outside the sealing member. Or the electric double layer capacitor according to 2.
JP2000197384A 2000-06-29 2000-06-29 Electric double layer capacitor Expired - Fee Related JP4637325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197384A JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197384A JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002015954A true JP2002015954A (en) 2002-01-18
JP4637325B2 JP4637325B2 (en) 2011-02-23

Family

ID=18695717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197384A Expired - Fee Related JP4637325B2 (en) 2000-06-29 2000-06-29 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4637325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041226A1 (en) * 2003-10-29 2005-05-06 Showa Denko K. K. Electrolytic capacitor
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
US8619409B2 (en) 2008-10-01 2013-12-31 Taiyo Yuden Co., Ltd. Electrochemical device
US8804310B2 (en) 2009-07-17 2014-08-12 Taiyo Yuden Co., Ltd. Electrochemical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159808A (en) * 1991-12-06 1993-06-25 Yuasa Corp Layered thin-type battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JPH09251926A (en) * 1996-03-14 1997-09-22 Kansai Coke & Chem Co Ltd Electric double layer capacitor
JPH11154502A (en) * 1997-11-21 1999-06-08 Sanyo Electric Co Ltd Lithium battery and manufacture thereof
JPH11162443A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Assembled battery
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159808A (en) * 1991-12-06 1993-06-25 Yuasa Corp Layered thin-type battery
JPH09147829A (en) * 1995-11-24 1997-06-06 Toyota Autom Loom Works Ltd Storage battery
JPH09251926A (en) * 1996-03-14 1997-09-22 Kansai Coke & Chem Co Ltd Electric double layer capacitor
JPH11154502A (en) * 1997-11-21 1999-06-08 Sanyo Electric Co Ltd Lithium battery and manufacture thereof
JPH11162443A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Assembled battery
WO2000070701A1 (en) * 1999-05-14 2000-11-23 Mitsubishi Denki Kabushiki Kaisha Flat battery and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041226A1 (en) * 2003-10-29 2005-05-06 Showa Denko K. K. Electrolytic capacitor
US7495888B2 (en) 2003-10-29 2009-02-24 Showa Denko K.K. Electrolytic capacitor
US8619409B2 (en) 2008-10-01 2013-12-31 Taiyo Yuden Co., Ltd. Electrochemical device
US8804310B2 (en) 2009-07-17 2014-08-12 Taiyo Yuden Co., Ltd. Electrochemical device

Also Published As

Publication number Publication date
JP4637325B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
KR100309634B1 (en) Electric Double Layer Capacitors
JP3028056B2 (en) Electric double layer capacitor basic cell and electric double layer capacitor
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
TWI287240B (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
JP3070486B2 (en) Electric double layer capacitor
JP2002246269A (en) Electrochemical element
KR100871345B1 (en) Secondary Battery of Improved Safety and Capacity
KR100720994B1 (en) Method for manufacturing of ultra-thin electric double layer capacitor
JP4637325B2 (en) Electric double layer capacitor
JPH0845793A (en) Electric double layered capacitor
JP2001284172A (en) Electric double-layer capacitor
JP4627874B2 (en) Electric double layer capacitor
JP4514275B2 (en) Electric double layer capacitor
JP2002043180A (en) Electrical double layer capacitor
JPH1140467A (en) Electric double layer capacitor
JP2001244156A (en) Electrochemical capacitor
JP3784205B2 (en) Electric double layer capacitor
JP2002252145A (en) Electrochemical device
JP2001284177A (en) Electric double-layer capacitor
KR100644528B1 (en) Method for manufacturing stack type electric double layer capacitor
JP4518625B2 (en) Electric double layer capacitor
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
WO2005117044A1 (en) Electrolytic capacitor
JPH11274014A (en) Electrical double layer capacitor
JP3766562B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees