JP2001185452A - Electric double layer capacitor and its method of manufacture - Google Patents
Electric double layer capacitor and its method of manufactureInfo
- Publication number
- JP2001185452A JP2001185452A JP37031099A JP37031099A JP2001185452A JP 2001185452 A JP2001185452 A JP 2001185452A JP 37031099 A JP37031099 A JP 37031099A JP 37031099 A JP37031099 A JP 37031099A JP 2001185452 A JP2001185452 A JP 2001185452A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- positive electrode
- negative electrode
- electrode
- activated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 38
- 238000000034 method Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 92
- 238000005245 sintering Methods 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 239000004020 conductor Substances 0.000 claims description 16
- 239000008151 electrolyte solution Substances 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims 2
- 239000003792 electrolyte Substances 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 37
- 125000000524 functional group Chemical group 0.000 description 8
- 239000003566 sealing material Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000032798 delamination Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 101100310633 Xenopus laevis sojo gene Proteins 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000004714 phosphonium salts Chemical group 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium group Chemical group [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/44—Raw materials therefor, e.g. resins or coal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、内部抵抗が小さ
く、静電容量が大きい電気二重層コンデンサおよびその
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having a small internal resistance and a large capacitance and a method for manufacturing the same.
【0002】[0002]
【従来技術】最近、大電流の充放電が可能な電気二重層
コンデンサが注目されている。電気二重層コンデンサ
は、電極と電解液との界面においてイオンの分極により
できる電気二重層を利用したコンデンサであり、従来の
コンデンサに比較して大容量の静電容量を充電できると
ともに、急速充放電が可能であり、その応用が期待され
ている。2. Description of the Related Art Recently, an electric double layer capacitor capable of charging and discharging a large current has been receiving attention. An electric double layer capacitor is a capacitor that uses an electric double layer formed by the polarization of ions at the interface between the electrode and the electrolyte, and can charge a large capacitance compared to conventional capacitors, and can rapidly charge and discharge. Is possible and its application is expected.
【0003】一般に、電気二重層コンデンサの構成は、
例えば、絶縁性のセパレータを介して活性炭を含み電解
液を含浸させた正極および負極をなす複数の分極性電極
を積層し、さらにその両表面に積層した正極および負極
の集電体を通して充放電することにより、前記分極性電
極内部に静電容量を発生できるものである。[0003] Generally, the structure of an electric double layer capacitor is as follows.
For example, a plurality of polarizable electrodes forming a positive electrode and a negative electrode impregnated with an electrolytic solution containing activated carbon via an insulating separator are stacked, and further charged and discharged through a current collector of the positive electrode and the negative electrode stacked on both surfaces thereof Thereby, a capacitance can be generated inside the polarizable electrode.
【0004】かかる電気二重層コンデンサにおいては、
高容量化と高い放電密度が要求されるが、コンデンサの
内部抵抗が高いと電流密度が高くなるにつれて放電初期
に電圧の急激な低下、いわゆるIRドロップが見られる
ことから、コンデンサの内部抵抗を低減することが求め
られている。内部抵抗は、分極性電極体積固有抵抗値、
細孔分布状態、電解液のイオン伝導性および分極性電極
と集電体間の接触抵抗等に起因するものであるが、特に
分極性電極と集電体との間の接触状態が悪いと接触抵抗
が大きくなることが知られている。In such an electric double layer capacitor,
High capacity and high discharge density are required, but if the internal resistance of the capacitor is high, the voltage drops sharply at the beginning of discharge as the current density increases, so-called IR drop is seen, so the internal resistance of the capacitor is reduced Is required. The internal resistance is the volume specific resistance of the polarizable electrode,
This is due to the pore distribution state, the ionic conductivity of the electrolytic solution, the contact resistance between the polarizable electrode and the current collector, etc., but especially when the contact state between the polarizable electrode and the current collector is poor. It is known that the resistance increases.
【0005】従来、分極性電極と集電体間の接触抵抗を
低減する方法としては、バネや加圧板を設けてかしめる
方法や、分極性電極と集電体間をPTFEやポリプロピ
レン等の有機樹脂からなる接着剤で接着させる方法、さ
らには前記集電体を溶射によって前記分極性電極表面に
被着形成する方法が知られている。Conventionally, as a method of reducing the contact resistance between the polarizable electrode and the current collector, a method of providing a spring or a pressure plate and caulking, or a method of forming an organic layer such as PTFE or polypropylene between the polarizable electrode and the current collector. A method of bonding with a resin adhesive, and a method of forming the current collector on the surface of the polarizable electrode by thermal spraying are known.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、前記バ
ネや加圧板を設けてかしめる方法では、バネや加圧板等
の部材が別途必要であり電気二重層コンデンサの小型軽
量化ができないものであった。また、分極性電極と集電
体とを有機樹脂からなる接着剤によって接着する方法で
は、分極性電極と集電体との間の密着性は高まるものの
接着剤部での抵抗が高いために接触抵抗を充分に低減で
きなかった。さらに、前記集電体を溶射によって前記分
極性電極表面に被着形成する方法では、分極性電極の表
面が変質する恐れがあり、接触抵抗の低減効果が充分で
はなく、また接着性の経時変化が大きいという問題があ
った。However, in the method of providing the spring and the pressure plate and caulking, the members such as the spring and the pressure plate are separately required, and the size and weight of the electric double layer capacitor cannot be reduced. . In the method of bonding the polarizable electrode and the current collector with an adhesive made of an organic resin, the adhesion between the polarizable electrode and the current collector is improved, but the contact at the adhesive portion is high because the resistance is high. The resistance could not be reduced sufficiently. Further, in the method in which the current collector is applied to the surface of the polarizable electrode by thermal spraying, the surface of the polarizable electrode may be deteriorated, and the effect of reducing the contact resistance is not sufficient. There was a problem that was large.
【0007】本発明は、前記課題を解決せんとしてなさ
れたもので、その目的は、内部抵抗が小さく、静電容量
が大きい電気二重層コンデンサおよびその製造方法を作
製することにある。SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to produce an electric double layer capacitor having a small internal resistance and a large capacitance, and a method of manufacturing the same.
【0008】[0008]
【課題を解決するための手段】本発明者等は前記課題に
対して鋭意研究の結果、分極性電極と集電体とを焼結に
よって一体的に形成することによって、分極性電極と集
電体との間の接触抵抗を低減でき、内部抵抗を低め、か
つ静電容量を高めることができることを見いだした。Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, by integrally forming the polarizable electrode and the current collector by sintering, the polarizable electrode and the current collector were formed. It has been found that the contact resistance with the body can be reduced, the internal resistance can be reduced, and the capacitance can be increased.
【0009】すなわち、本発明の電気二重層コンデンサ
は、正極および負極をなす一対の集電体と、それぞれの
該集電体表面に積層される活性炭を含有する正極と負極
をなす分極性電極と、該正極と負極をなす分極性電極間
に介在されるセパレータと、を備えたものにおいて、正
極と負極をなす前記分極性電極と前記集電体とがそれぞ
れ焼結によって一体的に形成されてなることを特徴とす
るものである。That is, the electric double layer capacitor of the present invention comprises: a pair of current collectors forming a positive electrode and a negative electrode; and a polarizable electrode forming an active carbon-containing positive electrode and a negative electrode laminated on the surfaces of the respective current collectors. And a separator interposed between the polarizable electrode forming the positive electrode and the negative electrode, wherein the polarizable electrode forming the positive electrode and the negative electrode and the current collector are integrally formed by sintering, respectively. It is characterized by becoming.
【0010】ここで、前記正極側の集電体がAl、T
i、Ta、Ag、Nb、Pt、Auの群から選ばれる少
なくとも1種の金属からなるとともに、前記負極側の集
電体がCu、Ag、Ni、Pt、Auの群から選ばれる
少なくとも1種の金属からなること、前記正極側の分極
性電極中の活性炭の酸素含有量が前記負極側の分極性電
極中の活性炭の酸素含有量よりも多いことが望ましい。Here, the current collector on the positive electrode side is Al, T
i, Ta, Ag, Nb, Pt, Au, and at least one metal selected from the group consisting of Cu, Ag, Ni, Pt, and Au, wherein the current collector on the negative electrode side is at least one metal selected from the group consisting of Cu, Ag, Ni, Pt, and Au. It is preferable that the oxygen content of the activated carbon in the polarizable electrode on the positive electrode side is larger than the oxygen content of the activated carbon in the polarizable electrode on the negative electrode side.
【0011】また、本発明の電気二重層コンデンサの製
造方法は、活性炭粉末を含有する正極用および負極用の
シート状の活性炭質成形体を作製する工程と、各該活性
炭質成形体の一方の表面にそれぞれ正極または負極の集
電体用の導体層を積層する工程と、前記導体層を積層し
た成形体それぞれを前記導体層の融点以下の温度にて熱
処理、焼結させて活性炭質構造体と集電体とを一体的に
形成する工程と、正極用および負極用の前記活性炭質構
造体と集電体との一体物を前記活性炭質構造体側が対向
するように配設するとともに、該活性炭質構造体表面間
にセパレータを介在させて積層する工程と、前記活性炭
質構造体および前記セパレータ内に電解液を充填して正
極および負極の分極性電極およびセパレータを形成する
工程と、を具備するものである。Further, the method for producing an electric double layer capacitor according to the present invention comprises the steps of preparing a sheet-like activated carbonaceous molded article for a positive electrode and a negative electrode containing activated carbon powder, and one of the activated carbonaceous molded articles. A step of laminating a conductor layer for a current collector of a positive electrode or a negative electrode on the surface, and heat treatment and sintering each of the molded bodies laminated with the conductor layer at a temperature equal to or lower than the melting point of the conductor layer. And forming the current collector integrally, and disposing the integrated body of the activated carbonaceous structure for the positive electrode and the negative electrode and the current collector such that the activated carbonaceous structure side faces each other; A step of laminating a separator between the activated carbonaceous structure surfaces, and a step of filling the activated carbonaceous structure and the separator with an electrolytic solution to form polarizable electrodes and separators of a positive electrode and a negative electrode. You It is intended.
【0012】ここで、前記正極側の活性炭質構造体と集
電体との前記熱処理温度が前記負極側の活性炭質構造体
と集電体との前記熱処理温度よりも低くすることが望ま
しく、さらに、前記正極側の集電体がAl、Ti、T
a、Ag、Nb、Pt、Auの群から選ばれる少なくと
も1種の金属からなるとともに、前記負極側の集電体が
Cu、Ag、Ni、Pt、Auの群から選ばれる少なく
とも1種の金属からなること、さらに、前記正極側の分
極性電極中の活性炭の酸素含有量が前記負極側の分極性
電極中の活性炭の酸素含有量よりも多いことが望まし
い。Here, it is preferable that the heat treatment temperature of the activated carbonaceous structure on the positive electrode side and the current collector be lower than the heat treatment temperature of the activated carbonaceous structure on the negative electrode side and the current collector. The current collector on the positive electrode side is made of Al, Ti, T
a, Ag, Nb, Pt, and at least one metal selected from the group consisting of Au, and the current collector on the negative electrode side is at least one metal selected from the group consisting of Cu, Ag, Ni, Pt, and Au. Further, it is preferable that the oxygen content of the activated carbon in the polarizable electrode on the positive electrode side is larger than the oxygen content of the activated carbon in the polarizable electrode on the negative electrode side.
【0013】[0013]
【発明の実施の形態】本発明の電気二重層コンデンサの
一実施例について、図1(a)の概略断面図および
(b)のその一部平面図を基に説明する。図1(a)に
よれば、電気二重層コンデンサ1は、電解液を含浸した
活性炭を含有する2枚の正極および負極用の分極性電極
(以下、電極と略す。)2a,2b間に絶縁性の多孔質
セパレータ(以下、セパレータと略す。)3が形成され
ている。また、正極および負極の電極2a,2bの表面
にはそれぞれ正極および負極の集電体4a,4bが形成
され、さらに、図1(a)によれば、集電体4a−電極
2a−セパレータ3−電極2b−集電体4bの積層体6
およびその上下面にそれぞれ積層された電極2aと電極
2bの外周表面には封止材5が形成され、積層体6およ
び電極2aと電極2bは封止材5によって外部から封止
されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the electric double layer capacitor of the present invention will be described with reference to a schematic sectional view of FIG. 1A and a partial plan view of FIG. According to FIG. 1A, an electric double layer capacitor 1 is insulated between two polarizable electrodes (hereinafter abbreviated as electrodes) 2a and 2b for a positive electrode and a negative electrode containing activated carbon impregnated with an electrolytic solution. Porous separator (hereinafter, abbreviated as separator) 3 is formed. In addition, positive electrode and negative electrode current collectors 4a and 4b are formed on the surfaces of the positive electrode and negative electrode 2a and 2b, respectively. Further, according to FIG. 1A, current collector 4a-electrode 2a-separator 3 -Electrode 2b-Laminated body 6 of current collector 4b
A sealing material 5 is formed on the outer peripheral surfaces of the electrodes 2a and 2b laminated on the upper and lower surfaces, respectively, and the laminate 6 and the electrodes 2a and 2b are sealed from the outside by the sealing material 5.
【0014】本発明によれば、電極2a,2bが集電体
4a,4bとそれぞれ焼結によって一体的に形成されて
いることが大きな特徴であり、これによって電極2aと
集電体4aとの間および電極2bと集電体4bとの間の
接触抵抗を低減して内部抵抗を低下させることができ
る。According to the present invention, it is a great feature that the electrodes 2a and 2b are formed integrally with the current collectors 4a and 4b by sintering, thereby forming the electrode 2a and the current collector 4a. The internal resistance can be reduced by reducing the contact resistance between the electrodes 2b and the current collector 4b.
【0015】電極2は、高い比表面積を有する活性炭粒
子と、該活性炭粒子間を結合するために配合された炭素
成分とからなるものであり、また構造体としての強度を
高める上では、前記活性炭質構造体中に有機バインダ成
分が焼成後も残存したものであってもよい。また、高静
電容量を維持しつつ、構造体としての取扱いに支障ない
強度を得るために、電極2の比表面積が1000〜30
00m2/g程度であることが望ましい。The electrode 2 is composed of activated carbon particles having a high specific surface area and a carbon component blended for binding between the activated carbon particles. In order to increase the strength of the structure, the activated carbon particles are used. The organic binder component may remain in the porous structure after firing. Further, in order to obtain a strength that does not hinder handling as a structure while maintaining a high capacitance, the specific surface area of the electrode 2 is set to 1000 to 30.
It is desirably about 00 m 2 / g.
【0016】さらに、電極2中の活性炭の酸素含有量は
主として活性炭表面にある−OH(フェノール基)、−
COOH(カルボキシル基)、−CHO(アルデヒド
基)等の官能基に起因するものであるが、これら活性炭
表面の官能基は、2.5V以上の電圧を印加すると、負
極側で電気二重層コンデンサ中に存在する水と酸化また
は還元反応を生じる結果、活性炭質構造体中の前記官能
基が還元されて炭酸ガス、酸素ガス等のガスやその他不
純物が発生し、該不純物が活性炭表面に付着し、イオン
吸着の妨げとなるとともに、活性炭質構造体中の粒子間
の結合力を弱めて内部抵抗が増加し活性炭質構造体の保
形性が低下するため、負極側の電極2bの活性炭表面の
官能基量は少ない、すなわち、負極側の電極2b中の活
性炭の酸素量は少ないことが望ましい。Further, the oxygen content of the activated carbon in the electrode 2 is mainly determined by -OH (phenol group),-
These are caused by functional groups such as COOH (carboxyl group) and -CHO (aldehyde group). However, when a voltage of 2.5 V or more is applied, the functional group on the surface of the activated carbon is not charged in the electric double layer capacitor at the negative electrode side. As a result of an oxidation or reduction reaction with water present in the active carbonaceous structure, the functional group in the activated carbonaceous structure is reduced to generate gas such as carbon dioxide gas and oxygen gas and other impurities, and the impurities adhere to the activated carbon surface, In addition to hindering ion adsorption, weakening the bonding force between the particles in the activated carbonaceous structure, increasing the internal resistance, and reducing the shape retention of the activated carbonaceous structure, the functionalities of the activated carbon surface of the negative electrode 2b are reduced. It is desirable that the amount of base is small, that is, the amount of oxygen of activated carbon in the negative electrode 2b is small.
【0017】なお、正極側では静電容量を高めるために
活性炭表面の官能基量が多い、すなわち活性炭の酸素量
は多いことが望ましいことから、正極側の電極2aの活
性炭の酸素含有量が負極側の電極2b中の活性炭の酸素
含有量よりも多いことが望ましい。Since the positive electrode side preferably has a large amount of functional groups on the surface of the activated carbon in order to increase the capacitance, that is, it is desirable that the amount of oxygen in the activated carbon is large, the oxygen content of the activated carbon of the electrode 2a on the positive electrode side is reduced. It is preferable that the oxygen content of the activated carbon in the side electrode 2b is larger than that of the activated carbon.
【0018】なお、バインダとして添加される炭素成分
は、活性炭粒子間に存在し、活性炭粒子間の焼結性およ
び結合性を高める働きをなすが、電極2の比表面積を高
めるためには該炭素成分量は少ないことが望ましく、各
活性炭質構造体中に占める割合が5〜50重量%である
ことが望ましい。The carbon component added as a binder is present between the activated carbon particles and serves to enhance the sinterability and bonding between the activated carbon particles. However, in order to increase the specific surface area of the electrode 2, the carbon component is added. It is desirable that the amount of the component is small, and it is desirable that the proportion in each activated carbonaceous structure is 5 to 50% by weight.
【0019】また、電極2は表面が円、矩形等の板状で
あることが望ましく、また活性炭質構造体の強度は3点
曲げ強度が30kPa以上、特に60kPa以上である
ことが望ましい。The electrode 2 preferably has a plate shape such as a circular or rectangular surface, and the strength of the activated carbonaceous structure preferably has a three-point bending strength of 30 kPa or more, particularly 60 kPa or more.
【0020】電極2中に含浸される電解液としては、硫
酸や硝酸等の水溶液や、プロピレンカーボネート、γ−
ブチロラクトン、N,N−ジメチルホルムアミド、エチ
レンカーボネート、スルホラン、3−メチルスルホラン
等の有機溶媒と4級アンモニウム塩、4級スルホニウム
塩、4級ホスホニウム塩等の電解質を組み合わせた有機
溶液が使用可能であるが、本発明によれば、特に耐電圧
を2.5V以上に高めることができる有機系の電解液、
特にプロピレンカーボネートを溶媒とするものにおいて
特に有効である。The electrolytic solution impregnated in the electrode 2 includes an aqueous solution of sulfuric acid or nitric acid, propylene carbonate, γ-
An organic solution obtained by combining an organic solvent such as butyrolactone, N, N-dimethylformamide, ethylene carbonate, sulfolane, and 3-methylsulfolane with an electrolyte such as a quaternary ammonium salt, a quaternary sulfonium salt, and a quaternary phosphonium salt can be used. However, according to the present invention, in particular, an organic electrolytic solution capable of increasing the withstand voltage to 2.5 V or more,
It is particularly effective for those using propylene carbonate as a solvent.
【0021】また、セパレータ3は、正極および負極用
の電極2a,2b間を絶縁するために形成されるもので
あるが、電極2内に含有される前記電解液中のイオンを
透過させることができる多孔質体により形成される。セ
パレータ3として、具体的には、電解紙、ポリエチレン
不織布、ポリプロピレン不織布、ポリエステル不織布、
クラフト紙、マニラ麻シート、ガラス繊維シート、多孔
質セラミック焼結体などが使用可能である。The separator 3 is formed to insulate between the electrodes 2a and 2b for the positive electrode and the negative electrode, and is capable of transmitting ions in the electrolyte contained in the electrode 2. Formed of a porous body. As the separator 3, specifically, electrolytic paper, polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric,
Kraft paper, Manila hemp sheet, glass fiber sheet, porous ceramic sintered body and the like can be used.
【0022】なお、セパレータ3は、図1(b)の積層
体6についての平面図に示すように正極および負極用の
電極2a,2b間の絶縁性を高めるために、電極2およ
び集電体4より大きく、かつ平面的に見てセパレータ3
の周縁部が電極2の周縁部より外側となるように形成さ
れることが望ましい。As shown in the plan view of the laminated body 6 in FIG. 1B, the separator 3 is provided with an electrode 2 and a current collector to enhance the insulation between the positive and negative electrodes 2a and 2b. Separator 3 which is larger than 4 and is planar
Is desirably formed so that the periphery of the electrode 2 is outside the periphery of the electrode 2.
【0023】また、積層体6を一単位として、これを複
数単位積層する場合、隣接する2枚のセパレータ外周部
の少なくとも端部間を連続的に形成し、望ましくは、隣
接するセパレータを1つの袋状体として代用することも
できる。When a plurality of units of the laminated body 6 are laminated as a unit, at least the end portions of the outer peripheral portions of two adjacent separators are continuously formed. It can be substituted as a bag.
【0024】さらに、集電体4は、電極2をなす活性炭
質構造体と同時焼成可能な導体材料からなることが重要
であり、また、正極側で電気二重層コンデンサ中に酸化
反応を生じて、正極側の集電体4aの一部がイオン化し
て電解液中に溶出してしまい集電体4aが劣化する恐れ
があることから、特に、正極側の集電体4aとしては、
電解液に対する電気化学的に安定な電位領域を有効に使
用できるもの、特に有機系電解液に対して電位窓の広い
ものであることが望ましく、具体的には、Al、Ti、
Ta、Ag、Nb、Pt、Auの群から選ばれる少なく
とも1種の金属であることが望ましい。さらに、前記正
極側の金属としては安価、軽量、信頼性の点でAlが最
適である。Further, it is important that the current collector 4 is made of a conductive material which can be co-fired with the activated carbonaceous structure forming the electrode 2. Further, an oxidation reaction occurs in the electric double layer capacitor on the positive electrode side. In particular, since a part of the current collector 4a on the positive electrode side may be ionized and eluted in the electrolytic solution to deteriorate the current collector 4a, particularly, the current collector 4a on the positive electrode side includes:
It is desirable that the electrode can effectively use an electrochemically stable potential region with respect to the electrolytic solution, and particularly that the electrode has a wide potential window with respect to the organic electrolytic solution. Specifically, Al, Ti,
It is preferable that the metal is at least one metal selected from the group consisting of Ta, Ag, Nb, Pt, and Au. Further, Al is most suitable as the metal on the positive electrode side in terms of low cost, light weight, and reliability.
【0025】また、負極側の集電体4bとしては、電極
2と同時焼成するとともに、前述したように電極2の酸
素含有量を低減するために、融点の高いCu、Ag、N
i、Pt、Auの群から選ばれる少なくとも1種の金属
からなることが望ましい。Further, as the current collector 4b on the negative electrode side, Cu, Ag, N 2 having a high melting point are used in order to co-fire with the electrode 2 and to reduce the oxygen content of the electrode 2 as described above.
Desirably, it is made of at least one metal selected from the group consisting of i, Pt, and Au.
【0026】ここで、図2によれば、集電体4は、矩形
状の集電体部Aと該集電体部Aの一端に接続される端子
部Bとからなる形状に形成されており、かつ平面的に見
て、前記集電体部Aは電極2よりも小さく、集電体部A
の周縁部が電極2の周縁部よりも内側となるように形成
されている。これによって、電気二重層コンデンサ中の
電極2の占める割合を高めて静電容量を向上させるとい
う効果がある。なお、端子部Bの他端は封止材5外部に
突出し、外部回路と接続される。Here, according to FIG. 2, the current collector 4 is formed in a shape comprising a rectangular current collector A and a terminal B connected to one end of the current collector A. And the current collector portion A is smaller than the electrode 2 in plan view.
Is formed so that the periphery of the electrode 2 is inside the periphery of the electrode 2. This has the effect of increasing the ratio of the electrode 2 in the electric double layer capacitor and improving the capacitance. Note that the other end of the terminal portion B projects outside the sealing material 5 and is connected to an external circuit.
【0027】また、上述した集電体4a,4b、電極2
a,2b、セパレータ3の積層体6およびその上下面に
形成された電極2a,2bを封止する封止材5として
は、樹脂、アルミラミネート等のシートで積層体6およ
び電極2a,2bを気密に封止することができ、かつ薄
く、軽く、変形できる部材からなる。The above-mentioned current collectors 4a, 4b, electrode 2
As the sealing material 5 for sealing the laminate 6 of the separators a and 2b and the electrodes 2a and 2b formed on the upper and lower surfaces of the laminate 6, the laminate 6 and the electrodes 2a and 2b are made of a sheet such as resin or aluminum laminate. It is made of a member that can be hermetically sealed and is thin, light, and deformable.
【0028】なお、図1によれば、封止材5内には集電
体4を2枚と電極2を4枚とセパレータ3を1枚とから
なる積層体によって形成されているが、本発明はこれに
限定されるものではなく、積層体6を一単位として、集
電体4を3枚以上と電極2を5枚以上とセパレータ3を
2枚以上であってよい。As shown in FIG. 1, the sealing member 5 is formed by a laminate composed of two current collectors 4, two electrodes 2, and one separator 3. The present invention is not limited to this, and the number of the current collectors 4, the number of the electrodes 2, the number of the electrodes 2, and the number of the separators 3 may be two or more with the stacked body 6 as one unit.
【0029】次に、上記のような電気二重層コンデンサ
を作製する方法の一例について説明する。まず、分極性
電極を形成する固形状活性炭質構造体(以下、活性炭質
構造体と略す。)を作製するには、活性炭を作製するた
めの炭素原料を準備する。一次原料であるヤシ殻、木
材、樹脂等に対して水蒸気賦活、薬品賦活やガス賦活に
より作製される活性炭が高比表面積を有することから好
適であり、それ以外にもコークス、カーボンブラック、
炭素繊維、石炭等が使用できる。Next, an example of a method for manufacturing the electric double layer capacitor as described above will be described. First, in order to produce a solid activated carbonaceous structure (hereinafter, abbreviated as activated carbonaceous structure) forming a polarizable electrode, a carbon raw material for producing activated carbon is prepared. Activated carbon produced by steam activation, chemical activation or gas activation for coconut shells, wood, resins, etc., which are primary raw materials, is suitable because it has a high specific surface area.Other than that, coke, carbon black,
Carbon fiber, coal and the like can be used.
【0030】なお、正極をなす電極用の活性炭原料とし
て、例えば、コークス系等の表面官能基に起因する酸素
含有量の多い活性炭を用い、負極をなす活性炭原料とし
て、例えば、椰子殻系の活性炭、フェノール系等の正極
用活性炭より表面官能基に起因する含有酸素量の少ない
活性炭を用いてもよい。As an active carbon raw material for the electrode forming the positive electrode, for example, activated carbon having a high oxygen content due to a surface functional group such as coke is used. As an active carbon raw material forming the negative electrode, for example, a coconut shell activated carbon is used. Alternatively, activated carbon having less oxygen content due to surface functional groups than positive electrode activated carbon such as phenol may be used.
【0031】また、その形状は、球状、フレーク状、突
起状あるいは不定形があり、特に限定するものではな
く、また、粉末、粒状、顆粒状のいずれであってもよ
く、さらに、その粒径は5〜50μmであることが望ま
しい。上記の各活性炭原料に所定量の有機バインダを焼
成後の炭素質成分量が5〜50重量%となる量で添加、
混合する。有機バインダとしては、フェノール、PTF
E、コールタール、ポリビニルブチラール(PVB)、
ポリビニルホルマール(PVFM)等のポリビニルアセ
タール、酢酸ビニル等の公知の有機バインダが挙げら
れ、とりわけ成形性および得られる固形状活性炭質構造
体の強度の点から、ポリビニルブチラール(PVB)が
最も望ましい。The shape may be spherical, flake-like, protruding or irregular, and is not particularly limited, and may be any of powder, granule, and granule. Is preferably 5 to 50 μm. A predetermined amount of an organic binder is added to each of the above activated carbon raw materials in an amount such that the amount of the carbonaceous component after firing becomes 5 to 50% by weight,
Mix. Phenol, PTF as organic binder
E, coal tar, polyvinyl butyral (PVB),
Examples thereof include known organic binders such as polyvinyl acetal such as polyvinyl formal (PVFM) and vinyl acetate. Particularly, polyvinyl butyral (PVB) is most preferable from the viewpoint of moldability and strength of the obtained solid activated carbonaceous structure.
【0032】得られた粉末をプレス成形法、ドクターブ
レード法、押し出し成形法、カレンダーロール法、ロー
ル成形法、等の公知の成形手段により所定形状に成形す
る。成形方法としては、生産性の高いシート状の成形が
容易であるとともに、成形体の密度が高くできるロール
成形が好適に使用できる。The obtained powder is formed into a predetermined shape by a known molding means such as a press molding method, a doctor blade method, an extrusion molding method, a calender roll method, a roll molding method and the like. As a forming method, roll forming that can easily form a sheet having high productivity and increase the density of a formed body can be suitably used.
【0033】また、前記シート状の活性炭質構造体複数
枚を積層、接着してもよく、この場合には、60〜10
0℃、20〜50MPaにて熱圧着し一体化するか、前
記シート間に密着液や接着剤等を塗布し接着することに
より、後述の熱処理における層間剥離を防止することが
できる。Further, a plurality of the sheet-like activated carbonaceous structures may be laminated and adhered.
By decomposing by thermocompression bonding at 0 ° C. and 20 to 50 MPa, or by applying and bonding an adhesion liquid or an adhesive between the sheets, delamination in the heat treatment described below can be prevented.
【0034】そして、本発明によれば、前記シート状の
活性炭質構造体の表面に、上述した集電体形成用の材料
からなる、例えば、金属箔、金属板、導電性粉末と有機
バインダとを含有する導体ペーストを塗布する等によっ
て集電体をなす導体層を被着形成する。According to the present invention, on the surface of the sheet-like activated carbonaceous structure, for example, a metal foil, a metal plate, a conductive powder and an organic binder made of the above-mentioned material for forming a current collector are provided. A conductor layer serving as a current collector is formed by applying a conductor paste containing
【0035】この時、前記シート状の活性炭質構造体と
前記集電体とを60〜100℃、20〜50MPaにて
熱圧着し一体化するか、前記シート間に密着液や接着剤
等を塗布し接着することにより、これによって熱処理に
おける層間剥離を防止し前記シート状の活性炭質構造体
と前記集電体との焼結性を高めることできるが、内部抵
抗低減のために前記密着液や接着剤等は使用しないこと
が望ましい。At this time, the sheet-like activated carbonaceous structure and the current collector are integrated by thermocompression bonding at 60 to 100 ° C. and 20 to 50 MPa, or a contact liquid or an adhesive is interposed between the sheets. By applying and bonding, this can prevent delamination during heat treatment and enhance the sinterability between the sheet-like activated carbonaceous structure and the current collector. It is desirable not to use an adhesive or the like.
【0036】また、集電体をなす前記導体層の両主表面
に2枚の同極(例えば、正極と正極)用の電極をなす前
記シート状の活性炭質構造体を積層するとともに、前記
導体層の周縁部を前記シート状の活性炭質構造体の周縁
部よりも小さく、かつ2枚の前記シート状の活性炭質構
造体の外周部間を接着させることにより、成形体の保形
性を高め、また熱処理における層間剥離を防止し前記シ
ート状の活性炭質構造体と前記集電体との焼結性を高め
ることできるとの作用効果もある。Further, the sheet-like activated carbonaceous structure forming two electrodes for the same electrode (for example, a positive electrode and a positive electrode) is laminated on both main surfaces of the conductor layer forming the current collector, and The shape retention of the molded body is improved by making the periphery of the layer smaller than the periphery of the sheet-like activated carbonaceous structure and bonding the outer periphery of the two sheets of the activated carbonaceous structure to each other. In addition, there is an operational effect that delamination during heat treatment can be prevented and sinterability between the sheet-like activated carbonaceous structure and the current collector can be enhanced.
【0037】次に、所望により、前記シート状の活性炭
質構造体と前記導体層との積層体を酸化性雰囲気中、1
50〜300℃に加熱し、保持するエージング処理を施
した後、非酸化性雰囲気中、炭化処理して有機バインダ
成分を炭化させるとともに、集電体、活性炭間を焼結一
体化させる。Next, if desired, a laminate of the sheet-shaped activated carbonaceous structure and the conductor layer is placed in an oxidizing atmosphere for 1 hour.
After performing aging treatment by heating to 50 to 300 ° C. and holding, a carbonizing treatment is performed in a non-oxidizing atmosphere to carbonize the organic binder component, and the current collector and the activated carbon are sintered and integrated.
【0038】加熱温度としては、活性炭質構造体の強度
を維持し、電極中の活性炭の比表面積を高めるととも
に、集電体が溶融することを防止するために、500〜
1100℃であることが望ましい。The heating temperature is set at 500 to 500 to maintain the strength of the activated carbonaceous structure, increase the specific surface area of the activated carbon in the electrode, and prevent the current collector from melting.
Desirably, the temperature is 1100 ° C.
【0039】ここで、本発明によれば、正極をなす前記
シート状の活性炭質構造体と前記導体層との積層体の熱
処理温度を、負極をなす前記シート状の活性炭質構造体
と前記導体層との積層体の熱処理温度よりも低くするこ
とが望ましく、これによって正極をなす電極中の活性炭
の酸素含有量を、負極をなす電極中の活性炭の酸素含有
量よりも多くすることができ、静電容量を高めることが
できるとともに、負極をなす電極中の活性炭粒子表面の
官能基による炭酸ガスや酸素ガスまたはその他不純物を
防止し、負極側の電極の内部抵抗を低減できるととも
に、活性炭の保形性を高めることができる。Here, according to the present invention, the heat treatment temperature of the laminate of the sheet-shaped activated carbonaceous structure forming the positive electrode and the conductor layer is set to the sheet-shaped activated carbonaceous structure forming the negative electrode and the conductor. It is desirable to lower the heat treatment temperature of the laminate with the layer, whereby the oxygen content of the activated carbon in the electrode forming the positive electrode can be larger than the oxygen content of the activated carbon in the electrode forming the negative electrode, Capacitance can be increased, carbon dioxide gas, oxygen gas or other impurities due to functional groups on the surface of the activated carbon particles in the negative electrode can be prevented, and the internal resistance of the negative electrode can be reduced. Shape can be improved.
【0040】なお、具体的な加熱温度は、正極をなす前
記シート状の活性炭質構造体と前記導体層との積層体の
熱処理温度が500〜1000℃、特に600〜900
℃であることが望ましく、負極をなす前記シート状の活
性炭質構造体と前記導体層との積層体の熱処理温度が7
00〜1100℃、特に負極側の電極中の酸素含有量を
少なくするために850〜1000℃であることが望ま
しい。The specific heating temperature is 500 to 1000 ° C., preferably 600 to 900 ° C., for the heat treatment of the laminate of the sheet-shaped activated carbonaceous structure forming the positive electrode and the conductor layer.
C., and the heat treatment temperature of the laminate of the sheet-shaped activated carbonaceous structure forming the negative electrode and the conductor layer is 7 ° C.
The temperature is desirably from 00 to 1100 ° C, especially from 850 to 1000 ° C in order to reduce the oxygen content in the negative electrode.
【0041】また、導体層として金属を用いる場合、上
記熱処理温度の点で、負極側金属の融点が正極側金属の
融点より高く形成してもよい。When a metal is used for the conductor layer, the melting point of the negative electrode side metal may be higher than that of the positive electrode side metal in terms of the heat treatment temperature.
【0042】そして、正極用の電極と集電体との一体物
と負極用の電極と集電体との一体物とをそれぞれの電極
が対向するように配設し、かつ電極間に上述したセパレ
ータを接触、介在させるように積層し、該積層体を例え
ば袋状の封止材内に集電体の端子部を突出させた状態で
挿入して、封止材の開口部から上述した電解液を注入し
て、前記電極とセパレータとに含浸させた後、封止材開
口部を気密に封止することにより、電気二重層コンデン
サを作製することができる。Then, an integral body of the positive electrode and the current collector and an integral body of the negative electrode and the current collector are disposed so that the respective electrodes face each other, and the above-described arrangement is provided between the electrodes. The separator is laminated so as to contact and interpose, and the laminated body is inserted into a bag-like sealing material with the terminal portion of the current collector protruding, for example, and the above-described electrolytic solution is inserted through the opening of the sealing material. After injecting a liquid to impregnate the electrode and the separator, the opening of the sealing material is hermetically sealed, whereby an electric double layer capacitor can be manufactured.
【0043】なお、上記熱処理から組立に至る工程をグ
ローボックス等を用いて乾燥雰囲気中にて行えば、余分
な乾燥工程等が必要なく効率よく作製できるとともに、
電気二重層コンデンサ内の水分量を低減することができ
る。If the steps from the heat treatment to the assembling are performed in a dry atmosphere using a glow box or the like, an efficient drying can be achieved without the need for an extra drying step or the like.
The amount of water in the electric double layer capacitor can be reduced.
【0044】[0044]
【実施例】(実施例)ヤシ殻を炭化、賦活した比表面積
1000m2/gの活性炭粉末100重量部に対して、
それぞれポリビニルブチラール(PVB)を50重量部
混合して高速混合撹拌機にて撹拌し、得られた粉体を4
0メッシュでメッシュパスを行った後、ロール成形して
シート状の成形体を作製し、矩形形状にカットした。EXAMPLES (Example) 100 parts by weight of activated carbon powder having a specific surface area of 1000 m 2 / g obtained by carbonizing and activating a coconut shell.
Each 50 parts by weight of polyvinyl butyral (PVB) was mixed and stirred with a high-speed mixing stirrer.
After performing a mesh pass with 0 mesh, roll forming was performed to form a sheet-shaped molded body, which was cut into a rectangular shape.
【0045】また、図1のような一辺が15mm角の矩
形形状でその一端に幅5mm×長さ15mmの端子部を
有する正極、負極側集電体それぞれを表1に示す金属箔
にて形成した。そして、前記シート状の活性炭質構造体
2枚を前記集電体両面に図3のように積層して、80
℃、40MPaにて熱圧着し一体化した。Also, as shown in FIG. 1, each of a positive electrode and a negative electrode current collector having a rectangular shape with one side of 15 mm square and one end having a terminal part having a width of 5 mm and a length of 15 mm is formed of a metal foil shown in Table 1. did. Then, the two sheet-like activated carbonaceous structures are laminated on both surfaces of the current collector as shown in FIG.
Thermocompression bonding was performed at 40 ° C. and 40 ° C. to be integrated.
【0046】該シート状の活性炭質構造体と金属箔との
積層体を、大気中、200℃でエージング処理を行った
後、真空中、表1に示す温度で熱処理を行い、正極、負
極用の縦30mm、横30mm、厚さ1.0mmの前記
シート状活性炭質構造体と一辺が15mm角の矩形形状
でその一端に幅5mm×長さ15mmの端子部を有する
集電体とを焼結させて一体的に作製した。なお、集電体
と活性炭質構造体との界面はSEM観察により、焼結し
ていることを確認した。The laminate of the sheet-like activated carbonaceous structure and the metal foil was subjected to an aging treatment at 200 ° C. in the air, and then to a heat treatment at a temperature shown in Table 1 in vacuum to obtain a positive electrode and a negative electrode. The above-mentioned sheet-like activated carbonaceous structure having a length of 30 mm, a width of 30 mm and a thickness of 1.0 mm and a current collector having a rectangular shape having a side of 15 mm and a terminal portion having a width of 5 mm and a length of 15 mm at one end. This was made integrally. In addition, it was confirmed that the interface between the current collector and the activated carbonaceous structure was sintered by SEM observation.
【0047】得られた正極および負極をなす活性炭質構
造体と集電体との積層物を活性炭質構造体側が対向する
ように配設するとともに、該正極、負極用の2枚の活性
炭質構造体間にセルロース製セパレータを介在させて積
層した。さらに、この積層体をあらかじめ電解液注入口
を設けたアルミラミネートからなる袋状体内に挿入し
て、該アルミラミネート袋状体の電解液注入口以外の部
分を封止した後、前記電解液注入口から1mol/lの
テトラエチルアンモニウムテトラフルオロボレート(E
t4NBF4)の炭酸プロピレン(PC)溶液を電解液と
して真空注入し、前記注入口をヒートブロックシーラー
にて封口して、定格3V、20Fの電気二重層コンデン
サを作製した。なお、上述した焼成から封止までの工程
をグローボックス中で行った。The obtained laminate of the activated carbonaceous structure constituting the positive electrode and the negative electrode and the current collector are disposed so that the activated carbonaceous structure side faces each other, and two activated carbonaceous structures for the positive electrode and the negative electrode are provided. They were laminated with a cellulose separator interposed between the bodies. Further, the laminate was inserted into a bag made of an aluminum laminate provided with an electrolyte injection port in advance, and the portion of the aluminum laminate bag other than the electrolyte injection port was sealed, and then the electrolyte injection was performed. 1 mol / l of tetraethylammonium tetrafluoroborate (E
A propylene carbonate (PC) solution of t 4 NBF 4 ) was vacuum-injected as an electrolytic solution, and the injection port was sealed with a heat block sealer to produce an electric double layer capacitor rated at 3 V and 20 F. The above-described steps from baking to sealing were performed in a glow box.
【0048】ここで、電気二重層コンデンサについて、
充電及び放電電流は一定の20mAにて、全放電時間の
電圧の和と前記電流値から静電容量を測定した。また、
インピーダンス測定を1KHz、20mAにて行いこれ
を内部抵抗とした。さらに、3.0Vの直流電圧を70
℃の温度下で、2000時間印加したときの静電容量を
測定し、初期値に対する低下率を静電容量変化率として
評価した。結果は表1に示した。Here, regarding the electric double layer capacitor,
The charge and discharge currents were constant at 20 mA, and the capacitance was measured from the sum of the voltages during the entire discharge time and the current value. Also,
The impedance was measured at 1 KHz and 20 mA, and this was defined as the internal resistance. Further, a DC voltage of 3.0 V
The capacitance when applied for 2000 hours at a temperature of ° C. was measured, and the rate of decrease from the initial value was evaluated as the rate of change in capacitance. The results are shown in Table 1.
【0049】また、活性炭質構造体を粉砕して表2に示
す各試薬を添加した水溶液を作製し、この溶液を塩酸に
よって滴定して活性炭表面の各表面官能基量を算出し、
これを基に活性炭中の酸素含有量を見積もった。結果は
表1に示した。Further, the activated carbonaceous structure was pulverized to prepare an aqueous solution to which each of the reagents shown in Table 2 was added, and this solution was titrated with hydrochloric acid to calculate the amount of each surface functional group on the activated carbon surface.
Based on this, the oxygen content in the activated carbon was estimated. The results are shown in Table 1.
【0050】[0050]
【表1】 [Table 1]
【0051】[0051]
【表2】 [Table 2]
【0052】表1から明らかなとおり、各試料とも静電
容量が21.0F以上、内部抵抗が4.0Ω以下の優れ
た特性を有するものであり、特に負極側の電極と集電体
との焼成温度が880℃以上の試料No.1〜15では
静電容量変化率が−9%以下の優れた特性を有するもの
であった。As is clear from Table 1, each sample has excellent characteristics with an electrostatic capacity of 21.0 F or more and an internal resistance of 4.0 Ω or less. Sample No. having a firing temperature of 880 ° C. or higher. Nos. 1 to 15 had excellent characteristics with a capacitance change rate of -9% or less.
【0053】(比較例)実施例のシート状の活性炭質構
造体を、単体として、大気中、200℃でエージング処
理を行った後、真空中、900℃の温度で炭化熱処理を
行い、得られた活性炭質構造体の一方の表面に実施例と
同じ形状のAl製集電体を貼り合わせして活性炭質構造
体と集電体とを積層する以外は実施例と同様に電気二重
層コンデンサを作製し、評価した結果、静電容量が2
0.5Fと低く、内部抵抗が5.2Ωと高いものであっ
た。(Comparative Example) The sheet-like activated carbonaceous structure of the example was used alone, subjected to aging treatment at 200 ° C. in air, and then to carbonization heat treatment at 900 ° C. in vacuum. An electric double layer capacitor was formed in the same manner as in the example except that the activated carbon structure and the current collector were laminated by laminating an Al current collector having the same shape as that of the example on one surface of the activated carbonaceous structure. As a result of fabrication and evaluation, the capacitance was 2
The resistance was as low as 0.5 F and the internal resistance was as high as 5.2 Ω.
【0054】[0054]
【発明の効果】以上、詳述したとおり、本発明の電気二
重層コンデンサによれば、電気二重層コンデンサの分極
性電極と前記集電体とを焼結によって一体的に形成する
ことにより、内部抵抗が小さく、静電容量が大きくする
ことができる。As described above in detail, according to the electric double layer capacitor of the present invention, the polarizable electrode of the electric double layer capacitor and the current collector are integrally formed by sintering, so that the internal The resistance is small and the capacitance can be large.
【図1】本発明の電気二重層コンデンサの一例を示す
(a)概略断面図、(b)その一部平面図である。FIG. 1A is a schematic sectional view showing an example of an electric double layer capacitor of the present invention, and FIG. 1B is a partial plan view thereof.
1 電気二重層コンデンサ 2 電極 3 セパレータ 4 集電体 5 封止材 6 積層体 DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Electrode 3 Separator 4 Current collector 5 Sealing material 6 Laminate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 松野 真也 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 外城 直朋 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shinya Matsuno 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Naomo Sojo 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Research Institute
Claims (7)
れぞれの該集電体表面に積層される活性炭を含有する正
極と負極をなす分極性電極と、該正極と負極をなす分極
性電極間に介在されるセパレータと、を備えた電気二重
層コンデンサにおいて、正極と負極をなす前記分極性電
極と前記集電体とがそれぞれ焼結によって一体的に形成
されてなることを特徴とする電気二重層コンデンサ。1. A pair of current collectors forming a positive electrode and a negative electrode, a polarizable electrode forming an active carbon-containing positive electrode and a negative electrode laminated on the respective current collector surfaces, and a polarizable material forming the positive electrode and the negative electrode A separator interposed between the electrodes, wherein the polarizable electrode forming the positive electrode and the negative electrode and the current collector are integrally formed by sintering, respectively. Electric double layer capacitor.
Ag、Nb、Pt、Auの群から選ばれる少なくとも1
種の金属からなるとともに、前記負極側の集電体がC
u、Ag、Ni、Pt、Auの群から選ばれる少なくと
も1種の金属からなることを特徴とする請求項1記載の
電気二重層コンデンサ。2. The current collector on the positive electrode side is made of Al, Ti, Ta,
At least one selected from the group consisting of Ag, Nb, Pt, and Au
And the current collector on the negative electrode side is C
The electric double layer capacitor according to claim 1, wherein the capacitor is made of at least one metal selected from the group consisting of u, Ag, Ni, Pt, and Au.
含有量が前記負極側の分極性電極中の活性炭の酸素含有
量よりも多いことを特徴とする請求項1または2記載の
電気二重層コンデンサ。3. The electric power according to claim 1, wherein the oxygen content of the activated carbon in the polarizable electrode on the positive electrode side is larger than the oxygen content of the activated carbon in the polarizable electrode on the negative electrode side. Double layer capacitor.
のシート状の活性炭質成形体を作製する工程と、各活性
炭質成形体の一方の表面にそれぞれ正極または負極の集
電体用の導体層を積層する工程と、前記導体層を積層し
た成形体それぞれを前記導体層の融点以下の温度にて熱
処理、焼結させて活性炭質構造体と集電体とを一体的に
形成する工程と、正極用および負極用の前記活性炭質構
造体と集電体との一体物を前記活性炭質構造体側が対向
するように配設するとともに、該活性炭質構造体表面間
にセパレータを介在させて積層する工程と、前記活性炭
質構造体および前記セパレータ内に電解液を充填して正
極および負極の分極性電極およびセパレータを形成する
工程と、を具備することを特徴とする電気二重層コンデ
ンサの製造方法。4. A process for producing a sheet-like activated carbonaceous molded article for a positive electrode and a negative electrode containing activated carbon powder, and a conductor for a positive electrode or a negative electrode current collector on one surface of each activated carbonaceous molded article. A step of laminating the layers, and a step of heat-treating each of the molded bodies obtained by laminating the conductor layer at a temperature equal to or lower than the melting point of the conductor layer, and sintering to integrally form the activated carbonaceous structure and the current collector The integrated body of the activated carbonaceous structure and the current collector for the positive electrode and the negative electrode is disposed so that the activated carbonaceous structure side faces each other, and laminated with a separator interposed between the activated carbonaceous structure surfaces. And a step of filling the activated carbonaceous structure and the separator with an electrolytic solution to form a positive electrode and a negative electrode polarizable electrode and a separator. .
前記熱処理温度が前記負極側の活性炭質構造体と集電体
との前記熱処理温度よりも低くすることを特徴とする請
求項4記載の電気二重層コンデンサの製造方法。5. The heat treatment temperature of the activated carbonaceous structure on the positive electrode side and the current collector is lower than the heat treatment temperature of the activated carbonaceous structure on the negative electrode side and the current collector. Item 5. The method for producing an electric double layer capacitor according to Item 4.
Ag、Nb、Pt、Auの群から選ばれる少なくとも1
種の金属からなるとともに、前記負極側の集電体がC
u、Ag、Ni、Pt、Auの群から選ばれる少なくと
も1種の金属からなることを特徴とする請求項5記載の
電気二重層コンデンサの製造方法。6. The current collector on the positive electrode side is made of Al, Ti, Ta,
At least one selected from the group consisting of Ag, Nb, Pt, and Au
And the current collector on the negative electrode side is C
6. The method for manufacturing an electric double layer capacitor according to claim 5, comprising at least one metal selected from the group consisting of u, Ag, Ni, Pt, and Au.
含有量が前記負極側の分極性電極中の活性炭の酸素含有
量よりも多いことを特徴とする請求項4乃至6のいずれ
か記載の電気二重層コンデンサの製造方法。7. The polarizer according to claim 4, wherein the oxygen content of the activated carbon in the polarizable electrode on the positive electrode side is larger than the oxygen content of the activated carbon in the polarizable electrode on the negative electrode side. A method for producing the electric double layer capacitor according to the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37031099A JP2001185452A (en) | 1999-12-27 | 1999-12-27 | Electric double layer capacitor and its method of manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37031099A JP2001185452A (en) | 1999-12-27 | 1999-12-27 | Electric double layer capacitor and its method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001185452A true JP2001185452A (en) | 2001-07-06 |
Family
ID=18496588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37031099A Pending JP2001185452A (en) | 1999-12-27 | 1999-12-27 | Electric double layer capacitor and its method of manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001185452A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109253A (en) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | Method for manufacturing electrolytic capacitor |
JP2010511302A (en) * | 2006-11-30 | 2010-04-08 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Electrochemical capacitor having two carbon electrodes with different characteristics in an aqueous medium |
US10008334B2 (en) | 2011-03-18 | 2018-06-26 | Cnrs | Electrochemical capacitor |
JP2019153800A (en) * | 2012-10-08 | 2019-09-12 | マックスウェル テクノロジーズ インコーポレイテッド | Electrolyte for three-bolt ultra capacitor |
FR3090996A1 (en) * | 2018-12-21 | 2020-06-26 | Blue Solutions | METHOD FOR MANUFACTURING A SINTERED ELECTRODE, SINTERED ELECTRODE AND DEVICE COMPRISING SUCH AN ELECTRODE |
FR3090995A1 (en) * | 2018-12-21 | 2020-06-26 | Blue Solutions | Method of manufacturing a sintered electrode, sintered electrode and device comprising such an electrode |
-
1999
- 1999-12-27 JP JP37031099A patent/JP2001185452A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005109253A (en) * | 2003-09-30 | 2005-04-21 | Nippon Chemicon Corp | Method for manufacturing electrolytic capacitor |
JP2010511302A (en) * | 2006-11-30 | 2010-04-08 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Electrochemical capacitor having two carbon electrodes with different characteristics in an aqueous medium |
US10008334B2 (en) | 2011-03-18 | 2018-06-26 | Cnrs | Electrochemical capacitor |
JP2019153800A (en) * | 2012-10-08 | 2019-09-12 | マックスウェル テクノロジーズ インコーポレイテッド | Electrolyte for three-bolt ultra capacitor |
US11302488B2 (en) | 2012-10-08 | 2022-04-12 | Ucap Power, Inc. | Carbon surface modification for three-volt ultracapacitor |
FR3090996A1 (en) * | 2018-12-21 | 2020-06-26 | Blue Solutions | METHOD FOR MANUFACTURING A SINTERED ELECTRODE, SINTERED ELECTRODE AND DEVICE COMPRISING SUCH AN ELECTRODE |
FR3090995A1 (en) * | 2018-12-21 | 2020-06-26 | Blue Solutions | Method of manufacturing a sintered electrode, sintered electrode and device comprising such an electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1142831B1 (en) | Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it | |
JPH10275747A (en) | Electric double layer capacitor | |
WO2000016354A1 (en) | Method for manufacturing large-capacity electric double-layer capacitor | |
KR101486429B1 (en) | Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method | |
KR100752945B1 (en) | Electrochemical capacitor | |
KR101635763B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
JP2001185452A (en) | Electric double layer capacitor and its method of manufacture | |
KR102013173B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
JP3652061B2 (en) | Electric double layer capacitor | |
JP3721642B2 (en) | Manufacturing method of large-capacity electric double layer capacitor | |
JP4587522B2 (en) | Electric double layer capacitor | |
JP3764604B2 (en) | Electric double layer capacitor and manufacturing method thereof | |
KR102188237B1 (en) | Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method | |
JPH0845793A (en) | Electric double layered capacitor | |
KR102188242B1 (en) | Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method | |
JPH09293649A (en) | Electric double layered capacitor | |
KR101494622B1 (en) | Composite for supercapacitor electrode and manufacturing method of supercapacitor electrode using the composite | |
JP2002015959A (en) | Electric double-layer capacitor and method of manufacturing the same | |
JP3872222B2 (en) | Solid activated carbon structure, electric double layer capacitor using the same, and method for producing the same | |
JP2002043180A (en) | Electrical double layer capacitor | |
JP2002260970A (en) | Activated carbonaceous structure and electric double- layer capacitor using the same | |
JP3670507B2 (en) | Electric double layer capacitor and manufacturing method thereof | |
JPH07307250A (en) | Electric double-layer capacitor | |
JP4026806B2 (en) | Electric double layer capacitor | |
JP4627874B2 (en) | Electric double layer capacitor |