JP2002013655A - Component member of brass-made passage - Google Patents

Component member of brass-made passage

Info

Publication number
JP2002013655A
JP2002013655A JP34398897A JP34398897A JP2002013655A JP 2002013655 A JP2002013655 A JP 2002013655A JP 34398897 A JP34398897 A JP 34398897A JP 34398897 A JP34398897 A JP 34398897A JP 2002013655 A JP2002013655 A JP 2002013655A
Authority
JP
Japan
Prior art keywords
phase
brass
less
flow path
path component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34398897A
Other languages
Japanese (ja)
Inventor
Katsuaki Nakamura
克昭 中村
Ryoichi Sugimoto
亮一 杉本
Hiroyuki Sakurai
博幸 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP34398897A priority Critical patent/JP2002013655A/en
Priority to PCT/JP1998/005021 priority patent/WO1999024631A1/en
Priority to EP98951730A priority patent/EP1029939A1/en
Priority to AU97624/98A priority patent/AU9762498A/en
Publication of JP2002013655A publication Critical patent/JP2002013655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Housings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a brass-made angle valve by forging work which is superior in anticorrosion and moreover cutting property is superior in productivity. SOLUTION: This component member of a brass-made passage is manufactured via a first process preparing a brass material of 37 to 46 wt.% an apparent Zn content and 0.5 to 7.0 wt.% an Sn content, a second process formed with a hollow part by warm or hot forging this brass material, a third process for adjusting a cutting character and anticorrosion after cooling by controlling a cooling speed after the warm or hot forging, and a fourth process for making cutting work penetrate the hollow part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は管路途中に設けられ
る黄銅製流路構成部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brass flow path component provided in a pipe.

【0002】[0002]

【従来の技術】従来、黄銅鍛造品をストップバルブ等の
流路構成部材に用いる場合、耐食性(耐脱亜鉛腐食性)
への対策が必要であり、耐食性に劣る鍛造用黄銅材で
は、腐食分を加味して肉厚を厚くしたり、弁座部分には
耐食性に優れたステンレス或いは青銅製のシート部材を
埋め込んだりしており、生産性が悪く、且つ製造コスト
が高くなっていた。
2. Description of the Related Art Conventionally, when a brass forged product is used for a flow path constituting member such as a stop valve, corrosion resistance (dezincification corrosion resistance) is required.
For forging brass material with poor corrosion resistance, it is necessary to increase the wall thickness in consideration of the corrosion, or embed a stainless steel or bronze sheet material with excellent corrosion resistance in the valve seat part. As a result, productivity was low and manufacturing cost was high.

【0003】或いは、耐食性に優れた鍛造用黄銅材を用
いることもあったが、このものは、α+β混合相の結晶
構造での鍛造後、長時間の焼鈍により実質的にα単相に
して耐食性を確保するものであり、長時間の焼鈍に伴う
生産性の悪さで製造コストが高くなっていた。
[0003] Alternatively, forging brass material having excellent corrosion resistance was sometimes used. However, after forging with a crystal structure of α + β mixed phase, it was converted into a substantially α single phase by long-time annealing. , And the production cost has been increased due to poor productivity due to long-time annealing.

【0004】また、鍛造用黄銅材によらずに鋳造用黄銅
材を用いることも考えられるが、従来の鋳造用黄銅材で
は耐脱亜鉛腐食性は確保できるものの、耐SCC性や耐
エロージョン腐食性は満足できない面があるうえ、バリ
取り、切削加工、表面研磨加工等が必要でしかも巣漏れ
検査が必要である等生産性が悪く、製造コストが高くな
っていた。
[0004] It is also conceivable to use a brass material for casting instead of a brass material for forging. However, although the conventional brass material for casting can ensure dezincification corrosion resistance, it does not have SCC resistance or erosion corrosion resistance. In addition, there is a surface that cannot be satisfied, and deburring, cutting, surface polishing, and the like are required, and burrow leakage inspection is required.

【0005】[0005]

【発明が解決しようとする課題】従来の何れの場合も何
かしらの欠点を有しており、これを解消するため生産性
がどうしても悪くなっていた。
However, any of the conventional cases have some disadvantages, and the productivity has been impaired in order to solve these disadvantages.

【0006】本発明は、耐食性及び切削性に優れ、且つ
生産性に優れた黄銅製流路構成部材を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a brass flow path component having excellent corrosion resistance and machinability and excellent productivity.

【0007】[0007]

【課題を解決するための手段およびその作用・効果】本
発明は、 見掛け上のZn含有量が37〜46wt%
で、Snの含有量が0.5〜7.0wt%の黄銅材を準
備する第1の工程と、この黄銅材を温間又は熱間鍛造す
ることにより、中空部を形成する第2の工程と、温間又
は熱間鍛造後の冷却速度を制御することにより、冷却後
の切削性、耐食性を調整する第3の工程と、切削加工に
より前記中空部を貫通させる第4の工程と、を経て黄銅
製流路構成部材を製造することにより、鍛造後に切削
性、耐食性を確保しつつ、生産性も良くすることができ
る。
Means for Solving the Problems and Actions / Effects of the Invention The present invention relates to a method for producing an alloy having an apparent Zn content of 37 to 46 wt%.
Then, a first step of preparing a brass material having a Sn content of 0.5 to 7.0 wt%, and a second step of forming a hollow portion by warm or hot forging the brass material By controlling the cooling rate after warm or hot forging, the cutability after cooling, the third step of adjusting the corrosion resistance, and the fourth step of penetrating the hollow portion by cutting, By manufacturing the brass flow path constituent member through the process, the productivity can be improved while securing the machinability and corrosion resistance after forging.

【0008】尚、第2の工程では鍛造により中空部を形
成するが、このような中空部は、通常パンチ等の挿入に
より形成されるものであり、変形抵抗が小さいことが要
求される。また、鍛造により伸延した部分に中空部を形
成する場合には、この伸延した部分には引張応力がかか
るため、引張応力に対する高い延性も要求される。
In the second step, a hollow portion is formed by forging. Such a hollow portion is usually formed by inserting a punch or the like, and is required to have a small deformation resistance. Further, when a hollow portion is formed in a portion extended by forging, a tensile stress is applied to the extended portion, so that high ductility with respect to the tensile stress is required.

【0009】本発明では、温間又は熱間鍛造中に、β相
の面積占有比率30〜80%のα+β相、平均結晶粒径
が15μm以下、好ましくは10μm以下の結晶構造に
することにより、以上の要求を満たすことが可能となっ
たのであり、中空部、特に鍛造により伸延した部分に中
空部を形成する場合であっても、製品の割れをなくすこ
とができる。(詳細は本出願人のPCT/JP97/0
3152にて先に出願済み)
In the present invention, during the warm or hot forging, the α + β phase having an area occupation ratio of the β phase of 30 to 80% and a crystal structure having an average crystal grain size of 15 μm or less, preferably 10 μm or less, The above requirements can be satisfied, and even when a hollow portion is formed in a hollow portion, particularly a portion extended by forging, cracking of a product can be eliminated. (For details, please refer to the applicant's PCT / JP97 / 0
Filed earlier at 3152)

【0010】冷却後の特性としては、日本伸銅協会技術
標準JBMA T−303に準拠する脱亜鉛腐食試験を
行なったとき最大脱亜鉛深さ70μm以下の耐食性、及
び日本工業規格JIS C−3604に従う快削黄銅棒
を基準とした切削抵抗指数が80以上の切削性、を満た
すことができる。
[0010] The properties after cooling are as follows: When subjected to a dezincification corrosion test in accordance with the Japan Copper and Brass Association Technical Standard JBMA T-303, corrosion resistance with a maximum dezincification depth of 70 µm or less, and in accordance with Japanese Industrial Standard JIS C-3604. A cutting resistance index of 80 or more based on a free-cutting brass bar can be satisfied.

【0011】そして、切削性確保のための実施形態とし
ては、β相の面積占有比率調整により行うことができ、
耐食性確保のための実施形態としては、β相中のSn濃
度調整により行うことができる。
As an embodiment for ensuring the machinability, it can be performed by adjusting the area occupation ratio of the β phase.
As an embodiment for ensuring corrosion resistance, it can be performed by adjusting the Sn concentration in the β phase.

【0012】具体的には、冷却後の結晶構造がα+β
相、β相の面積比率が15%以上、好ましくは20%以
上であるとともに、α、β相の平均結晶粒径が15μm
以下、好ましくは10μm以下であって、β相中のSn
濃度が1.5wt%以上であれば良い。
Specifically, the crystal structure after cooling is α + β
Phase and β phase have an area ratio of 15% or more, preferably 20% or more, and the average crystal grain size of α and β phases is 15 μm.
Or less, preferably 10 μm or less, and contained Sn in the β phase.
The concentration may be 1.5 wt% or more.

【0013】この結晶構造は、第2の工程では480℃
以上に加熱し、第3の工程では、400℃以下になるま
での冷却速度を5〜1000K/secにすることで実
現できる。
This crystal structure is 480 ° C. in the second step.
Heating as described above can be realized in the third step by setting the cooling rate to 400 ° C. or lower at 5 to 1000 K / sec.

【0014】耐食性確保のための他の実施形態として
は、β相をγ相が包囲するように調整し、このγ相中の
Sn濃度調整により行うことができる。
In another embodiment for ensuring corrosion resistance, the β phase can be adjusted so as to surround the γ phase, and the Sn concentration in the γ phase can be adjusted.

【0015】具体的には、冷却後の結晶構造がα+β+
γ相、α相の面積比率が40〜94%、β、γ相の面積
比率が共に3〜30%であるとともに、α、β相の平均
結晶粒径が15μm以下、好ましくは10μm以下、γ
相の平均結晶粒径(短径)が8μm以下、好ましくは5
μm以下であって、さらにはγ相中のSn濃度が8wt
%以上であって、γ相がβ相を包囲していれば良い。
Specifically, the crystal structure after cooling is α + β +
The area ratio of the γ phase and the α phase is 40 to 94%, the area ratio of the β and γ phases is 3 to 30%, and the average crystal grain size of the α and β phases is 15 μm or less, preferably 10 μm or less.
The average crystal grain size (minor diameter) of the phase is 8 μm or less, preferably 5 μm or less.
μm or less, and the Sn concentration in the γ phase is 8 wt.
% Or more as long as the γ phase surrounds the β phase.

【0016】この結晶構造は、第2の工程では480℃
以上に加熱し、前記第3の工程では、400℃以下にな
るまでの冷却速度を0.4〜10K/secにすること
で実現できる。
The crystal structure is 480 ° C. in the second step.
By heating as described above, the third step can be realized by setting the cooling rate to 400 ° C. or lower at 0.4 to 10 K / sec.

【0017】切削性、耐食性確保のための別の実施形態
としては、α+γ相とするように調整し、このγ相中の
Sn濃度調整により耐食性を確保し、α相とγ相の粒界
面積調整により切削性を確保することができる。
In another embodiment for ensuring the machinability and the corrosion resistance, an α + γ phase is adjusted, the corrosion resistance is ensured by adjusting the Sn concentration in the γ phase, and the grain boundary area of the α phase and the γ phase is adjusted. Adjustability can ensure machinability.

【0018】具体的には、冷却後の結晶構造がα+γ
相、γ相の面積比率が3〜30%、好ましくは5〜30
%であるとともに、α相の平均結晶粒径が15μm以
下、好ましくは10μm以下、γ相の平均結晶粒径(短
径)が8μm以下、好ましくは5μm以下であって、さ
らにはγ相中のSn濃度が8wt%以上であって、α相
の粒界にγ相が散在していれば良い。
Specifically, the crystal structure after cooling is α + γ
Phase and γ phase area ratio is 3 to 30%, preferably 5 to 30%.
%, The average crystal grain size of the α phase is 15 μm or less, preferably 10 μm or less, and the average crystal grain size (minor axis) of the γ phase is 8 μm or less, preferably 5 μm or less. It is sufficient that the Sn concentration is 8 wt% or more and the γ phase is scattered at the grain boundary of the α phase.

【0019】この結晶構造は、第2の工程では480℃
以上に加熱し、第3の工程では、400℃以下になるま
での冷却速度を0.4〜5K/secにすることで実現
できる。
This crystal structure is 480 ° C. in the second step.
Heating is performed as described above, and the third step can be realized by setting the cooling rate to 400 ° C. or lower to 0.4 to 5 K / sec.

【0020】第4の工程における切削加工の実施形態と
しては、第2の工程で形成された複数の中空部間を貫通
させても良く、第2の工程で形成された中空部と、前記
第4の工程にて切削加工により形成した中空部と、の間
を貫通させても良い。
As an embodiment of the cutting in the fourth step, a plurality of hollow parts formed in the second step may be penetrated, and the hollow part formed in the second step and the hollow part formed in the second step may be penetrated. In step 4, the space between the hollow portion formed by the cutting process and the hollow portion may be penetrated.

【0021】貫通した後の中空部の実施形態としては、
流路入口穴、流路出口穴、開閉バルブ挿入穴を構成する
ことができ、具体的には、流路入口穴と前記開閉バルブ
挿入穴は軸が略一致し、流路入口穴と流路出口穴は軸が
略直交することができる。
As an embodiment of the hollow portion after the penetration,
A flow passage inlet hole, a flow passage outlet hole, and an on-off valve insertion hole can be configured. Specifically, the flow passage entrance hole and the on-off valve insertion hole have substantially the same axis, The exit holes may be substantially orthogonal in axis.

【0022】本発明では、特に、開閉バルブ挿入穴の内
壁には、前記開閉バルブ挿入穴に挿入される開閉バルブ
弁体が着座する弁座孔を形成することができる。すなわ
ち、本発明における冷却後の結晶構造は、何れも耐エロ
ージョン腐食性に優れたものであるため、従来のように
弁座孔に埋め込みシート部材等の別部材を用いなくて済
むのである。
In the present invention, in particular, a valve seat hole in which the on-off valve valve element inserted into the on-off valve insertion hole is seated can be formed on the inner wall of the on-off valve insertion hole. That is, since the crystal structures after cooling in the present invention are all excellent in erosion corrosion resistance, it is not necessary to use another member such as a seat member embedded in a valve seat hole as in the related art.

【0023】[0023]

【発明の実施の形態】本発明の実施形態を以下詳説す
る。図1は、アングル型バルブの一例として水道用止水
栓を示す断面図、図2(a)は従来の鍛造による黄銅製
アングル型バルブの製造工程図、図2(b)は本実施形
態の黄銅製アングル型バルブ製造工程図、図3は鍛造加
工の模式図、図4(a)は鍛造加工後の本体の外観図、
図4(b)はその断面図、図5(a)は切削加工後の本
体の外観図、図5(b)はその断面図を示している。
Embodiments of the present invention will be described in detail below. FIG. 1 is a sectional view showing a water stopcock as an example of an angle type valve, FIG. 2 (a) is a manufacturing process diagram of a brass angle type valve by conventional forging, and FIG. Manufacturing process diagram of the brass angle type valve, FIG. 3 is a schematic diagram of forging, FIG. 4A is an external view of the main body after forging,
4B is a cross-sectional view thereof, FIG. 5A is an external view of the main body after cutting, and FIG. 5B is a cross-sectional view thereof.

【0024】図1において、止水栓(A)は、その本体
(1)は入口(2)方向の軸(x)と出口(3)方向の
軸(y)が略直交し、入口(2)方向の軸(x)と開閉
バルブ(4)の操作方向の軸(z)が略一致する3つの
円筒部(5)(6)(7)を組み合わせた略T字形状に
形成され、出口(3)方向の軸芯より入口(2)側に偏
らせた位置に弁座孔(8)が開設された隔壁(9)が設
けられている。
In FIG. 1, the water stopcock (A) has a body (1) whose axis (x) in the direction of the inlet (2) and axis (y) in the direction of the outlet (3) are substantially orthogonal to each other. ) Direction is formed in a substantially T-shape combining three cylindrical portions (5), (6) and (7) in which the axis (x) of the direction and the axis (z) of the operation direction of the on-off valve (4) substantially coincide with each other. A partition wall (9) having a valve seat hole (8) is provided at a position offset from the axis in the direction (3) toward the inlet (2).

【0025】入口側の円筒部(5)外周にはスパナなど
の工具掛かり用の6角部(10)が、その内周には給水
管(11)接続用の雌ネジ(12)が刻設された入口穴
部(13)が形成される。
A hexagonal portion (10) for holding a tool such as a spanner is formed on the outer periphery of the cylindrical portion (5) on the inlet side, and a female screw (12) for connecting a water supply pipe (11) is formed on the inner periphery. The formed inlet hole (13) is formed.

【0026】出口側の円筒部(6)内周にはボールタッ
プ(図示せず)などに接続される銅管(14)を差し込
むための出口穴部(15)が、その外周には銅管(1
4)を固定するための袋ナット(16)用の雄ネジ(1
7)が刻設される。
An outlet hole (15) for inserting a copper tube (14) connected to a ball tap (not shown) or the like is provided on the inner periphery of the cylindrical portion (6) on the outlet side. 1
Male screw (1) for cap nut (16) for fixing 4)
7) is engraved.

【0027】開閉バルブ側円筒部(7)の内周には先端
にシールパッキン(18)を取付けたスピンドル(1
9)に螺合する雌ネジ(20)が刻設された開閉バルブ
穴部(21)が設けられると共にその外周にはキャップ
ナット(22)が取付けられる雄ネジ(23)が刻設さ
れる。
A spindle (1) having a seal packing (18) attached to the tip thereof on the inner periphery of the opening / closing valve side cylindrical portion (7).
An opening / closing valve hole (21) provided with a female screw (20) screwed into 9) is provided, and a male screw (23) to which a cap nut (22) is attached is formed on the outer periphery thereof.

【0028】尚、(24)は開閉バルブ(4)用ハンド
ル、(25)はキャップナットパッキンである。
Reference numeral (24) denotes a handle for the open / close valve (4), and (25) denotes a cap nut packing.

【0029】図2(a)において、従来は第1ステップ
(い)で準備した黄銅材を第2ステップ(ろ)で加熱
後、第3ステップ(は)でα+β混合相で鍛造する。そ
して、第4ステップ(に)で常温まで冷却した後は、第
5ステップ(ほ)のバリ取り、第6ステップ(へ)の酸
洗い、第7ステップ(と)のショットブラスト、第8ス
テップ(ち)で結晶構造のα単相化のための焼鈍を行
う。その後、第9ステップ(り)での切削等の機械加工
を行ってアングル型バルブ本体(1)の製造が完成す
る。
In FIG. 2A, conventionally, the brass material prepared in the first step (I) is heated in the second step (R), and then forged with the α + β mixed phase in the third step (H). After cooling to room temperature in the fourth step (ス テ ッ プ), deburring in the fifth step (ほ), pickling in the sixth step (へ), shot blasting in the seventh step (と), and the eighth step (() In step (1), annealing is performed to change the crystal structure into an α single phase. Thereafter, machining such as cutting in the ninth step (R) is performed to complete the manufacture of the angle type valve body (1).

【0030】ここで問題になってくるのが、第8ステッ
プ(ち)の焼鈍である。すなわち、第8ステップ(ち)
の結果得られるα単相黄銅は、耐食性には優れるものの
切削性に劣るものだからである。
The problem here is the annealing in the eighth step (c). That is, the eighth step (C)
This is because the α single-phase brass obtained as a result has excellent corrosion resistance but poor machinability.

【0031】これを解決するために、第8ステップ
(ち)と第9ステップ(り)の順序を入れ換える方法も
あるが、焼鈍時に酸化被膜が形成される場合があり、そ
の場合、機械加工後の緻密な形状や仕上げ品位を酸化被
膜の除去時に損なう問題があった。
In order to solve this, there is a method of changing the order of the eighth step (C) and the ninth step (G). However, an oxide film may be formed at the time of annealing. However, there is a problem that the dense shape and the finish quality of the above are impaired when the oxide film is removed.

【0032】次に図2(b)に示す本発明の実施例を説
明すると、まず第1の工程である第1ステップ(イ)で
は、見掛け上のZn含有量37〜46wt%、Snの含
有量が0.5〜7.0wt%の黄銅材を準備するが、こ
の黄銅材は、前工程にて平均結晶粒径<15μmの結晶
構造を得ている。
Next, the embodiment of the present invention shown in FIG. 2B will be described. First, in the first step (a), the apparent Zn content is 37 to 46 wt%, and the Sn content is apparent. A brass material having an amount of 0.5 to 7.0 wt% is prepared, and this brass material has a crystal structure with an average crystal grain size of <15 μm in the previous step.

【0033】ここで、「見掛け上のZn含有量」という
用語は、AをCu含有量〔wt%〕、BをZn含有量
〔wt%〕、tを添加した第3元素(例えばSn)のZ
n当量、Qをその第3元素の含有量〔wt%〕としたと
き、「{(B+t・Q)/(A+B+t・Q)}×10
0」の意味で用いる。また、切削性向上のためにPbを
少量含有しても良い。
Here, the term "apparent Zn content" means that A is Cu content [wt%], B is Zn content [wt%], and t is a third element (for example, Sn). Z
When n equivalents and Q are the content of the third element [wt%], “{(B + t · Q) / (A + B + t · Q)} × 10
0 ”is used. Further, a small amount of Pb may be contained for improving the machinability.

【0034】次に第2の工程である加熱、鍛造工程にお
いては、第2ステップ(ロ)で、準備した黄銅材を48
0〜750℃に加熱し、第3ステップ(ハ)でβ相の面
積比率30〜80%のα+β混合相に対して温間或いは
熱間鍛造を行うが、第2ステップ(ロ)、第3ステップ
(ハ)では、結晶粒径の粗大化に注意が必要である。な
ぜならば、後工程の切削性、耐食性に影響を与えるばか
りか、平均結晶粒径が15μmを超えると鍛造性が著し
く低下するからである。
Next, in the heating and forging process, which is the second process, in the second step (b), the prepared brass material
In the third step (c), warm or hot forging is performed on the α + β mixed phase having an area ratio of the β phase of 30 to 80% in the third step (c). At step (c), attention must be paid to the coarsening of the crystal grain size. This is because not only does it affect the machinability and corrosion resistance in the subsequent steps, but also the forgeability is significantly reduced when the average crystal grain size exceeds 15 μm.

【0035】鍛造が終了すると、第3の工程である第4
ステップ(ニ)の冷却に移るが、実施例(b)では、従
来例(a)の第8ステップ(ち)が果たした役割を第4
ステップ(ニ)に持たせている。すなわち、耐食性に優
れる結晶構造の実現であるが、従来例(a)と異なる点
は以下の実施例1〜3に示すようにα単相に因らない点
である。
When the forging is completed, the third step, the fourth step
The process moves to the cooling of step (d). In the embodiment (b), the role played by the eighth step (c) of the conventional example (a) is replaced by the fourth.
Step (d) has it. That is, although a crystal structure having excellent corrosion resistance is realized, the difference from the conventional example (a) is that it is not due to the α single phase as shown in Examples 1 to 3 below.

【0036】[実施例1]冷却速度を5〜1000K/
secにすることで、冷却後には、α+β相で、β相の
面積占有比率が20%以上、α、β相の平均結晶粒径が
10μm以下、β相中のSn濃度が1.5wt%以上の
結晶構造を得た。β相中のSn濃度確保によりβ相の耐
食性を確保し、β相の面積占有比率確保により切削性を
確保している。
Example 1 A cooling rate of 5 to 1000 K /
After cooling, after cooling, the area occupancy ratio of the β phase in the α + β phase is 20% or more, the average crystal grain size of the α and β phases is 10 μm or less, and the Sn concentration in the β phase is 1.5 wt% or more. Was obtained. The corrosion resistance of the β phase is ensured by securing the Sn concentration in the β phase, and the cutting property is secured by securing the area occupation ratio of the β phase.

【0037】[実施例2]冷却速度を0.4〜5K/s
ecにすることで、冷却後には、α+γ相で、γ相の面
積占有比率が5〜30%、α相の平均結晶粒径が10μ
m以下、γ相の平均結晶粒径(短径)が5μm以下、γ
相中のSn濃度が8wt%以上であって、α相の粒界に
γ相が散在している結晶構造を得た。γ相中のSn濃度
確保によりγ相の耐食性を確保し、硬質なγ相と軟質な
α相との粒界面での硬度差により切削性を確保してい
る。
[Example 2] The cooling rate was set to 0.4 to 5 K / s.
ec, after cooling, in the α + γ phase, the area occupation ratio of the γ phase is 5 to 30%, and the average crystal grain size of the α phase is 10 μm.
m, the average crystal grain size (minor axis) of the γ phase is 5 μm or less, γ
A crystal structure was obtained in which the Sn concentration in the phase was 8 wt% or more and the γ phase was scattered at the grain boundaries of the α phase. The corrosion resistance of the γ phase is ensured by ensuring the Sn concentration in the γ phase, and the machinability is ensured by the hardness difference at the grain interface between the hard γ phase and the soft α phase.

【0038】[実施例3]冷却速度を0.4〜10K/
secにすることで、冷却後には、α+β+γ相で、α
相の面積占有比率が40〜94%、β、γ相の面積占有
比率が共に3〜30%α、β相の平均結晶粒径が10μ
m以下、γ相の平均結晶粒径(短径)が5μm以下、γ
相中のSn濃度が8wt%以上であって、γ相がβ相を
包囲している結晶構造を得た。γ相中のSn濃度確保に
よりγ相の耐食性を確保し、γ相がβ相を包囲すること
によりβ相の脱亜鉛腐食を防止し、β相の存在、及び硬
質なγ相と軟質なα、β相との粒界面での硬度差により
切削性を確保している。
Example 3 The cooling rate was set to 0.4 to 10 K /
sec, after cooling, α + β + γ phase, α
The area occupancy of the phase is 40 to 94%, the area occupancy of the β and γ phases is 3 to 30%, and the average crystal grain size of the β phase is 10 μm.
m, the average crystal grain size (minor axis) of the γ phase is 5 μm or less, γ
A crystal structure in which the Sn concentration in the phase was 8 wt% or more and the γ phase surrounded the β phase was obtained. Ensuring the corrosion resistance of the γ phase by securing the Sn concentration in the γ phase, preventing the dezincification corrosion of the β phase by surrounding the β phase with the γ phase, the presence of the β phase, and the hard γ phase and soft α The machinability is secured by the difference in hardness at the grain interface with the β phase.

【0039】以上示すように実施例1〜3は、何れも耐
食性、切削性とも良好な特性を示す。具体的には、まず
良好な耐食性として、日本伸銅協会技術標準JBMA
T−303に準拠する脱亜鉛腐食試験を行なったとき、
最大脱亜鉛深さ70μm以下の耐食性を満たす。
As described above, Examples 1 to 3 all show good characteristics in both corrosion resistance and machinability. Specifically, first, as good corrosion resistance, the Japan Copper and Brass Association technical standard JBMA
When a dezincification corrosion test based on T-303 was performed,
Satisfies the corrosion resistance with a maximum dezincing depth of 70 μm or less.

【0040】また、良好な切削性として切削抵抗指数8
0以上を満たす。これについて図6を用いて詳説する
と、切削試験では、旋盤で丸棒状の試料Aの周面を10
0〔m/min〕と400〔m/min〕の2つの異な
る速度で切削しつつ、主分力Fvを測定した。実施例の
切削抵抗指数は、実施例の主分力に対する切削性が最も
良いといわれる快削黄銅棒(日本工業規格JIS C−
3604)の主分力の百分率である。(切削速度毎の切
削抵抗指数を平均した。)
Further, as a good cutting property, a cutting resistance index of 8
Satisfies 0 or more. This will be described in detail with reference to FIG. 6. In the cutting test, the peripheral surface of the round bar-shaped sample A was
The main component force Fv was measured while cutting at two different speeds of 0 [m / min] and 400 [m / min]. The cutting resistance index of the working example is a free-cutting brass rod (Japanese Industrial Standard JIS C-
3604). (The cutting resistance index for each cutting speed was averaged.)

【0041】実施例1〜3の結晶構造によれば、また、
耐SCC性にも良好な特性を示す。具体的には、円筒形
試料を14%アンモニア水溶液上のアンモニア雰囲気中
に荷重を加えながら24時間暴露したとき、試料が割れ
ない最大応力が180N/mm2以上の特性を満たすの
であるが、この耐SCC性試験は、図7に示すように、
ガラスデジケータB内で円筒状の試料Cに垂直に荷重を
加えた状態で、NH3蒸気雰囲気中に24時間暴露した
後、割れの発生を調査した。
According to the crystal structures of Examples 1 to 3,
It also shows good characteristics in SCC resistance. Specifically, when a cylindrical sample is exposed to an ammonia atmosphere on a 14% aqueous ammonia solution for 24 hours while applying a load, the maximum stress at which the sample does not crack satisfies the characteristic of 180 N / mm 2 or more. The SCC test was performed as shown in FIG.
The sample was exposed to an NH3 vapor atmosphere for 24 hours in a state where a load was applied vertically to the cylindrical sample C in the glass digitator B, and then the occurrence of cracks was examined.

【0042】さらに、実施例1〜3の結晶構造によれ
ば、耐エロージョン腐食性にも良好な特性を示す。図8
に示す耐エロージョン腐食性試験では、オリフィスDを
内部に有する円筒状試料Eを用い、そのオリフィスDに
水を流速40m/secで所定時間流した後、4.9×
105Pa(5Kg/cm2)の水圧下でオリフィスD
をシールするのに要する樹脂栓Fへの締めつけトルクを
測定した。
Further, according to the crystal structures of Examples 1 to 3, good characteristics are also exhibited in erosion corrosion resistance. FIG.
In the erosion corrosion resistance test shown in (1), a cylindrical sample E having an orifice D therein was used, and after flowing water through the orifice D at a flow rate of 40 m / sec for a predetermined time, 4.9 ×
Orifice D under water pressure of 105 Pa (5 kg / cm2)
Of the resin stopper F required for sealing was measured.

【0043】図8の試験の結果は図9に示す通りであ
り、実施例1〜3の黄銅材は従来例よりも良好な特性を
得た。尚、従来例にはSnの含有量が0.5wt%のも
のを用いた。
The results of the test in FIG. 8 are as shown in FIG. 9, and the brass materials of Examples 1 to 3 obtained better characteristics than the conventional example. In the conventional example, a Sn content of 0.5 wt% was used.

【0044】図2に戻って実施例(b)では、以上の第
4ステップ(ニ)に引き続いて、第5ステップ(ホ)の
バリ取り、第6ステップ(ヘ)の酸洗い、第7ステップ
(ト)のショットブラストを行うが、従来例(a)の第
8ステップ(ち)の焼鈍を経ることなく、第4の工程で
ある第8ステップ(チ)での切削等の機械加工に移る。
Returning to FIG. 2, in the embodiment (b), following the fourth step (d), deburring in the fifth step (e), pickling in the sixth step (f), and the seventh step Although the shot blasting of (g) is performed, the process proceeds to the machining such as cutting in the eighth step (h) which is the fourth step without passing through the annealing of the eighth step (c) of the conventional example (a). .

【0045】すなわち、第4ステップ(ニ)の冷却中
に、既に耐食性に優れる結晶構造を得たため、従来例
(a)の第8ステップ(ち)の焼鈍が不要になったので
あるが、本実施例の第8ステップ(チ)の切削において
も従来例(a)のα単相を切削加工する場合に比べて切
削性が向上するのである。
That is, during the cooling in the fourth step (d), a crystal structure having excellent corrosion resistance was already obtained, so that the annealing in the eighth step (c) of the conventional example (a) became unnecessary. Also in the cutting in the eighth step (h) of the embodiment, the machinability is improved as compared with the case of cutting the α single phase in the conventional example (a).

【0046】次に、図3に基いてアングル型バルブ本体
の鍛造工程について説明する。
Next, the forging process of the angle type valve body will be described with reference to FIG.

【0047】アングル型バルブ本体(1)は棒材形状の
素材(図示せず)を型(26)内に配置し、外形を3つ
の円筒部(5)(6)(7)を組み合わせた略T字形状
にほぼ形成すると共に、入口(2)方向側と開閉バルブ
(4)の操作方向側と出口(3)方向側より三つのパン
チ(27)(28)(29)を挿入して出口(3)方向
の軸(y)芯より入口(2)側に偏らせた位置に第一の
隔壁(9)を、開閉バルブ(4)の操作方向の軸(z)
心より出口(3)側に偏らせた位置に第二の隔壁(3
0)を設けて入口穴部(13)と開閉バルブ穴部(2
1)と出口穴部(15)を開設する様に塑性変形させ
る。
The angle type valve body (1) is formed by disposing a rod-shaped material (not shown) in a mold (26), and has an outer shape obtained by combining three cylindrical portions (5), (6) and (7). It is formed almost in a T-shape, and three punches (27), (28), (29) are inserted from the inlet (2) direction side, the operation direction side of the on-off valve (4) and the outlet (3) direction side, and the outlet is inserted. The first partition wall (9) is located at a position offset from the axis (y) of the (3) axis toward the inlet (2), and the axis (z) of the operating direction of the on-off valve (4).
The second partition (3) is located at a position offset from the center toward the outlet (3).
0) to provide an inlet hole (13) and an open / close valve hole (2).
1) and plastically deform so as to open the exit hole (15).

【0048】尚、円筒部(6)の肉部分は、棒材形状の
段階では図の位置には存在しておらず、型(26)鍛造
時又はパンチ(27)(28)挿入時に、棒材形状の素
材が伸びることによって図の位置に形成される。
The flesh portion of the cylindrical portion (6) does not exist at the position shown in the figure at the stage of the rod shape, and when the die (26) is forged or the punches (27) and (28) are inserted, The material is formed at the position shown in the figure by elongating the material.

【0049】そして第4ステップ(ニ)で前述した冷却
速度制御により実施例1〜3の結晶構造を得た後は、第
5ステップ(ホ)のバリ取り、第6ステップ(ヘ)の酸
洗い、第7ステップ(ト)のショットブラスト、経て図
4の形状に至り、第8ステップ(チ)の切削加工を施す
と図5に示す形状となるのである。
After obtaining the crystal structures of Examples 1 to 3 by controlling the cooling rate in the fourth step (d), deburring in the fifth step (e) and pickling in the sixth step (f) 4 through the shot blast in the seventh step (g), and the shape shown in FIG. 5 is obtained by performing the cutting in the eighth step (h).

【0050】即ち、入り口側円筒部(5)にはその入口
穴部(13)内周に雌ネジ(12)を刻設し、出口側円
筒部(6)外周には雄ネジ(17)を刻設すると共に出
口穴部(15)側より第二の隔壁(30)に通水孔(3
1)を開設し、開閉バルブ穴部(21)と連通させる。
That is, a female screw (12) is engraved on the inner periphery of the entrance hole (13) on the entrance side cylindrical portion (5), and a male screw (17) is formed on the outer periphery of the exit side cylindrical portion (6). At the same time, the water hole (3) is formed in the second partition (30) from the outlet hole (15) side.
1) is established and communicated with the opening / closing valve hole (21).

【0051】又、開閉バルブ側円筒部(7)の開閉バル
ブ穴部(21)内周には雌ネジ(20)を刻設すると共
に外周には雄ネジ(23)を刻設する。
A female screw (20) is engraved on the inner periphery of the opening / closing valve hole (21) of the opening / closing valve side cylindrical portion (7), and a male screw (23) is engraved on the outer periphery.

【0052】第一の隔壁(9)には、入口穴部(13)
側又は開閉バルブ穴部(21)側より弁座孔(8)を開
設すると共に開閉バルブ穴部(21)側より弁座シート
(32)の加工を行う。
The first partition (9) has an inlet hole (13).
The valve seat (8) is opened from the side or the opening and closing valve hole (21) side, and the valve seat (32) is processed from the opening and closing valve hole (21) side.

【0053】このように本体(1)は、鍛造後、切削加
工を行い、さらに耐食性を要求される部位に用いられる
ものであるから、実施例1〜3のように切削性、耐食性
共に優れた鍛造品にするのが好適なのである。
As described above, since the main body (1) is subjected to cutting after forging, and is used for a portion where corrosion resistance is required, the cutting performance and corrosion resistance are excellent as in Examples 1 to 3. It is preferable to use a forged product.

【0054】又、第一の隔壁(9)に直接弁座シート部
(32)を形成するのが好適である。なぜならば、弁座
シート部(32)は流速が速く、かつ締めつけ力を受け
る部位であるため、本実施形態のように耐エロージョン
腐食性が優れたものが好適なのである。
It is preferable to form the valve seat portion (32) directly on the first partition (9). This is because the valve seat portion (32) has a high flow velocity and receives a tightening force. Therefore, a material having excellent erosion corrosion resistance as in the present embodiment is preferable.

【0055】尚、本実施例では、鍛造時において3方向
よりパンチを挿入したが、鍛造時において入口方向側と
開閉バルブの操作方向側の2方向より二つのパンチを挿
入して入口穴部と開閉バルブ穴部とを開設し、出口穴部
は鍛造後切削加工で開設しても良い。
In the present embodiment, punches are inserted from three directions during forging. However, two punches are inserted from two directions on the inlet side and the operation direction of the on-off valve during forging, and the punch is inserted into the inlet hole. An opening and closing valve hole may be opened, and an outlet hole may be opened by cutting after forging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アングル型バルブの一例として水道用止水栓を
示す断面図
FIG. 1 is a sectional view showing a water stopcock as an example of an angle type valve.

【図2】(a)は従来の鍛造による黄銅製アングル型バ
ルブの製造工程図、(b)は本実施形態の黄銅製アング
ル型バルブ製造工程図
FIG. 2 (a) is a manufacturing process diagram of a conventional brass angle type valve by forging, and FIG. 2 (b) is a manufacturing process diagram of a brass angle type valve of the present embodiment.

【図3】鍛造加工の模式図FIG. 3 is a schematic diagram of a forging process.

【図4】(a)は鍛造加工後の本体の外観図、(b)は
その断面図
4A is an external view of a main body after forging, and FIG. 4B is a cross-sectional view thereof.

【図5】(a)は切削加工後の本体の外観図、(b)は
その断面図
5A is an external view of a main body after cutting, and FIG. 5B is a cross-sectional view thereof.

【図6】切削試験の説明図FIG. 6 is an explanatory diagram of a cutting test.

【図7】同実施形態の耐SCC性試験の説明図FIG. 7 is an explanatory diagram of an SCC resistance test of the same embodiment.

【図8】同実施形態の耐エロージョン腐食性試験の説明
FIG. 8 is an explanatory diagram of an erosion corrosion resistance test of the same embodiment.

【図9】同実施形態の耐エロージョン腐食性試験結果FIG. 9 shows an erosion corrosion resistance test result of the same embodiment.

【符号の説明】[Explanation of symbols]

1…本体、2…入口、3…出口、4…開閉バルブ、5…
入口側円筒部、6…出口側円筒部、7…開閉バルブ側円
筒部、8…弁座孔、9・・・第一の隔壁部、13…入口穴
部、15…出口穴部、21…開閉バルブ穴部、26・・・
型、27,28,29…パンチ、30…第二の隔壁部、
31…連通孔、x…入口方向の軸、y…出口方向の軸、
z…操作方向の軸、イ・・・第1の工程、ロ、ハ・・・第2の
工程、ニ・・・第3の工程、チ・・・第4の工程、A…切削性
試験用の試料、B…ガラスデジケータ、C…耐応力腐食
割れ性試験用の試料、D…オリフィス、E…耐エロージ
ョン腐食性試験用の試料、F…樹脂栓
DESCRIPTION OF SYMBOLS 1 ... Body, 2 ... Inlet, 3 ... Outlet, 4 ... Opening / closing valve, 5 ...
Inlet side cylindrical part, 6 ... Outlet side cylindrical part, 7 ... Opening / closing valve side cylindrical part, 8 ... Valve seat hole, 9 ... First partition part, 13 ... Inlet hole part, 15 ... Outlet hole part, 21 ... Open / close valve hole, 26 ...
Mold, 27, 28, 29 ... punch, 30 ... second partition part,
31: communication hole, x: axis in the entrance direction, y: axis in the exit direction,
z: axis of operation direction, a: first step, b, c: second step, d: third step, h: fourth step, A: machinability test B: glass digitator, C: sample for stress corrosion cracking resistance test, D: orifice, E: sample for erosion corrosion resistance test, F: resin stopper

フロントページの続き Fターム(参考) 3H051 AA01 AA04 BB01 BB06 CC11 DD03 EE02 FF14 Continuation of the front page F term (reference) 3H051 AA01 AA04 BB01 BB06 CC11 DD03 EE02 FF14

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 見掛け上のZn含有量が37〜46wt
%で、Snの含有量が0.5〜7.0wt%の黄銅材を
準備する第1の工程と、 この黄銅材を温間又は熱間鍛造することにより、中空部
を形成する第2の工程と、 温間又は熱間鍛造後の冷却速度を制御することにより、
冷却後の切削性、耐食性を調整する第3の工程と、 切削加工により前記中空部を貫通させる第4の工程と、
を経て製造される黄銅製流路構成部材。
1. An apparent Zn content of 37 to 46 wt.
%, A first step of preparing a brass material having a Sn content of 0.5 to 7.0 wt%, and a second step of forming a hollow portion by warm or hot forging the brass material. Process and by controlling the cooling rate after warm or hot forging,
A third step of adjusting the cutability after cooling and the corrosion resistance, and a fourth step of penetrating the hollow portion by cutting.
A brass flow path component produced through the following.
【請求項2】 前記中空部のうち少なくとも1つは、前
記第2の工程における前記温間又は熱間鍛造により伸延
した部分に形成される請求項1記載の黄銅製流路構成部
材。
2. The brass flow path component according to claim 1, wherein at least one of the hollow portions is formed in a portion extended by the warm or hot forging in the second step.
【請求項3】 前記第2の工程では、前記温間又は熱間
鍛造中に、β相の面積占有比率30〜80%のα+β
相、平均結晶粒径が15μm以下、好ましくは10μm
以下の結晶構造を有する請求項1又は2記載の黄銅製流
路構成部材。
3. In the second step, during the warm or hot forging, α + β having an area occupancy ratio of the β phase of 30 to 80% is used.
Phase, average crystal grain size is 15 μm or less, preferably 10 μm
The brass flow path component according to claim 1 or 2, having the following crystal structure.
【請求項4】 冷却後の特性として、日本伸銅協会技術
標準JBMA T−303に準拠する脱亜鉛腐食試験を
行なったとき最大脱亜鉛深さ70μm以下の耐食性、及
び日本工業規格JIS C−3604に従う快削黄銅棒
を基準とした切削抵抗指数が80以上の切削性、を満た
す請求項1〜3の何れか記載の黄銅製流路構成部材。
4. The characteristics after cooling include corrosion resistance at a maximum dezincification depth of 70 μm or less when subjected to a dezincification corrosion test in accordance with the Japan Copper and Brass Association Technical Standard JBMA T-303, and Japanese Industrial Standard JIS C-3604. The brass flow path component according to any one of claims 1 to 3, which satisfies a machinability having a cutting resistance index of 80 or more based on a free-cutting brass bar according to claim 1.
【請求項5】 前記第3の工程では、β相の面積占有比
率調整により切削性を確保してなる請求項4記載の黄銅
製流路構成部材。
5. The brass flow path component according to claim 4, wherein in the third step, the cutting property is ensured by adjusting the area occupancy ratio of the β phase.
【請求項6】 前記第3の工程では、前記β相中のSn
濃度調整により耐食性を確保してなる請求項5記載の黄
銅製流路構成部材。
6. The method according to claim 3, wherein in the third step, Sn in the β phase
6. The brass flow path component according to claim 5, wherein the corrosion resistance is ensured by adjusting the concentration.
【請求項7】 前記冷却後の結晶構造がα+β相、β相
の面積比率が15%以上、好ましくは20%以上である
とともに、α、β相の平均結晶粒径が15μm以下、好
ましくは10μm以下であって、β相中のSn濃度が
1.5wt%以上である請求項6記載の黄銅製流路構成
部材。
7. The crystal structure after cooling has an area ratio of α + β phase and β phase of 15% or more, preferably 20% or more, and an average crystal grain size of α and β phases of 15 μm or less, preferably 10 μm. The brass flow path component according to claim 6, wherein the Sn concentration in the β phase is 1.5 wt% or more.
【請求項8】 前記第2の工程では480℃以上に加熱
し、前記第3の工程では、400℃以下になるまでの冷
却速度が5〜1000K/secである請求項7記載の
黄銅製流路構成部材。
8. The brass flow according to claim 7, wherein the heating is performed at 480 ° C. or more in the second step, and the cooling rate until the temperature is reduced to 400 ° C. or less is 5 to 1000 K / sec in the third step. Road components.
【請求項9】 前記第3の工程では、前記β相をγ相が
包囲するように調整し、このγ相中のSn濃度調整によ
り耐食性を確保してなる請求項5記載の黄銅製流路構成
部材。
9. The brass flow path according to claim 5, wherein in the third step, the β phase is adjusted so as to surround the γ phase, and corrosion resistance is secured by adjusting the Sn concentration in the γ phase. Components.
【請求項10】 前記冷却後の結晶構造がα+β+γ
相、α相の面積比率が40〜94%、β、γ相の面積比
率が共に3〜30%であるとともに、α、β相の平均結
晶粒径が15μm以下、好ましくは10μm以下、γ相
の平均結晶粒径(短径)が8μm以下、好ましくは5μ
m以下であって、さらにはγ相中のSn濃度が8wt%
以上であって、γ相がβ相を包囲している請求項9記載
の黄銅製流路構成部材。
10. The crystal structure after cooling is α + β + γ
Phase and α phase have an area ratio of 40 to 94%, β and γ phases have an area ratio of 3 to 30%, and α and β phases have an average crystal grain size of 15 μm or less, preferably 10 μm or less, and γ phase. Has an average crystal grain size (minor diameter) of 8 μm or less, preferably 5 μm.
m or less, and the Sn concentration in the γ phase is 8 wt%.
The brass flow path component according to claim 9, wherein the γ phase surrounds the β phase.
【請求項11】 前記第2の工程では480℃以上に加
熱し、前記第3の工程では、400℃以下になるまでの
冷却速度が0.4〜10K/secである請求項10記
載の黄銅製流路構成部材。
11. The method according to claim 10, wherein the heating is performed at 480 ° C. or more in the second step, and the cooling rate until the temperature is reduced to 400 ° C. or less is 0.4 to 10 K / sec in the third step. Copper flow path component.
【請求項12】 前記第3の工程では、α+γ相とする
ように調整し、このγ相中のSn濃度調整により耐食性
を確保し、α相とγ相の粒界面積調整により切削性を確
保してなる請求項4記載の黄銅製流路構成部材。
12. In the third step, an α + γ phase is adjusted, the corrosion resistance is ensured by adjusting the Sn concentration in the γ phase, and the machinability is ensured by adjusting the grain boundary area between the α phase and the γ phase. The brass flow path component according to claim 4, wherein:
【請求項13】 前記冷却後の結晶構造がα+γ相、γ
相の面積比率が3〜30%、好ましくは5〜30%であ
るとともに、α相の平均結晶粒径が15μm以下、好ま
しくは10μm以下、γ相の平均結晶粒径(短径)が8
μm以下、好ましくは5μm以下であって、さらにはγ
相中のSn濃度が8wt%以上であって、α相の粒界に
γ相が散在している請求項12の何れか記載の黄銅製流
路構成部材。
13. The crystal structure after cooling has an α + γ phase, γ
The area ratio of the phase is 3 to 30%, preferably 5 to 30%, the average crystal grain size of the α phase is 15 μm or less, preferably 10 μm or less, and the average crystal grain size (minor axis) of the γ phase is 8
μm or less, preferably 5 μm or less, and further γ
13. The brass flow path component according to claim 12, wherein the Sn concentration in the phase is 8 wt% or more, and the γ phase is scattered at the grain boundary of the α phase.
【請求項14】 前記第2の工程では480℃以上に加
熱し、前記第3の工程では、400℃以下になるまでの
冷却速度が0.4〜5K/secである請求項13記載
の黄銅製流路構成部材。
14. The method according to claim 13, wherein the heating is performed at 480 ° C. or more in the second step, and the cooling rate until the temperature is reduced to 400 ° C. or less is 0.4 to 5 K / sec in the third step. Copper flow path component.
【請求項15】 前記第4の工程では、前記第2の工程
で形成された複数の中空部間を貫通させる請求項1〜1
4の何れか記載の黄銅製流路構成部材。
15. The method according to claim 1, wherein in the fourth step, a plurality of hollow portions formed in the second step are penetrated.
5. The channel member made of brass according to any one of 4.
【請求項16】 前記第4の工程では、前記第2の工程
で形成された中空部と、前記第4の工程にて切削加工に
より形成した中空部と、の間を貫通させる請求項1〜1
4の何れか記載の黄銅製流路構成部材。
16. The method according to claim 1, wherein the fourth step penetrates between the hollow part formed in the second step and the hollow part formed by cutting in the fourth step. 1
5. The channel member made of brass according to any one of 4.
【請求項17】 貫通した後の前記中空部が、流路入口
穴と、流路出口穴と、この流路入口穴から流路出口穴に
至る流路を開閉する開閉バルブを挿入するための開閉バ
ルブ挿入穴と、である請求項1〜16の何れか記載の黄
銅製流路構成部材。
17. The hollow part having passed therethrough is used for inserting a flow passage inlet hole, a flow passage outlet hole, and an open / close valve for opening and closing a flow passage from the flow passage inlet hole to the flow passage outlet hole. The brass flow path component according to any one of claims 1 to 16, further comprising an on-off valve insertion hole.
【請求項18】 前記流路入口穴と前記開閉バルブ挿入
穴は軸が略一致し、前記流路入口穴と前記流路出口穴は
軸が略直交してなる請求項17記載の黄銅製流路構成部
材。
18. The brass flow according to claim 17, wherein the flow passage entrance hole and the opening / closing valve insertion hole have substantially the same axis, and the flow passage entrance hole and the flow passage exit hole have substantially perpendicular axes. Road components.
【請求項19】 前記開閉バルブ挿入穴の内壁には、前
記開閉バルブ挿入穴に挿入される開閉バルブ弁体が着座
する弁座孔が形成される請求項17又は18記載の黄銅
製流路構成部材。
19. The brass flow path configuration according to claim 17, wherein a valve seat hole in which an on-off valve valve body inserted into the on-off valve insertion hole is seated is formed on an inner wall of the on-off valve insertion hole. Element.
JP34398897A 1997-11-10 1997-11-27 Component member of brass-made passage Pending JP2002013655A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP34398897A JP2002013655A (en) 1997-11-27 1997-11-27 Component member of brass-made passage
PCT/JP1998/005021 WO1999024631A1 (en) 1997-11-10 1998-11-09 Forged brass product and cut brass product having high corrosion resistance and method of manufacturing the same
EP98951730A EP1029939A1 (en) 1997-11-10 1998-11-09 Forged brass product and cut brass product having high corrosion resistance and method of manufacturing the same
AU97624/98A AU9762498A (en) 1997-11-10 1998-11-09 Forged brass product and cut brass product having high corrosion resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34398897A JP2002013655A (en) 1997-11-27 1997-11-27 Component member of brass-made passage

Publications (1)

Publication Number Publication Date
JP2002013655A true JP2002013655A (en) 2002-01-18

Family

ID=18365789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34398897A Pending JP2002013655A (en) 1997-11-10 1997-11-27 Component member of brass-made passage

Country Status (1)

Country Link
JP (1) JP2002013655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208842A (en) * 2014-04-30 2015-11-24 株式会社キッツ Production method of low lead brass liquid contact member and the liquid contact member
CN110508776A (en) * 2019-08-20 2019-11-29 宁波孚士威机械有限公司 A kind of processing technology of high intensity bracket
CN112192151A (en) * 2020-09-29 2021-01-08 宁波横河模具股份有限公司 Production tool and process of high-precision sealing valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208842A (en) * 2014-04-30 2015-11-24 株式会社キッツ Production method of low lead brass liquid contact member and the liquid contact member
CN110508776A (en) * 2019-08-20 2019-11-29 宁波孚士威机械有限公司 A kind of processing technology of high intensity bracket
CN112192151A (en) * 2020-09-29 2021-01-08 宁波横河模具股份有限公司 Production tool and process of high-precision sealing valve
CN112192151B (en) * 2020-09-29 2021-11-16 宁波横河精密工业股份有限公司 Production tool and process of high-precision sealing valve

Similar Documents

Publication Publication Date Title
US4125924A (en) Method of producing composite metal pipe
CN110337499B (en) High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
EP3138937A1 (en) Production method for hot-forged articles using brass, hot-forged article, and fluid-contact product such as valve or tap, molded using same
WO2012057055A1 (en) Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
US20150165519A1 (en) Shaped parts made from corrosion-resistant copper alloys
JP2002013655A (en) Component member of brass-made passage
WO1999024631A1 (en) Forged brass product and cut brass product having high corrosion resistance and method of manufacturing the same
JP2000140987A (en) Elbow-like fluid metal piece, and its manufacture
JPWO2019035225A1 (en) High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy
CN107429337B (en) The aluminium-alloy pipe and its manufacturing method of corrosion resistance and excellent in workability
JP2002012928A (en) Brass forging product excellent in corrosion resistance, brass forging product excellent in both corrosion resistance and cutting property, brass cutting product excellent in corrosion resistance, and water-contacting member
JP3379769B2 (en) Manufacturing method of corrosion resistant joints
JP6448168B1 (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
JP2001087951A (en) Manufacture of metal press fitting element
JPH11314051A (en) Water ejecting device and production of hollow member
US1889916A (en) Method of making composite valves
US6523261B1 (en) Method of making a metallic press fitting element
EP1375019B1 (en) Thick-walled small diameter pipe producing method
JP2002069551A (en) Free cutting copper alloy
JP6448166B1 (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
CN109201769A (en) A kind of processing method and chromium-zirconium-copper microporous pipe of chromium-zirconium-copper microporous pipe
JPH109468A (en) Metal fitting for hose and brake hose
JPH0246939A (en) Manufacture of conjugated wire material
CN117396621A (en) Aluminum alloy for extruded raw pipe having straight grooves on inner surface and extruded raw pipe having straight grooves on inner surface, and method for manufacturing pipe and heat exchanger having spiral grooves on inner surface
JPH11248077A (en) Eccentric pipe for water combination taps