JP3766562B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP3766562B2
JP3766562B2 JP12134599A JP12134599A JP3766562B2 JP 3766562 B2 JP3766562 B2 JP 3766562B2 JP 12134599 A JP12134599 A JP 12134599A JP 12134599 A JP12134599 A JP 12134599A JP 3766562 B2 JP3766562 B2 JP 3766562B2
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
laminate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12134599A
Other languages
Japanese (ja)
Other versions
JP2000311836A (en
Inventor
雄一 堀
直朋 外城
真也 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12134599A priority Critical patent/JP3766562B2/en
Publication of JP2000311836A publication Critical patent/JP2000311836A/en
Application granted granted Critical
Publication of JP3766562B2 publication Critical patent/JP3766562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To obtain an electric double-layer capacitor, whose electrostatic capacity is large and inner resistance is small. SOLUTION: An electric double-layer capacitor 1 is formed by applying pressure to a laminate 4, by providing a pressure whose point of application is the outside region of the lamination body 4 to a pair of pressure plates 6 which are provided to upper and lower surfaces of the laminate 4, which has a plurality of polarizable electrodes 2 where an electrolyte is immersed in a solid-state activated carbon structural body and a separator 3 arranged between the polarizable electrodes 2 and whose plan configuration is almost rectangular. A cut-out portion is formed in the outer circumference on a line connecting the central point of the laminate 4 and this point of application, when the lamination body 4 is subjected to plan view.

Description

【0001】
【発明の属する技術分野】
本発明は、バックアップ電源、車両用電源または補助電源等に用いられる大容量のコンデンサとして用いられる電気二重層コンデンサに関するもので、とりわけ大きな静電容量を有する電気二重層コンデンサの分極性電極の改良に関するものである。
【0002】
【従来技術】
電気二重層コンデンサは、電極と電解液の界面においてイオンの分極によりできる電気二重層を利用したコンデンサであり、コンデンサと電池の両方の機能を有し、従来のコンデンサに比較して大容量の静電容量を充電できるとともに、急速充放電が可能であることから、小型のメモリーバックアップ電源や自動車の駆動源をはじめとする大容量のモータ等の補助電源に適用される等、エレクトロニクス分野の発展と共に急速にその需要が伸びている。
【0003】
上述した電気二重層コンデンサの構成は、例えば、電解液を含浸した複数の矩形形状の分極性電極と該電極間に介在するセパレータとの積層体の外周部に電解液を保持するためのプラスチック等からなるガスケットを配置し、また、これらの上下面に前記積層体を加圧するための加圧板を兼ねる集電体を形成するとともに、集電体およびガスケットを貫通する貫通孔に加圧部材を挿入して加圧保持する積層型の電気二重層コンデンサが知られている。
【0004】
かかる電気二重層コンデンサにおいては、静電容量を高めるとともに高い放電電流密度が要求されるが、コンデンサの内部抵抗が高いと放電電流密度が高くなるにつれて放電初期に電圧の急激な低下、いわゆるIRドロップが見られることから、コンデンサの内部抵抗を低減することが求められており、上述したように分極性電極およびセパレータからなる積層体を該積層体の外部に配置される加圧部材によって加圧することにより界面の密着性を高め、内部抵抗を低減できることが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した電気二重層コンデンサにおいて加圧板にて加圧する場合には、加圧板の角部に配設される前記加圧部材にてかしめると加圧板がたわみ、加圧応力が部分的に不均一となり、特に、分極性電極の前記加圧部材に近接した部分では加圧応力が集中するために、部分的に電極内に含浸される電解液の割合が極端に減少し、場合によっては、電解液が枯渇する部分が生じてしまうことがあった。
【0006】
その結果、部分的に静電容量の発生が極端に低下してコンデンサ全体の静電容量が低下するとともに、電解液が枯渇した部分では経時変化により活性炭等が変質して脱離等により電解液中に溶出して電解液の性能を低下させるという課題があった。特に、前記コンデンサが大面積化する場合には、上記加圧応力の部分的な集中が顕著であった。
【0007】
また、加圧応力の不均一により分極性電極の中央部付近は加圧応力が低下し、内部抵抗が上昇するという問題もあった。
【0008】
本発明は、前記課題を解決せんとしてなされたもので、その目的は、高い静電容量を有するとともに、内部抵抗値を低減できる電気二重層コンデンサを提供することにある。
【0009】
【課題を解決するための手段】
本発明者等は前記課題に対して鋭意研究の結果、分極性電極の前記加圧応力が集中する部分を切り欠くことによって、加圧応力の集中を緩和し応力の均一化が図れること、また、これにより、分極性電極内に含浸される電解液の分布の均一化を図ることができ、分極性電極全体が静電容量発生に寄与できるためにコンデンサとしての静電容量を高めることができること、さらに、電極や電解液の変質等を起こさない高信頼性の電気二重層コンデンサとなることを知見した。
【0010】
すなわち、本発明の電気二重層コンデンサは、固形状活性炭質構造体中に電解質を含浸した複数の分極性電極と該分極性電極間に配設されるセパレータとを具備する平面形状が略矩形形状の積層体の上下面に設けられた一対の集電体を兼ねる加圧板に対し、前記積層体の外側領域を作用点とする圧力を付与して前記積層体に圧力を印加してなるものであって、前記積層体を平面視したとき、該積層体の中心点と前記作用点とを結ぶ線上の外周に切り欠き部が形成されていることを特徴とするものである。
【0011】
なお、本発明の電気二重層コンデンサは、前記分極性電極の各辺が100mm以上の略矩形形状であるものについて特に有効である。
【0012】
また、前記切り欠き部は前記積層体の略矩形形状の角部に位置し、曲率半径が10mm以上の円弧状またはテーパー状であること、または前記切り欠き部は前記積層体の略矩形形状の辺部に位置し、曲率半径が10mm以上の円弧状であることが望ましいものである。
【0013】
【発明の実施の形態】
本発明の電気二重層コンデンサの一例を概略断面図である図1および平面図である図2に基づいて説明する。図1によれば、電気二重層コンデンサ1は、電解液を含浸した2枚の略矩形形状からなる分極性電極(以下、電極と略す。)2、2間に絶縁性の多孔質セパレータ(以下、セパレータと略す。)3が配設され、その電極2、2とセパレータ3との積層体4の外周部に電解液を保持するためのガスケット5が配設されている。
【0014】
また、積層体4およびガスケット5の上下面に加圧板6が形成され、加圧板6は集電体としての機能も兼ね備えている。さらに、加圧板6の4箇所の角部およびガスケット5を貫通する貫通孔7が形成され、貫通孔7内に加圧部材8が挿入され積層体4を加圧するように形成されている。
【0015】
電極2を構成する活性炭質構造体は、高い比表面積を有する活性炭粒子と、該活性炭粒子を結合するための結合剤として配合され、炭化処理を施された炭素成分とからなるものである。
【0016】
また、コンデンサの高静電容量を維持しつつ、構造体として必要な強度を得るためには、電極2の比表面積が1000〜1800m2 /gであることが望ましい。
【0017】
なお、結合剤として添加される炭素成分は、活性炭粒子間に存在するが、各活性炭層中に占める割合が、5〜50重量%であることが望ましく、これにより活性炭粒子間の焼結性および結合性を高めることができる。
【0018】
また、電極2、2は、板状であることが望ましく、また、電極2、2は、コンデンサ製造時の取り扱いや使用時の振動、衝撃等に耐えうる機械的な信頼性の点でJISR1601に準じた室温における3点曲げ強度が300gf/mm2 以上、特に600gf/mm2 以上であることが望ましい。
【0019】
さらに、電極2、2の厚みは、コンデンサの集電体間の距離が狭くなるほど静電容量が増加することから、1.5mm以下、特に1.0mm以下、さらに0.5mm以下であることが望ましい。
【0020】
電極2中に含浸される電解液としては、硫酸や硝酸等の水溶液や、プロピレンカーボネート、γ−ブチロラクトン、N,N−ジメチルホルムアミド、エチレンカーボネート、スルホラン、3−メチルスルホラン等の有機溶媒と4級アンモニウム塩、4級スルホニウム塩、4級ホスホニウム塩等の電解質を組み合わせた有機溶液が使用可能である。
【0021】
また、セパレータ3は、パルプやポリエチレン、ポリプロピレン等の有機フィルムまたはガラス繊維不織布等およびセラミックス等により形成され、電極2間を絶縁するために形成されるものであるが、電極2内に含有される前記電解液中のイオンを透過させることができる多孔質体により形成される。
【0022】
一方、加圧板6は、集電体としての機能も兼ね備えており、導電性を有する導電性ブチルゴム、アルミ箔、アルミのプラズマ溶射またはステンレス鋼等の金属等により形成され、電極2との間で電荷をやり取りすることができるが、図1では加圧板6が加圧板として電極2,2およびセパレータ3の積層体4を加圧する作用をなすが、加圧応力の均質化のためには剛性の高い部材からなることが望ましい。
【0023】
なお、図1においては加圧板6が集電体を兼ねるものであったが、本発明はこれに限られるものではなく、例えば、加圧板6の上下面に別体として形成してもよい。
【0024】
また、加圧板6の角部には加圧板6と後述するガスケット5を貫通する貫通孔7が形成され、貫通孔7内には加圧部材8が挿入されており加圧部材8によって積層体4および加圧板6を加圧保持してかしめることができる。
【0025】
加圧部材8としては、ネジ締めや貫通孔内に樹脂を注入後、該樹脂を硬化させて収縮させる等の方法がある。
【0026】
本発明によれば、加圧板6および加圧部材8によって積層体4に圧力を生ぜしめて積層体4および集電体を兼ねる加圧部材8との密着性を高めることによりコンデンサの内部抵抗を低下させることができる。さらに、前記加圧圧力は1〜100kgf/cm2 であることが望ましい。すなわち、上記加圧圧力が1kgf/cm2 より低いと、積層体4および集電体を兼ねる加圧部材8との密着性が低くコンデンサ1の内部抵抗値が増大するためであり、逆に、上記加圧圧力が100kgf/cm2 を超えると、部分的に電解液の割合が減少して静電容量が低下するとともに、場合によっては電極2、2やセパレータ3が変形するためである。
【0027】
また、本発明によれば、略矩形形状の積層体4の各辺を外装することによって形成される概想矩形形状の中心点と前記作用点とを結ぶ線上において、前記積層体4端部と前記中心点とを結ぶ線分の長さが前記概想矩形形状における端部と前記中心点とを結ぶ線分の長さよりも短くすることによって、加圧による応力の集中が低減されるものである。
【0028】
すなわち、電極2、2とセパレータ3との積層体4の形状が、平面視したとき加圧によって応力が集中する部分に切り欠き部を有することが大きな特徴であり、図2によれば積層体4の角部が曲率半径Rが10mmの円弧状となるように切り欠き部が形成されている。
【0029】
これにより、上述した圧力でかしめても加圧応力が極端に集中することなく応力の均一化を図ることができ、分極性電極内に含浸される電解液の分布が均一化し分極性電極全体が静電容量発生に寄与できることから、コンデンサとしての静電容量を高めることができ、かつ電極や電解液の変質等を起こさない高信頼性の電気二重層コンデンサを作製することができる。
【0030】
なお、コンデンサの実装性を高め、分極性電極の面積を増しコンデンサの静電容量を高める上では、角部が曲率半径Rが10〜20mmとなることが望ましい。
【0031】
また、本発明によれば、電極2、2とセパレータ3との積層体4の形状が、各辺が100mm以上、特に150mm以上の大面積な概略矩形形状からる場合に特に有効である。
【0032】
さらに、ガスケット5は、電極2,2に含浸される電解液の外部への漏れを防止するとともに、電極2,2、セパレータ3、加圧板6を固定、保護するためのものであり、非導電性の材料、例えば、ポリプロピレン、アクリル等のプラスチックや、ガラス、セラミックス等により形成される。
【0033】
なお、本発明では、ガスケット6は電極2,2とセパレータ3との積層体4を加圧板によって加圧できる厚みであることが望ましい。
【0034】
また、図2の電気二重層コンデンサは、角部の形状は曲率半径Rが10mm以上の円弧状となっているものであったが、本発明はこれに限られるものではなく、例えば図3に示すようなのテーパー状、特に、切り欠き長さ14〜28mmのテーパー状であってもよい。
【0035】
さらに、図4に示すように加圧板6およびガスケット4を貫通する貫通孔10を加圧板6およびガスケット4の側端部、すなわち辺部に形成し、貫通孔10内に加圧部材11を挿入して加圧することもできる。この場合、加圧による応力集中は積層体12の加圧部材11に隣接する部分に発生するために積層体12内には応力が集中する部分に図4に示すような円弧状の切り欠き部を形成することが望ましい。
【0036】
【実施例】
BET値が2000m2 /gの活性炭粉末試料100重量部に対して、ポリビニルブチラール(PVB)を50重量部混合して高速混合撹拌機にて撹拌し、得られた粉体を40メッシュでメッシュパスを行った後、ロール成形によってシート状成形体を作製した。
【0037】
そして、前記シートから所定の形状にカットして固形状活性電極を形成するための成形体を作製した後、真空中、900℃で熱処理を行い、厚み0.5mmの表1に示す形状の概略矩形形状の固形状活性炭質構造体を作製した。
【0038】
得られた固形状活性炭質構造体2枚に対して、1mol/lのテトラエチルアンモニウムテトラフルオロボレート(Et4 NBF4 )の炭酸プロピレン(PC)溶液を電解液として含浸させた後、ガラス性不織布からなる多孔質セパレータを介して積層し、所定の位置に貫通孔を形成したプラスチック製のガスケット内に収納して、さらに、この上下面に位置に貫通孔を形成したアルミニウム製加圧板を貫通孔が同じ位置となるように積層し、該貫通孔内にボルトとナットでネジ止めし、前記積層体を固定一体化するとともに、表1に示す加圧圧力にてかしめ、図1の電気二重層コンデンサを作製した。
【0039】
そして、得られた電気二重層コンデンサについて、3.0Vの電圧で30分間充電した後、3mA/cmの電流で定電流放電法にてコンデンサの静電容量(F)を求めた。また、1kHzにおける実抵抗を内部抵抗として測定した。結果は表1に示した。なお、試料No.1、2は参考試料である。
【0040】
【表1】

Figure 0003766562
【0041】
表より明らかなように、切り欠き部を形成しない試料No.3では、角部に電解液の少ない部分が発生し、静電容量が低下した。また、加圧圧力を付与しない試料No.8では、内部抵抗が高いものであった。
【0042】
これに対し、本発明の範囲内の試料である試料No.1、2、4〜7、9〜12では、いずれも内部抵抗40mΩ以下の優れた特性を有するものであった。
【0043】
【発明の効果】
以上詳述したように、本発明の電気二重層コンデンサによれば、該コンデンサの内部抵抗値を低減するために付与する加圧の加圧応力が集中する部分に切り欠き部を形成することによって、加圧応力の集中を緩和し応力の均一化が図れ、分極性電極全体が静電容量発生に寄与できるためにコンデンサとしての静電容量を高めることができ、かつ電極や電解液の変質等を起こさない高信頼性の電気二重層コンデンサを得ることができる。
【図面の簡単な説明】
【図1】本発明の電気二重層コンデンサの概略断面図である。
【図2】本発明の電気二重層コンデンサの概略平面図である。
【図3】本発明の電気二重層コンデンサの他の例を示す平面図である。
【図4】本発明の電気二重層コンデンサのさらに他の例を示す平面図である。
【符号の説明】
1 電気二重層コンデンサ
2 分極性電極
3 多孔質セパレータ
4 積層体
5 ガスケット
6 加圧板
7 貫通孔
8 加圧部材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor used as a large-capacitance capacitor used for a backup power supply, a vehicle power supply, an auxiliary power supply or the like, and particularly relates to an improvement of a polarizable electrode of an electric double layer capacitor having a large capacitance. Is.
[0002]
[Prior art]
An electric double layer capacitor is a capacitor that uses an electric double layer formed by ion polarization at the interface between an electrode and an electrolyte, and has both the function of a capacitor and a battery. Along with the development of the electronics field, it can be used for auxiliary power supplies such as small memory backup power supplies and large-capacity motors such as automobile drive sources because it can charge the capacity and rapidly charge and discharge. The demand is growing rapidly.
[0003]
The configuration of the electric double layer capacitor described above is, for example, plastic for holding the electrolyte solution on the outer peripheral portion of a laminate of a plurality of rectangular polarizable electrodes impregnated with the electrolyte solution and a separator interposed between the electrodes. A current collector that also serves as a pressure plate for pressurizing the laminated body is formed on the upper and lower surfaces of the gasket, and a pressure member is inserted into a through hole that penetrates the current collector and the gasket. A multilayer electric double layer capacitor that is held under pressure is known.
[0004]
In such an electric double layer capacitor, the capacitance is increased and a high discharge current density is required. However, when the internal resistance of the capacitor is high, the voltage rapidly decreases at the beginning of discharge as the discharge current density increases, so-called IR drop. Therefore, it is required to reduce the internal resistance of the capacitor, and as described above, a laminate composed of a polarizable electrode and a separator is pressed by a pressure member disposed outside the laminate. Thus, it is known that the adhesion at the interface can be improved and the internal resistance can be reduced.
[0005]
[Problems to be solved by the invention]
However, in the electric double layer capacitor described above, when pressure is applied with a pressure plate, the pressure plate is deflected by caulking with the pressure member disposed at the corner of the pressure plate, and the pressure stress is partially applied. In particular, since the pressure stress is concentrated in the portion of the polarizable electrode close to the pressure member, the ratio of the electrolyte solution partially impregnated in the electrode is extremely reduced. In some cases, the electrolyte solution is depleted.
[0006]
As a result, the generation of capacitance is extremely reduced partially and the overall capacitance of the capacitor is reduced. In addition, in the portion where the electrolyte is depleted, the activated carbon and the like change due to changes over time, and the electrolyte is desorbed due to desorption. There was a problem of elution into the electrolyte and reducing the performance of the electrolyte. In particular, when the capacitor has a large area, the partial concentration of the pressure stress is remarkable.
[0007]
There is also a problem that the pressurization stress decreases near the center of the polarizable electrode due to nonuniform pressurization stress and the internal resistance increases.
[0008]
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an electric double layer capacitor that has a high capacitance and can reduce an internal resistance value.
[0009]
[Means for Solving the Problems]
As a result of earnest research on the above problems, the present inventors can reduce the concentration of the pressurizing stress and make the stress uniform by cutting out the portion of the polarizable electrode where the pressurizing stress is concentrated. Thus, the distribution of the electrolyte solution impregnated in the polarizable electrode can be made uniform, and the entire polarizable electrode can contribute to the generation of the capacitance, so that the capacitance as a capacitor can be increased. Furthermore, it has been found that the electric double layer capacitor can be highly reliable without causing any deterioration of the electrode or the electrolyte.
[0010]
That is, the electric double layer capacitor of the present invention has a substantially rectangular planar shape including a plurality of polarizable electrodes impregnated with an electrolyte in a solid activated carbon structure and a separator disposed between the polarizable electrodes. A pressure plate that serves as a pair of current collectors provided on the upper and lower surfaces of the laminate is applied with pressure acting on the outer region of the laminate and applied to the laminate. And when the said laminated body is planarly viewed, the notch part is formed in the outer periphery on the line which connects the center point of this laminated body, and the said action point.
[0011]
The electric double layer capacitor of the present invention is particularly effective when the side of the polarizable electrode has a substantially rectangular shape of 100 mm or more.
[0012]
Further, the notch is located at a corner of the substantially rectangular shape of the laminate and has an arc shape or a taper shape with a radius of curvature of 10 mm or more, or the notch has a substantially rectangular shape of the laminate. It is desirable to be in the shape of an arc having a radius of curvature of 10 mm or more, located on the side.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An example of the electric double layer capacitor of the present invention will be described with reference to FIG. 1 which is a schematic sectional view and FIG. 2 which is a plan view. Referring to FIG. 1, an electric double layer capacitor 1 includes two polarizable electrodes (hereinafter abbreviated as electrodes) 2 and 2 impregnated with an electrolytic solution, and an insulating porous separator (hereinafter referred to as an electrode). 3 is disposed, and a gasket 5 is disposed on the outer peripheral portion of the laminate 4 of the electrodes 2, 2 and the separator 3 for holding the electrolytic solution.
[0014]
In addition, pressure plates 6 are formed on the upper and lower surfaces of the laminate 4 and the gasket 5, and the pressure plates 6 also have a function as a current collector. Furthermore, four corners of the pressure plate 6 and through holes 7 penetrating the gasket 5 are formed, and a pressure member 8 is inserted into the through hole 7 so as to pressurize the laminate 4.
[0015]
The activated carbon structure constituting the electrode 2 is composed of activated carbon particles having a high specific surface area and a carbon component which is blended as a binder for binding the activated carbon particles and carbonized.
[0016]
Moreover, in order to obtain the strength required for the structure while maintaining the high capacitance of the capacitor, the specific surface area of the electrode 2 is desirably 1000 to 1800 m 2 / g.
[0017]
In addition, although the carbon component added as a binder exists between activated carbon particles, it is desirable that the ratio occupied in each activated carbon layer is 5 to 50% by weight, whereby sinterability between activated carbon particles and Connectivity can be increased.
[0018]
Also, the electrodes 2 and 2 are preferably plate-like, and the electrodes 2 and 2 conform to JIS R1601 in terms of mechanical reliability that can withstand vibrations and shocks during the manufacture and use of capacitors. It is desirable that the three-point bending strength at room temperature conforming to the above is 300 gf / mm 2 or more, particularly 600 gf / mm 2 or more.
[0019]
Further, the thickness of the electrodes 2 and 2 is 1.5 mm or less, particularly 1.0 mm or less, and further 0.5 mm or less because the capacitance increases as the distance between the current collectors of the capacitor becomes narrower. desirable.
[0020]
Examples of the electrolytic solution impregnated in the electrode 2 include aqueous solutions such as sulfuric acid and nitric acid, organic solvents such as propylene carbonate, γ-butyrolactone, N, N-dimethylformamide, ethylene carbonate, sulfolane, and 3-methylsulfolane, and quaternary. Organic solutions in which electrolytes such as ammonium salts, quaternary sulfonium salts, and quaternary phosphonium salts are combined can be used.
[0021]
The separator 3 is formed of an organic film such as pulp, polyethylene, or polypropylene, a glass fiber nonwoven fabric, ceramics, or the like, and is formed to insulate between the electrodes 2, but is contained in the electrode 2. It is formed of a porous body that can transmit ions in the electrolytic solution.
[0022]
On the other hand, the pressure plate 6 also has a function as a current collector, and is formed of a conductive conductive butyl rubber, aluminum foil, aluminum plasma sprayed metal, stainless steel, or the like. In FIG. 1, the pressure plate 6 acts as a pressure plate to press the stacked body 4 of the electrodes 2 and 2 and the separator 3 in FIG. It is desirable to consist of high members.
[0023]
In FIG. 1, the pressure plate 6 also serves as a current collector , but the present invention is not limited to this. For example, the pressure plate 6 may be formed separately on the upper and lower surfaces of the pressure plate 6.
[0024]
Further, a through hole 7 is formed in the corner of the pressure plate 6 so as to pass through the pressure plate 6 and a gasket 5 described later, and a pressure member 8 is inserted into the through hole 7. 4 and the pressure plate 6 can be pressed and held.
[0025]
As the pressure member 8, there are methods such as screw tightening and injecting a resin into the through hole, and then curing the resin to contract it.
[0026]
According to the present invention, pressure is applied to the laminate 4 by the pressurizing plate 6 and the pressurizing member 8 to increase the adhesion with the pressurizing member 8 that also serves as the laminate 4 and the current collector, thereby reducing the internal resistance of the capacitor. Can be made. Furthermore, the pressurizing pressure is desirably 1 to 100 kgf / cm 2 . That is, if the pressure is lower than 1 kgf / cm 2 , the adhesiveness with the pressure member 8 also serving as the laminate 4 and the current collector is low and the internal resistance value of the capacitor 1 is increased. This is because when the pressurization pressure exceeds 100 kgf / cm 2 , the ratio of the electrolytic solution is partially reduced to lower the capacitance, and in some cases, the electrodes 2, 2 and the separator 3 are deformed.
[0027]
Further, according to the present invention, on the line connecting the center point of the conceptual rectangular shape formed by covering each side of the substantially rectangular laminate 4 and the action point, the end of the laminate 4 and By making the length of the line segment connecting the center point shorter than the length of the line segment connecting the end of the conceptual rectangular shape and the center point, the concentration of stress due to pressurization is reduced. is there.
[0028]
That is, the shape of the laminate 4 of the electrodes 2 and 2 and the separator 3 has a major feature in that a cutout portion is provided in a portion where stress is concentrated by pressurization when seen in a plan view. The notches are formed so that the corners of 4 are arcuate with a radius of curvature R of 10 mm.
[0029]
As a result, even when caulking with the pressure described above, the stress can be made uniform without excessively concentrating the applied stress, the distribution of the electrolyte solution impregnated in the polarizable electrode is made uniform, and the entire polarizable electrode is Since it can contribute to the generation of capacitance, it is possible to increase the capacitance as a capacitor and to produce a highly reliable electric double layer capacitor that does not cause deterioration of electrodes and electrolyte.
[0030]
In order to improve the mountability of the capacitor, increase the area of the polarizable electrode, and increase the capacitance of the capacitor, it is desirable that the corner portion has a curvature radius R of 10 to 20 mm.
[0031]
In addition, according to the present invention, it is particularly effective when the shape of the laminate 4 of the electrodes 2 and 2 and the separator 3 is a large rectangular area with each side being 100 mm or more, particularly 150 mm or more.
[0032]
Further, the gasket 5 is used to prevent leakage of the electrolyte impregnated in the electrodes 2 and 2 to the outside, and to fix and protect the electrodes 2 and 2, the separator 3, and the pressure plate 6. For example, plastics such as polypropylene and acrylic, glass, ceramics and the like.
[0033]
In the present invention, it is desirable that the gasket 6 has a thickness that allows the laminate 4 of the electrodes 2 and 2 and the separator 3 to be pressed by a pressure plate.
[0034]
Further, in the electric double layer capacitor of FIG. 2, the corner portion has an arc shape with a radius of curvature R of 10 mm or more, but the present invention is not limited to this. For example, FIG. A taper shape as shown, and particularly a taper shape with a notch length of 14 to 28 mm may be used.
[0035]
Further, as shown in FIG. 4, a through hole 10 penetrating the pressure plate 6 and the gasket 4 is formed at the side end portion, that is, a side portion of the pressure plate 6 and the gasket 4, and the pressure member 11 is inserted into the through hole 10. And can be pressurized. In this case, since stress concentration due to pressurization occurs in a portion of the laminate 12 adjacent to the pressure member 11, an arc-shaped notch as shown in FIG. It is desirable to form.
[0036]
【Example】
50 parts by weight of polyvinyl butyral (PVB) is mixed with 100 parts by weight of activated carbon powder sample having a BET value of 2000 m 2 / g and stirred with a high-speed mixing stirrer. Then, a sheet-like molded body was produced by roll molding.
[0037]
And after producing the shaping | molding body which cuts into the predetermined shape from the said sheet | seat and forms a solid active electrode, it heat-processes in 900 degreeC in vacuum, and the outline of the shape shown in Table 1 of thickness 0.5mm A rectangular solid activated carbon structure was prepared.
[0038]
After impregnating the obtained two solid activated carbon structures with 1 mol / l of a propylene carbonate (PC) solution of tetraethylammonium tetrafluoroborate (Et 4 NBF 4 ) as an electrolytic solution, Is laminated through a porous separator, and is housed in a plastic gasket having through holes formed at predetermined positions. The electric double layer capacitor of FIG. 1 is laminated so as to be in the same position, screwed into the through-holes with bolts and nuts, and the laminated body is fixed and integrated, and caulked with the pressurizing pressure shown in Table 1. Was made.
[0039]
The obtained electric double layer capacitor was charged with a voltage of 3.0 V for 30 minutes, and then the capacitance (F) of the capacitor was determined by a constant current discharge method at a current of 3 mA / cm 2 . The actual resistance at 1 kHz was measured as the internal resistance. The results are shown in Table 1. Sample No. Reference numerals 1 and 2 are reference samples.
[0040]
[Table 1]
Figure 0003766562
[0041]
As is apparent from the table, the sample No. in which the notch is not formed is shown. In No. 3, a portion with a small amount of electrolyte was generated at the corner, and the capacitance was reduced. In addition, the sample No. which does not apply the pressurizing pressure. In No. 8, the internal resistance was high.
[0042]
In contrast, sample No. which is a sample within the scope of the present invention. 1, 2, 4 to 7, and 9 to 12 all had excellent characteristics with an internal resistance of 40 mΩ or less.
[0043]
【The invention's effect】
As described above in detail, according to the electric double layer capacitor of the present invention, the notch is formed in the portion where the pressurizing stress applied to reduce the internal resistance value of the capacitor is concentrated. The concentration of pressure stress can be relaxed, the stress can be made uniform, and the entire polarizable electrode can contribute to the generation of capacitance. It is possible to obtain a highly reliable electric double layer capacitor that does not cause the problem.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an electric double layer capacitor of the present invention.
FIG. 2 is a schematic plan view of the electric double layer capacitor of the present invention.
FIG. 3 is a plan view showing another example of the electric double layer capacitor of the present invention.
FIG. 4 is a plan view showing still another example of the electric double layer capacitor of the present invention.
[Explanation of symbols]
1 Electric Double Layer Capacitor 2 Polarized Electrode 3 Porous Separator 4 Laminate 5 Gasket 6 Pressure Plate 7 Through Hole 8 Pressure Member

Claims (3)

固形状活性炭質構造体中に電解質を含浸した複数の分極性電極と該分極性電極間に配設されるセパレータとを具備する平面形状が略矩形形状の積層体の上下面に設けられた一対の集電体を兼ねる加圧板に対し、前記積層体の外側領域を作用点とする圧力を付与して前記積層体に圧力を印加してなる電気二重層コンデンサであって、前記積層体を平面視したとき、該積層体の中心点と前記作用点とを結ぶ線上の外周に切り欠き部が形成されており、かつ前記分極性電極が、各辺が100mm以上の略矩形形状であることを特徴とする電気二重層コンデンサ。A pair provided on the upper and lower surfaces of a laminate having a substantially rectangular planar shape comprising a plurality of polarizable electrodes impregnated with an electrolyte in a solid activated carbon structure and a separator disposed between the polarizable electrodes. An electric double layer capacitor in which a pressure plate acting also as a current collector is applied with pressure applied to an outer region of the laminated body to apply pressure to the laminated body, and the laminated body is planar When viewed, notches are formed in the outer periphery on the line connecting the center point of the laminate and the action point, and the polarizable electrode has a substantially rectangular shape with each side being 100 mm or more. Features an electric double layer capacitor. 前記切り欠き部は前記積層体の略矩形形状の角部に位置し、曲率半径が10mm以上の円弧状またはテーパー状であることを特徴とする請求項1に記載の電気二重層コンデンサ。2. The electric double layer capacitor according to claim 1, wherein the cutout portion is positioned at a corner portion of the substantially rectangular shape of the multilayer body and has an arc shape or a taper shape with a radius of curvature of 10 mm or more. 前記切り欠き部は前記積層体の略矩形形状の辺部に位置し、曲率半径が10mm以上の円弧状であることを特徴とする請求項1または2記載の電気二重層コンデンサ。3. The electric double layer capacitor according to claim 1, wherein the cutout portion is located on a substantially rectangular side portion of the laminate and has an arc shape with a curvature radius of 10 mm or more.
JP12134599A 1999-04-28 1999-04-28 Electric double layer capacitor Expired - Fee Related JP3766562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12134599A JP3766562B2 (en) 1999-04-28 1999-04-28 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12134599A JP3766562B2 (en) 1999-04-28 1999-04-28 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2000311836A JP2000311836A (en) 2000-11-07
JP3766562B2 true JP3766562B2 (en) 2006-04-12

Family

ID=14808984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12134599A Expired - Fee Related JP3766562B2 (en) 1999-04-28 1999-04-28 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3766562B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040031958A (en) * 2002-10-08 2004-04-14 (주)카마텍 Electric Double Layer Capacitor Having Synthetic Resin Coating Body
JP6715163B2 (en) * 2016-10-27 2020-07-01 株式会社豊田自動織機 Power storage device

Also Published As

Publication number Publication date
JP2000311836A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
KR101148562B1 (en) Lithium metal foil for battery or capacitor
JP2840780B2 (en) Electric double layer capacitor
US8427811B2 (en) Electrode for electric double layer capacitor and method for producing the same
US7623339B2 (en) Electrochemical device
JP2001250742A (en) Electric double layer capacitor and its manufacturing method
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
US20180248168A1 (en) Electrochemical device
US6507479B2 (en) Electric double-layer capacitor having a laminated overcoat
JP2004349306A (en) Electric double layer capacitor and electric double layer capacitor laminate
US20170365420A1 (en) Electric double-layer capacitor
JP3766562B2 (en) Electric double layer capacitor
JP3721642B2 (en) Manufacturing method of large-capacity electric double layer capacitor
JPH065467A (en) Electric double layer capacitor
JP2000286165A (en) Electric double-layer capacitor and manufacture thereof
JPS62200715A (en) Electric double-layer capacitor
JP4587522B2 (en) Electric double layer capacitor
JP3270175B2 (en) Electric double layer capacitor
JP2002043180A (en) Electrical double layer capacitor
JP4637325B2 (en) Electric double layer capacitor
JP4627874B2 (en) Electric double layer capacitor
JP3784205B2 (en) Electric double layer capacitor
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JP4513465B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2001284172A (en) Electric double-layer capacitor
JP3872222B2 (en) Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees