JP2002013920A - Interference fringe image processing device and image correcting method - Google Patents

Interference fringe image processing device and image correcting method

Info

Publication number
JP2002013920A
JP2002013920A JP2000197485A JP2000197485A JP2002013920A JP 2002013920 A JP2002013920 A JP 2002013920A JP 2000197485 A JP2000197485 A JP 2000197485A JP 2000197485 A JP2000197485 A JP 2000197485A JP 2002013920 A JP2002013920 A JP 2002013920A
Authority
JP
Japan
Prior art keywords
interference
fringe image
luminance data
interference fringe
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000197485A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawasaki
和彦 川▲崎▼
Hiroshi Haino
宏 配野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2000197485A priority Critical patent/JP2002013920A/en
Publication of JP2002013920A publication Critical patent/JP2002013920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an interference fringe image processing device and an image correcting method, capable of enhancing the speed of data processing by realizing interference noise reduction by simpler processing. SOLUTION: This interference fringe image processing device has an interferometer for measuring the shape of undulations on a tested surface by irradiating a reference surface 5 and the tested surface 6 with coherent light from a light source 1, and obtaining interference fringes produced by the interference of reference light reflected by the surface 5 with specimen light reflected from the surface 6 as luminance data of an interference fringe image by a photographing device 7. It is further equipped with a memory 10 for storing the luminance data of respective points in a reference light image previously taken by the photographing device 7 and a processing device 8 for performing luminance conversion correction by dividing the luminance data of the respective points in the fringe image by the luminance data of the reference light image read out from the memory 10 at the corresponding points in an observation area. The shape of undulations on the surface 5 is computed by using luminance- conversion corrected luminance data of the fringe image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光波干渉を利用して
被検面起伏形状を計測する干渉計に関し、特に、参照面
から反射された参照光と被検面から反射された試料光と
の干渉によって生じる干渉縞画像の輝度データを撮像装
置で取得する干渉縞画像処理装置及び画像補正方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interferometer for measuring an undulating shape of a test surface by using light wave interference, and more particularly to an interferometer for measuring a reference light reflected from a reference surface and a sample light reflected from the test surface. The present invention relates to an interference fringe image processing device and an image correction method for acquiring luminance data of an interference fringe image generated by interference with an imaging device.

【0002】[0002]

【従来の技術】周知のように、被検面の起伏形状を被接
触で高精度に計測する方法のひとつとして、光波干渉を
CCDカメラなどの撮像装置で干渉縞画像の輝度データ
として取得する干渉計が知られている。この干渉計で
は、一般には、可干渉性の高いレーザを光源として使用
するが、干渉計を構成する光学素子により不要な反射光
が発生すると、不要な反射光が干渉して干渉ノイズとな
る。
2. Description of the Related Art As is well known, as one of the methods for measuring the undulating shape of a surface to be measured with high accuracy by contact, an interference method of obtaining light wave interference as luminance data of an interference fringe image by an imaging device such as a CCD camera. The scale is known. In this interferometer, generally, a laser having high coherence is used as a light source. However, when unnecessary reflected light is generated by an optical element constituting the interferometer, the unnecessary reflected light interferes to generate interference noise.

【0003】このような場合の干渉ノイズ対策として
は、光学部品に減反射膜を施したり、機能上差し支えな
いものは光学素子を楔構造にしたり、あるいは、干渉計
調整時に光学素子を光軸に対して姿勢を傾け配置するな
どの対策が可能である。しかし、これらの干渉ノイズの
ハードウェア的な対策では干渉計製作時の煩雑さを招く
ことになる。そして、CCDカメラの保護ガラスによる
干渉ノイズはハードウェア対策が困難であり、干渉縞画
像をCCDカメラで撮像するときの大きな課題となって
いる。
As a countermeasure against interference noise in such a case, an antireflection film is applied to an optical component, an optical element which does not interfere with the function has a wedge structure, or the optical element is set to an optical axis when adjusting the interferometer. It is possible to take countermeasures such as tilting the posture. However, hardware measures for these interference noises cause complications in the production of the interferometer. It is difficult to take measures against hardware for interference noise caused by the protection glass of the CCD camera, and this is a major problem when an interference fringe image is captured by the CCD camera.

【0004】[0004]

【発明が解決しようとする課題】ところで、前述した干
渉ノイズは、光学素子の配置により固定的に生じるもの
で、一旦組立調整が完了すれば、固定的なノイズとして
扱うことが可能である。このため、本発明者らは、これ
らの固定的な干渉ノイズの性質を利用して、ソフトウェ
アにより干渉ノイズを補正することを特願平11−13
6832号出願・発明の名称「干渉縞画像の補正方法」
で提案した。つまり、その発明では、予めノイズ計測画
像を撮像して固有ノイズ分布データとして記憶してお
き、干渉縞撮像時に得られた干渉縞画像データと固有ノ
イズ分布データとを用いて、干渉縞画像データに含まれ
るノイズ分布をその都度求め、これらノイズ分布を干渉
縞画像データから差し引いて画像補正を行なうといった
処理を行なう。
Incidentally, the above-described interference noise is fixedly generated by the arrangement of the optical elements, and can be treated as fixed noise once the assembly adjustment is completed. For this reason, the inventors of the present invention have proposed to correct the interference noise by using the property of the fixed interference noise by using software.
No. 6832 Application / Title of Invention "Correction method of interference fringe image"
Suggested. That is, in the present invention, a noise measurement image is captured in advance and stored as unique noise distribution data, and the interference fringe image data is obtained using A process is performed in which the noise distributions included are determined each time, and these noise distributions are subtracted from the interference fringe image data to perform image correction.

【0005】しかしながら、この画像補正方法では、ノ
イズ分布をその都度算出する処理と干渉縞画像データか
らノイズ分布を差し引く処理が必要であるために、干渉
縞画像データ取得後のデータ処理に時間を要する問題が
ある。
However, in this image correction method, a process for calculating the noise distribution each time and a process for subtracting the noise distribution from the interference fringe image data are required, so that it takes time for data processing after obtaining the interference fringe image data. There's a problem.

【0006】本発明の目的は、以上に述べたような従来
における干渉計の干渉縞画像の補正方法の問題に鑑み、
より簡素な処理にて干渉ノイズ低減を実現することでデ
ータ処理の高速化を図れる干渉縞画像処理装置及び画像
補正方法を得るにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problem of a conventional method for correcting an interference fringe image of an interferometer.
An object of the present invention is to provide an interference fringe image processing apparatus and an image correction method that can speed up data processing by realizing interference noise reduction with simpler processing.

【0007】[0007]

【課題を解決するための手段】この目的を達成するた
め、本発明は、光源からの可干渉光を参照面と被検面に
照射し、前記参照面によって反射された参照光と、前記
被検面から反射された試料光との干渉によって生じる干
渉縞を、撮像装置により干渉縞画像の輝度データとして
取得して被検面起伏形状を計測する干渉計において、前
記撮像装置より予め撮像された参照光画像の各点の輝度
データを記憶するメモリと、このメモリから読み出され
た参照光画像の輝度データから前記干渉縞画像の各点の
輝度データを観測領域内の対応する前記各点にて除算し
て輝度変換補正を施こす処理装置とを備え、この輝度変
換補正後の干渉縞画像の輝度データを用いて、被検面起
伏形状を算出する干渉縞画像処理装置を提案するもので
ある。
In order to achieve this object, the present invention irradiates a reference surface and a test surface with coherent light from a light source, and reflects the reference light reflected by the reference surface and the target light. An interference fringe generated by interference with the sample light reflected from the test surface is acquired in advance by the imaging device in an interferometer that measures the undulation shape of the test surface by acquiring the luminance data of the interference fringe image by the imaging device. A memory for storing the luminance data of each point of the reference light image, and the luminance data of each point of the interference fringe image from the luminance data of the reference light image read from this memory to the corresponding point in the observation area. And a processing device for performing luminance conversion correction by dividing the interference fringe image by using the luminance data of the interference fringe image after the luminance conversion correction. is there.

【0008】また、本発明においては、この目的は、光
源からの可干渉光を参照面と被検面に照射し、前記参照
面によって反射された参照光と、前記被検面から反射さ
れた試料光との干渉によって生じる干渉縞を、撮像装置
により干渉縞画像の輝度データとして取得して被検面起
伏形状を計測する干渉計において、前記干渉縞画像の各
点の輝度データを、前記撮像装置で予め撮像された参照
光画像の前記各点に対応する量の輝度データにより観測
領域内の対応する前記各点にて除算して輝度変換補正を
施し、この輝度変換補正後の干渉縞画像の輝度データを
用いて、被検面起伏形状を算出する干渉縞画像の補正方
法によっても達成される。
Further, in the present invention, the object is to irradiate the coherent light from the light source to the reference surface and the test surface, and to reflect the reference light reflected by the reference surface and the reference light reflected from the test surface. In an interferometer that acquires interference fringes caused by interference with the sample light as luminance data of the interference fringe image by an imaging device and measures the undulation shape of the surface to be inspected, the luminance data of each point of the interference fringe image is captured by the imaging device. An interference fringe image after the luminance conversion correction is obtained by dividing by the respective points in the observation area by the luminance data of the amount corresponding to the respective points of the reference light image captured in advance by the apparatus and dividing by the respective points. This is also achieved by an interference fringe image correction method for calculating the undulating shape of the test surface using the luminance data of

【0009】[0009]

【発明の実施の形態】以下、図面について本発明の実施
例の詳細を説明する。図1は本発明が対象とする代表的
な干渉計の一つであるフィゾー型干渉計を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a Fizeau interferometer which is one of the representative interferometers to which the present invention is applied.

【0010】図1において、レーザ光源1からのレーザ
光束はレンズ2よりビーム径を拡大され、ビームスプリ
ッタ3を透過してコリメートレンズ4にて平行光束とさ
れ、この平行光束は参照面5で反射された参照光と参照
面5を透過して被検面6で反射された試料光を生成す
る。両光の光波干渉により得られる干渉縞をビームスプ
リッタで反射させて、CCDカメラなどの撮像装置7で
撮像する。この撮像装置7の出力は干渉縞画像の輝度デ
ータを処理するCPUなどの処理装置8に入力され、同
処理装置8で処理された干渉縞画像がCRTなどで構成
する図2の表示装置9に表示される。本発明において
は、この処理装置8は詳細を後述する参照光画像の各点
の輝度データを格納できるメモリ10を内蔵し、時間的
に変化しない同参照光の輝度データを用いた演算処理が
行われるが、この演算処理については後述から明らかに
なる。
In FIG. 1, a laser beam from a laser light source 1 is enlarged in beam diameter by a lens 2, passes through a beam splitter 3, is converted into a parallel beam by a collimator lens 4, and the parallel beam is reflected by a reference surface 5. The generated reference light and sample light transmitted through the reference surface 5 and reflected by the test surface 6 are generated. The interference fringes obtained by the light wave interference of the two lights are reflected by a beam splitter and imaged by an imaging device 7 such as a CCD camera. The output of the imaging device 7 is input to a processing device 8 such as a CPU that processes the luminance data of the interference fringe image, and the interference fringe image processed by the processing device 8 is sent to a display device 9 of FIG. Is displayed. In the present invention, the processing device 8 has a built-in memory 10 capable of storing luminance data of each point of a reference light image, which will be described in detail later, and performs arithmetic processing using luminance data of the reference light which does not change with time. However, this calculation process will be clarified later.

【0011】図3は前述したフィゾー型干渉計の参照面
5、被検面6、参照光と試料光が光路上で介在する光学
素子、観測位置の配置関係の模式図であり、ここでは、
参照光をA、試料光をBとし、参照光Aが光学素子Tを
透過する成分をA1 、光学素子Tの内部で反射されて一
往復し、観測位置側Uに向かう成分をA2 としてある。
また、同様に試料光Bについても光学素子Tを透過する
成分と光学素子Tの内部で一往復する成分をそれぞれB
1 、B2 としてある。A1 、A2 、B1 、B2は図示の
都合上異なる位置に記載されているが、これら4つの光
の干渉を考慮する際には、全て同一光軸上に存在するも
のとして理解される。
FIG. 3 is a schematic view showing the arrangement of the reference plane 5, the test plane 6, the optical element in which the reference light and the sample light are interposed on the optical path, and the observation position of the Fizeau interferometer.
The reference light is A, the sample light is B, the component of the reference light A passing through the optical element T is A 1 , and the component that is reflected inside the optical element T and makes one round trip and heads toward the observation position U is A 2. is there.
Similarly, for the sample light B, the component that transmits through the optical element T and the component that makes one round trip inside the optical element T are represented by B and B, respectively.
1 and B 2 . Although A 1 , A 2 , B 1 , and B 2 are shown at different positions for convenience of illustration, they are understood as all existing on the same optical axis when considering the interference of these four lights. You.

【0012】ちなみに、図3における各符号の意味・内
容を整理しておくと、次の通りである。 A1 :参照面Rからの反射光Aのうち、光学素子Tを透
過する成分 A2 :参照面Rからの反射光Aのうち、光学素子T内で
の反射により余分に一往復して透過する成分 B1 :被検面Sからの反射光Bのうち、光学素子Tを透
過する成分 B2 :被検面Sからの反射光Bのうち、光学素子T内で
の反射により余分に一往復して透過する成分 l:参照面Rと被検面S間の距離 L:参照面Rと観測位置U間の距離 t:各撮像位置において計画外の干渉ノイズを発生させ
る光学素子Tの厚み
Incidentally, the meaning and contents of each code in FIG. 3 are summarized as follows. A 1 : A component of the reflected light A from the reference surface R that passes through the optical element T A 2 : A component of the reflected light A from the reference surface R that travels one extra round trip due to reflection in the optical element T Component B 1 : of the reflected light B from the test surface S, the component transmitted through the optical element T B 2 : of the reflected light B from the test surface S, one extra due to reflection in the optical element T Reciprocally transmitted component l: distance between reference surface R and test surface S L: distance between reference surface R and observation position U t: thickness of optical element T that generates unplanned interference noise at each imaging position

【0013】次に、撮像装置7で観測される2次元の干
渉縞のある一点の干渉現象について説明すると、A1
2 、B1 、B2 の振幅をそれぞれa1 、a2 、b1
2とおき、参照面位置を原点として図3に示した配置
関係により4つの光を数式により記述すれば、
[0013] Subsequently explained interference phenomenon one point with a two-dimensional interference fringes are observed by the imaging device 7, A 1,
The amplitudes of A 2 , B 1 , and B 2 are represented by a 1 , a 2 , b 1 ,
b 2 Distant, the arrangement relationship shown a reference surface position in Fig. 3 as the origin of the four light if described by formula,

【数1】 で表わすことができ、これらの式のうち(1−2)式、
(1−4)式には光学素子Tの影響であるtが含まれて
いる。
(Equation 1) Which can be expressed by the following equation (1-2):
The expression (1-4) includes t which is an influence of the optical element T.

【0014】そして(1−1)式〜(1−4)式で示し
たこれら4つの光による干渉強度は、
The interference intensities of these four lights shown in the equations (1-1) to (1-4) are as follows:

【数2】 となる。ここで、光学素子Tの内部反射により発生する
2 の振幅を減衰係数εを用いて、 a2 =εa1 (3) で表すと、同一の光学素子Tを経て観測位置に達するB
1 とB2 の関係についても同様に b2 =εb1 (4) で表すことができる。
(Equation 2) Becomes Here, when the amplitude of A 2 generated by the internal reflection of the optical element T is represented by a 2 = εa 1 (3) using the attenuation coefficient ε, B reaching the observation position via the same optical element T
The relationship between 1 and B 2 can be similarly expressed by b 2 = εb 1 (4).

【0015】ここに、(3)式、(4)式を(2)式に
代入すると、次式が得られる。
Here, by substituting equations (3) and (4) into equation (2), the following equation is obtained.

【数3】 (Equation 3)

【0016】次に、I’の実数部をとるとNext, taking the real part of I '

【数4】 となり、4つの光による干渉強度を表す式が得られる。(Equation 4) Thus, an expression representing the interference intensity of the four lights is obtained.

【0017】つまり、(6)式中、右辺第一項、第二項
は光学素子Tの内部反射によって発生する干渉ノイズを
表しており、光学素子Tの厚みに依存した干渉ノイズ強
度の振幅はそれぞれ2εa1 2、2εb1 2であることを表
している。また、右辺第三項目は、光学素子Tによって
発生する干渉ノイズが被検面起伏形状によって発生する
干渉強度により強度の振幅変調がなされたものと解釈で
きる。(6)式をまとめると、
That is, in the equation (6), the first and second terms on the right side represent interference noise generated by internal reflection of the optical element T, and the amplitude of the interference noise intensity depending on the thickness of the optical element T is each 2εa 1 2, it indicates that a 2εb 1 2. The third item on the right-hand side can be interpreted as that the intensity of the interference noise generated by the optical element T is modulated by the interference intensity generated by the undulating shape of the test surface. (6) Summarizing the equation,

【数5】 という形で表せる。(Equation 5) Can be expressed in the form

【0018】一方、参照光Aのみの場合に、A1 、A2
によって発生する干渉は次式で表される。
On the other hand, when only the reference light A is used, A 1 , A 2
The interference caused by the above is expressed by the following equation.

【数6】 (Equation 6)

【0019】ここで、(6)′式を(7)式で除算する
と、
Here, dividing equation (6) 'by equation (7) gives:

【数7】 となり、光学素子Tに依存した項;cos(k2t)を
削除することができる。
(Equation 7) And the term dependent on the optical element T; cos (k2t) can be deleted.

【0020】ここに、前述したことは2次元の干渉縞画
像上の各撮像点にて成立する。このことは、(6)式で
示した参照光と試料光による干渉強度と(7)式で示し
た参照光による干渉強度が、撮像装置8によりある階調
の輝度データとして得られたとき、前者から後者を各撮
像点ごとに除算して輝度変換を施すことで、干渉計を構
成する光学部品によって発生する干渉ノイズを低減する
ことができることを意味する。なお、参照光強度は時間
的に変動しないものであるために、予め撮像して処理装
置8のメモリ10に輝度データを保持しておけば良い。
干渉縞画像取得後にノイズ低減処理に要する処理は除算
の1回のみで済む。
Here, the above holds for each imaging point on the two-dimensional interference fringe image. This means that when the interference intensity due to the reference light and the sample light represented by the expression (6) and the interference intensity due to the reference light represented by the expression (7) are obtained as luminance data of a certain gradation by the imaging device 8, By dividing the former to the latter for each imaging point and performing luminance conversion, it means that interference noise generated by optical components constituting the interferometer can be reduced. Since the reference light intensity does not fluctuate with time, it is sufficient that the image is captured in advance and the luminance data is stored in the memory 10 of the processing device 8.
The processing required for the noise reduction processing after the acquisition of the interference fringe image is performed only once in the division.

【0021】他方、光源の波長可変かあるいは、参照面
の平行移動により得られた3枚の位相シフト干渉縞の場
合、
On the other hand, in the case of three phase-shift interference fringes obtained by changing the wavelength of the light source or by translating the reference surface,

【数8】 に対して、参照光画像の除算によりノイズ低減を施した
干渉縞は、
(Equation 8) On the other hand, the interference fringes that have been subjected to noise reduction by dividing the reference light image

【数9】 となる。(Equation 9) Becomes

【0022】これらの(10−1)式〜(10−3)式
から
From the equations (10-1) to (10-3),

【数10】 となる関係が得られる。よって、被検面起伏形状に相当
する干渉縞位相φは、
(Equation 10) The following relationship is obtained. Therefore, the interference fringe phase φ corresponding to the undulating shape of the test surface is

【数11】 で求められる。つまり、本発明による画像補正方法によ
りノイズ低減処理を施した干渉縞においても位相シフト
法を適用することが可能である。
[Equation 11] Is required. That is, the phase shift method can be applied to the interference fringes subjected to the noise reduction processing by the image correction method according to the present invention.

【0023】撮像各点に対して、以上に述べたような処
理を施せば、2次元の干渉縞画像上に観測される干渉ノ
イズを低減させることができ、この結果、被検面起伏形
状を高精度に計測することが可能となる。
By performing the above-described processing on each point of imaging, it is possible to reduce interference noise observed on a two-dimensional interference fringe image. It is possible to measure with high accuracy.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
の干渉縞画像処理装置及び画像補正方法では、撮像装置
より得られた干渉縞画像の輝度データを参照光画像の輝
度データを1回除算するだけで、干渉縞に含まれる固定
の干渉ノイズを低減することができるために、処理時間
の大幅な短縮が見込める。
As is apparent from the above description, in the interference fringe image processing apparatus and the image correction method of the present invention, the luminance data of the interference fringe image obtained from the image pickup apparatus is converted into the luminance data of the reference light image once. Since the fixed interference noise included in the interference fringes can be reduced only by the division, the processing time can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用できるフィゾー型干渉計の概念図
である。
FIG. 1 is a conceptual diagram of a Fizeau interferometer to which the present invention can be applied.

【図2】本発明で用いる処理装置のブロックダイヤグラ
ムである。
FIG. 2 is a block diagram of a processing apparatus used in the present invention.

【図3】同フィゾー型干渉計の参照面、被検面、光学素
子、観測位置の配置関係の模式図である。
FIG. 3 is a schematic diagram of an arrangement relationship among a reference surface, a test surface, an optical element, and an observation position of the Fizeau interferometer.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 レンズ 3 ビームスプリッタ 4 コリメートレンズ 5 参照面 6 被検面 7 撮像装置 8 処理装置 9 表示装置 10 メモリ REFERENCE SIGNS LIST 1 laser light source 2 lens 3 beam splitter 4 collimating lens 5 reference surface 6 test surface 7 imaging device 8 processing device 9 display device 10 memory

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA54 DD03 DD04 FF42 FF51 GG04 HH13 JJ03 JJ26 LL04 LL46 QQ21 QQ24 QQ28 QQ32 QQ34 SS13 5B057 AA01 BA02 CA02 CA08 CA12 CA16 CB02 CB08 CB12 CB16 CC01 CE02 CH11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA54 DD03 DD04 FF42 FF51 GG04 HH13 JJ03 JJ26 LL04 LL46 QQ21 QQ24 QQ28 QQ32 QQ34 SS13 5B057 AA01 BA02 CA02 CA08 CA12 CA16 CB02 CB08 CB12 CH11 CC01 CE

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光源からの可干渉光を参照面と被検面に
照射し、前記参照面によって反射された参照光と、前記
被検面から反射された試料光との干渉によって生じる干
渉縞を、撮像装置により干渉縞画像の輝度データとして
取得して被検面起伏形状を計測する干渉計において、 前記撮像装置より予め撮像された参照光画像の各点の輝
度データを記憶するメモリと、前記干渉縞画像の各点の
輝度データを前記メモリから読み出された参照光画像の
輝度データで観測領域内の対応する前記各点にて除算し
て輝度変換補正を施こす処理装置とを備え、この輝度変
換補正後の干渉縞画像の輝度データを用いて、被検面起
伏形状を算出することを特徴とする干渉縞画像処理装
置。
1. A reference surface and a test surface are irradiated with coherent light from a light source, and interference fringes generated by interference between the reference light reflected by the reference surface and the sample light reflected from the test surface. In an interferometer that acquires the luminance data of the interference fringe image by the imaging device and measures the undulating shape of the test surface, a memory that stores the luminance data of each point of the reference light image that is captured in advance by the imaging device, A processing device for performing luminance conversion correction by dividing luminance data of each point of the interference fringe image by luminance data of the reference light image read from the memory by the corresponding points in the observation area. An interference fringe image processing apparatus that calculates the undulating shape of the test surface using the luminance data of the interference fringe image after the luminance conversion correction.
【請求項2】 光源からの可干渉光を参照面と被検面に
照射し、前記参照面によって反射された参照光と、前記
被検面から反射された試料光との干渉によって生じる干
渉縞を、撮像装置により干渉縞画像の輝度データとして
取得して被検面起伏形状を計測する干渉計において、 前記干渉縞画像の各点の輝度データを、前記撮像装置で
予め撮像された参照光画像の前記各点に対応する量の輝
度データにより観測領域内の対応する前記各点にて除算
して輝度変換補正を施し、この輝度変換補正後の干渉縞
画像の輝度データを用いて、被検面起伏形状を算出する
ことを特徴とする干渉縞画像の補正方法。
2. A coherent light from a light source is applied to a reference surface and a test surface, and interference fringes generated by interference between the reference light reflected by the reference surface and the sample light reflected from the test surface. In an interferometer that acquires the luminance data of the interference fringe image by the imaging device and measures the undulation shape of the surface to be inspected, the luminance data of each point of the interference fringe image is referred to as a reference light image previously captured by the imaging device. The luminance conversion of the interference fringe image is performed using the luminance data of the interference fringe image after the luminance conversion of the corresponding point in the observation area is divided by the luminance data of the amount corresponding to each of the points. A method for correcting an interference fringe image, comprising calculating a surface undulation shape.
JP2000197485A 2000-06-30 2000-06-30 Interference fringe image processing device and image correcting method Pending JP2002013920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197485A JP2002013920A (en) 2000-06-30 2000-06-30 Interference fringe image processing device and image correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197485A JP2002013920A (en) 2000-06-30 2000-06-30 Interference fringe image processing device and image correcting method

Publications (1)

Publication Number Publication Date
JP2002013920A true JP2002013920A (en) 2002-01-18

Family

ID=18695809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197485A Pending JP2002013920A (en) 2000-06-30 2000-06-30 Interference fringe image processing device and image correcting method

Country Status (1)

Country Link
JP (1) JP2002013920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281741A (en) * 2009-06-05 2010-12-16 Nikon Corp Noise eliminator, noise eliminating method, noise position detector, noise position detecting method, measuring system, and program
CN112179505A (en) * 2020-09-23 2021-01-05 中国科学院光电技术研究所 Image processing device and method based on wedge-shaped flat plate shearing interferometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281741A (en) * 2009-06-05 2010-12-16 Nikon Corp Noise eliminator, noise eliminating method, noise position detector, noise position detecting method, measuring system, and program
CN112179505A (en) * 2020-09-23 2021-01-05 中国科学院光电技术研究所 Image processing device and method based on wedge-shaped flat plate shearing interferometer
CN112179505B (en) * 2020-09-23 2022-08-02 中国科学院光电技术研究所 Image processing device and method based on wedge-shaped flat plate shearing interferometer

Similar Documents

Publication Publication Date Title
JP4279550B2 (en) Method and apparatus for height scanning interference analysis including phase gap analysis
KR101858082B1 (en) An Improved Holographic Reconstruction Apparatus and Method
KR101804441B1 (en) An Improved Holographic Reconstruction Apparatus and Method
KR102426103B1 (en) An Improved Holographic Reconstruction Apparatus and Method
JP3065374B2 (en) Optical inspection method for an object, optical inspection apparatus for an object, and interferometer for optical inspection of an object
JPH0666537A (en) System error measuring method and shape measuring device using it
US5268742A (en) Full aperture interferometry for grazing incidence optics
JPH1096679A (en) Apparatus for measuring wavefront aberration
US20220065617A1 (en) Determination of a change of object's shape
US10415954B2 (en) Method for analyzing an object
JPH05317256A (en) Intraocular size measuring instrument
JP2002013920A (en) Interference fringe image processing device and image correcting method
JP2000205822A (en) Image measurement system and its image correcting method
KR20190072020A (en) Apparatus and Method For Detecting Defects
JP4081538B2 (en) Interference fringe analysis method for transparent parallel plates
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
US7956630B1 (en) Real-time effective-wavelength error correction for HDVSI
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
JP2001050727A (en) Form measuring method using fringe modulation
JP2013228263A (en) White-color interferometer, image processing method and image processing program
WO2023042339A1 (en) Optical measurement system and optical measurement method
JP4390957B2 (en) Method for determining fringe phase in fringe analysis
JP2003148933A (en) Plane shape measuring method in phase shift interference fringe simultaneous imaging
JP4218919B2 (en) Interference fringe analysis method
JPH06281426A (en) Phase pattern difference discriminating device