JP2002012927A - Cupper based alloy having dezincfication resistive property - Google Patents

Cupper based alloy having dezincfication resistive property

Info

Publication number
JP2002012927A
JP2002012927A JP2000198825A JP2000198825A JP2002012927A JP 2002012927 A JP2002012927 A JP 2002012927A JP 2000198825 A JP2000198825 A JP 2000198825A JP 2000198825 A JP2000198825 A JP 2000198825A JP 2002012927 A JP2002012927 A JP 2002012927A
Authority
JP
Japan
Prior art keywords
resistance
range
based alloy
hot
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000198825A
Other languages
Japanese (ja)
Other versions
JP3903297B2 (en
Inventor
Jushin To
樹新 董
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000198825A priority Critical patent/JP3903297B2/en
Priority to US09/891,650 priority patent/US20020015657A1/en
Publication of JP2002012927A publication Critical patent/JP2002012927A/en
Priority to US10/302,037 priority patent/US20030095887A1/en
Application granted granted Critical
Publication of JP3903297B2 publication Critical patent/JP3903297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent

Abstract

PROBLEM TO BE SOLVED: To provide a cupper-based alloy improved in dezincfication resistive property while keeping an excellent hot forgeability, cutting property and low cost. SOLUTION: The cupper-based alloy having dezincfication resistive property, is composed of, by weight, 57-69% Cu, 0.3-3% Sn and 0.02-1.5% Si, wherein Si/Sn is in the range of 0.05-1, and the balance Zn with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐食水溶液存在下
で使用しても脱亜鉛腐食に優れた耐食性を有し、かつ熱
間加工性および切削加工性に優れた銅基合金に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based alloy having excellent corrosion resistance even when used in the presence of a corrosive aqueous solution, and having excellent hot workability and cutting workability. .

【0002】[0002]

【従来の技術】Cu-Zn系合金、いわゆる黄銅材は優れる
熱間、冷間加工性等から古くから広く使用されてきた。
一般に鍛造用黄銅棒(JIS C3771)、快削黄銅棒(JISC3
604)、高力黄銅棒(JIS C6782)等が知られているが、
これらの銅基合金は、加工性を向上する目的でいずれも
組織中に連続するβ相が存在する。
2. Description of the Related Art Cu-Zn alloys, so-called brass materials, have been widely used since ancient times due to their excellent hot workability and cold workability.
Generally, forged brass bars (JIS C3771), free-cutting brass bars (JISC3
604) and high-strength brass bars (JIS C6782) are known,
Each of these copper-based alloys has a continuous β phase in the structure for the purpose of improving workability.

【0003】自然環境において特に腐食水溶液が存在す
る場合、β相中のZnのイオン化傾向が強く優先的に溶け
出すためこれらの合金は耐脱亜鉛性に極めて劣る。
[0003] Particularly in the presence of a corrosive aqueous solution in a natural environment, Zn in the β phase has a strong ionization tendency and is preferentially dissolved, so that these alloys are extremely poor in dezincing resistance.

【0004】近来、接水部品等に使われる黄銅材の耐脱
亜鉛性を向上させるため、種々の提案がなされている。
例えば、特開平10−183275号公報には、Cu-Zn
合金にSnを添加し、さらに熱間押し出し後に様々な熱処
理を通じてγ相の比率およびγ相中のSn濃度を制御
し、耐脱亜鉛性を向上することが公開されている。
[0004] In recent years, various proposals have been made to improve the dezincing resistance of brass materials used for wetted parts and the like.
For example, JP-A-10-183275 discloses Cu-Zn
It is disclosed that Sn is added to an alloy, and the ratio of the γ phase and the Sn concentration in the γ phase are controlled through various heat treatments after hot extrusion to improve the dezincification resistance.

【0005】また、特開平6−108184号公報に
は、Cu-Zn合金にSnを添加して、熱間押し出し後に熱処
理を施すことによりα単相に制御し、耐脱亜鉛性を高め
ることが提案されている。すなわち、上述した合金は、
いずれも従来の黄銅に比べてSnを多く添加することが特
徴である。黄銅中にSnを多く含有するにより、新たな問
題点があった。
Japanese Patent Application Laid-Open No. Hei 6-108184 discloses that Sn is added to a Cu-Zn alloy, and heat treatment is performed after hot extrusion to control the alloy into a single α-phase, thereby improving the dezincification resistance. Proposed. That is, the above alloy is
Each is characterized by adding more Sn than conventional brass. There is a new problem due to the large content of Sn in brass.

【0006】その一つは、Sn量の増加につれて黄銅のロ
ーカル凝固時間が長くなり、鋳造時にSnが逆偏析し、鋳
塊の表面欠陥をもたらすと共に押し出し等の熱間加工性
を損ない、製品の歩留まりが著しく低下するという問題
点がある。
One of the problems is that the local solidification time of brass increases with an increase in the amount of Sn, so that Sn reversely segregates during casting, causing surface defects of the ingot and impairing hot workability such as extrusion. There is a problem that the yield is significantly reduced.

【0007】また、Snによる耐脱亜鉛性向上効果を引き
出すために熱間押し出し後にα相の粒界に一定面積のγ
相を生成させ、かつSnをγ相中に均一に拡散させる熱処
理を行うことを必要とし、コスト面で問題があった。
Further, in order to bring out the effect of improving the dezincing resistance of Sn, a certain area of γ
It is necessary to perform a heat treatment for generating a phase and uniformly diffusing Sn into the γ phase, which is problematic in terms of cost.

【0008】具体的には、特開平10−183275号
公報では、500℃以上550℃以下で30秒以上の熱処理を施
し、次いで350℃までの冷却速度を0.4℃/秒以下として
冷却する。または、400℃以上500℃以下で30秒以上の熱
処理を施し、次いで冷却する。または、500℃以上550℃
以下で30秒以上の熱処理を施し、次いで350℃までの冷
却速度を0.4℃/秒以上4℃/秒以下として冷却する。
Specifically, in Japanese Patent Application Laid-Open No. 10-183275, heat treatment is performed at 500 ° C. to 550 ° C. for 30 seconds or more, and then cooling is performed at a cooling rate of 350 ° C. or less to 0.4 ° C./second or less. Alternatively, heat treatment is performed at 400 ° C. or more and 500 ° C. or less for 30 seconds or more, followed by cooling. Or 500 ° C or higher and 550 ° C
A heat treatment is performed for 30 seconds or more at a temperature below 350 ° C., and then a cooling rate to 350 ° C. is set to 0.4 ° C./second or more and 4 ° C./second or less.

【0009】特開平6−108184号公報では、熱間
で押し出しまたは抽伸した後に500〜600℃、30分〜3時
間の条件で熱処理する。このような熱処理は、条件を確
保するための設備が高価となり、また、製品サイズによ
っては、製品の内部と外部のヒートパターンの違いによ
り、組織のバラツキを生む原因となり、歩留まり低下に
よるコストも問題となっていた。さらに、製品の形状が
複雑な際は、製品の寸法変化、残留応力等の問題が生じ
る場合があった。
In JP-A-6-108184, heat treatment is performed at 500 to 600 ° C. for 30 minutes to 3 hours after hot extrusion or drawing. In such a heat treatment, equipment for securing the conditions becomes expensive, and depending on the product size, a difference in the heat pattern between the inside and the outside of the product causes variations in the structure, and the cost due to a decrease in yield is also a problem. It was. Further, when the shape of the product is complicated, problems such as dimensional change of the product, residual stress and the like may occur.

【0010】また、最近Cu-Zn系にSiを添加する快削銅
合金も提案された(特開2000-119774、特開2000-11977
5)。これらの合金は、1.8wt%以上のSiを含有し、α相
の粒界にCuとSiで形成したγ相が多く存在する。実使用
環境において、CuとSiで形成したγ相の耐脱亜鉛性はβ
相より良いが、CuとSnで形成したγ相に劣るという欠点
を有し、また、Siが1.8%以上になると、材料の熱伝導度
が著しく低下し、切削する場合、刃先の温度上昇が大き
くなり、刃物の寿命が短くなると共に切削精度も悪くな
るし、切削速度も上げられない等多くの問題があった。
[0010] Recently, a free-cutting copper alloy in which Si is added to a Cu-Zn system has also been proposed (JP-A-2000-119774, JP-A-2000-11977).
Five). These alloys contain 1.8 wt% or more of Si, and there are many γ phases formed of Cu and Si at the α phase grain boundaries. In an actual use environment, the dezincing resistance of the γ phase formed of Cu and Si is β
Phase, but has the drawback of being inferior to the γ phase formed of Cu and Sn, and when the content of Si is 1.8% or more, the thermal conductivity of the material is significantly reduced, and when cutting, the temperature rise of the cutting edge increases. However, there have been many problems, such as the cutting life is shortened, the cutting accuracy is deteriorated, and the cutting speed cannot be increased.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記のよう
な諸問題を解決して、耐脱亜鉛性、熱間鍛造性および切
削性に優れ、しかも安価に製造することができる耐脱亜
鉛性銅基合金を提供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and is excellent in dezincing resistance, hot forging and cutting properties, and can be manufactured at a low cost. It is an object of the present invention to provide a conductive copper-based alloy.

【0012】[0012]

【課題を解決するための手段】Sn添加による耐脱亜鉛性
効果を最大限に引き出すには、Siを共に添加し、適正な
Si/Sn値の範囲に調節することにより、凝固時にデント
ライトの2次枝がより細長く発達してSnの偏析を抑え、
これを熱間加工に供するとγ相がα相の間に均一に分散
することを見い出し、これが耐脱亜鉛性と共に熱間加工
性の向上に大きな効果をおよぼすことを見出した。すな
わち、本発明は、
[Means for Solving the Problems] In order to maximize the dezincification resistance effect of Sn addition, add Si together and
By adjusting to the Si / Sn value range, the secondary branches of the dentite develop more elongated during solidification and suppress the segregation of Sn,
When this was subjected to hot working, it was found that the γ phase was uniformly dispersed between the α phases, and this was found to have a great effect on the improvement of hot workability as well as the dezincification resistance. That is, the present invention

【0013】(1)重量%において、Cu:57〜69%、Sn:
0.3〜3%、Si:0.02〜1.5%を含み、Si/Snの値が0.05〜1
の範囲で、残部がZnと不可避的不純物からなることを特
徴とする耐脱亜鉛性銅基合金。
(1) Cu: 57-69%, Sn:
0.3-3%, Si: 0.02-1.5%, Si / Sn value 0.05-1
Wherein the balance comprises Zn and unavoidable impurities.

【0014】(2)重量%において、Cu:57〜69%、Sn:
0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Sn
の値が0.05〜1の範囲であり、残部がZnと不可避的不純
物からなることを特徴とする耐脱亜鉛性銅基合金。
(2) In weight%, Cu: 57-69%, Sn:
Contains 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3%, Si / Sn
Is in the range of 0.05 to 1, and the balance consists of Zn and unavoidable impurities.

【0015】(3)重量%において、Cu:57〜69%、Sn:
0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Sn
の値が0.05〜1の範囲であり、さらにP:0.02〜0.2%、S
b:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少
なくとも一種以上の元素を総量で0.02〜0.2%を含み、残
部がZnと不可避的不純物からなることを特徴とする耐脱
亜鉛性銅基合金。
(3) Cu: 57-69%, Sn:
Contains 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3%, Si / Sn
Is in the range of 0.05 to 1, and P: 0.02 to 0.2%, S
b: 0.02 to 0.2%, As: 0.02 to 0.2%, at least one element selected from the group consisting of 0.02 to 0.2% in total, and the balance being Zn and inevitable impurities. Copper based alloy.

【0016】(4)重量%において、Cu:57〜69%、Sn:
0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Sn
の値が0.05〜1の範囲であり、さらに、Fe0.01〜2%、Ni
0.01〜2%、Mn0.01〜2%、Al0.01〜2%、Cr0.01〜2%、Bi0.
01〜3%、Be0.01〜2%、Zr0.01〜2%、Ce0.01〜3%、Ag0.01
〜2%、Ti0.01〜2%、Mg0.01〜2%、Co0.01〜2%、Te0.01〜
1%、Au0.01〜2%、Y0.01〜2%、La0.01〜2%、Cd0.01〜2
%、Ca0.01〜1%のうちから選ばれる少なくとも一種以上
の元素を総量で0.01〜3%を含み、残部がZnと不可避的不
純物からなることを特徴とする耐脱亜鉛性銅基合金。
(4) In weight%, Cu: 57-69%, Sn:
Contains 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3%, Si / Sn
Is in the range of 0.05 to 1, furthermore, Fe 0.01 to 2%, Ni
0.01-2%, Mn0.01-2%, Al0.01-2%, Cr0.01-2%, Bi0.
01-3%, Be0.01-2%, Zr0.01-2%, Ce0.01-3%, Ag0.01
~ 2%, Ti0.01 ~ 2%, Mg0.01 ~ 2%, Co0.01 ~ 2%, Te0.01 ~
1%, Au 0.01-2%, Y 0.01-2%, La 0.01-2%, Cd 0.01-2
%, A zinc-free zinc-base alloy containing at least one element selected from Ca 0.01 to 1% in a total amount of 0.01 to 3%, with the balance being Zn and unavoidable impurities.

【0017】(5)重量%において、Cu:57〜69%、Sn:
0.3〜3%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Sn
の値が0.05〜1の範囲であり、さらに、P:0.02〜0.2%、
Sb:0.02〜0.2%、As:0.02〜0.2%のうちから選ばれる少
なくとも一種以上の元素を総量で0.02〜0.2%を含み、か
つFe:0.01〜2%、Ni:0.01〜2%、Mn:0.01〜2%、Al:
0.01〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2
%、Zr:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:
0.01〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1
%、Au:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.
01〜2%、Ca:0.01〜1%のうちから選ばれる少なくとも一
種以上の元素を総量で0.01〜3%を含み、残部がZnと不可
避不純物からなることを特徴とする耐脱亜鉛性銅基合
金。
(5) In weight%, Cu: 57-69%, Sn:
Contains 0.3-3%, Si: 0.02-1.5%, Pb: 0.5-3%, Si / Sn
Is in the range of 0.05 to 1, and further, P: 0.02 to 0.2%,
Sb: 0.02 to 0.2%, As: 0.02 to 0.2%, at least one or more elements selected from a total of 0.02 to 0.2%, Fe: 0.01 to 2%, Ni: 0.01 to 2%, Mn: 0.01-2%, Al:
0.01-2%, Cr: 0.01-2%, Bi: 0.01-3%, Be: 0.01-2
%, Zr: 0.01-2%, Ce: 0.01-3%, Ag: 0.01-2%, Ti:
0.01-2%, Mg: 0.01-2%, Co: 0.01-2%, Te: 0.01-1
%, Au: 0.01 to 2%, Y: 0.01 to 2%, La: 0.01 to 2%, Cd: 0.
01 to 2%, Ca: 0.01 to 1%, at least one element selected from the group consisting of 0.01 to 3% in total, and the balance being Zn and unavoidable impurities. alloy.

【0018】[0018]

【作用】以下に本発明における銅基合金の組成範囲の選
定理由について説明する。 Cu:Cuを増やすと、α相が増え、耐食性は高まるが、69
%を超えると熱間鍛造性が急激に低下する。しかも、Cu
はZnより高価なため、経済的な面からもCu量をできるだ
け減らすことが望ましい。また、Cuを57%よりも少なく
するとβ相が増え、高温鍛造性は向上するが、耐脱亜鉛
性は低下し、材料の強度、伸びも低下する。上記のバラ
ンスを考慮して、Cuの組成範囲を重量%で、57〜69%とし
た。更に、59〜63%の範囲が好ましい。
The reason for selecting the composition range of the copper-based alloy in the present invention will be described below. Cu: Increasing Cu increases the α phase and increases corrosion resistance.
%, The hot forgeability sharply decreases. Moreover, Cu
Since Cu is more expensive than Zn, it is desirable to reduce the amount of Cu as much as possible from an economical point of view. If Cu is less than 57%, the β phase increases and the high-temperature forgeability is improved, but the dezincification resistance is reduced, and the strength and elongation of the material are also reduced. In consideration of the above balance, the composition range of Cu is set to 57 to 69% by weight%. Further, the range of 59 to 63% is preferable.

【0019】Sn:Snを0.3%以上添加することにより、耐
脱亜鉛性向上効果が得られる。しかも、Sn量の増加につ
れて耐脱亜鉛性は著しく向上する。しかし、Sn量が3%を
超えると鋳造時インゴットの表面に深い欠陥をもたらす
と共に、Snの添加量に見合った耐脱亜鉛向上効果が得ら
れず、また、SnはZn、Cuより高価のため、コスト
アップに繋がる。従って、Sn量を0.3〜3%とした。更
に、0.5〜2%の範囲が好ましい。
Sn: By adding 0.3% or more of Sn, an effect of improving dezincing resistance can be obtained. In addition, as the amount of Sn increases, the dezincing resistance remarkably improves. However, if the amount of Sn exceeds 3%, deep defects are caused on the surface of the ingot during casting, and the effect of improving the dezincification resistance in proportion to the amount of added Sn cannot be obtained, and Sn is more expensive than Zn and Cu. , Leading to increased costs. Therefore, the amount of Sn was set to 0.3 to 3%. Further, a range of 0.5 to 2% is preferable.

【0020】Si:鋳造性改善及びSnの耐脱亜鉛性向上効
果を引き出す目的でSiを添加する。適量なSiを添加する
ことにより鋳造時溶湯の流動性を改善すると共にSnの偏
析を抑制し、熱間押し出しおよび熱間鍛造後の熱処理が
なくても、Snの耐脱亜鉛性向上効果を完全に引き出し、
安定的かつ優れた耐脱亜鉛性、機械特性が得られる。
Si: Si is added for the purpose of improving the castability and the effect of improving the dezincing resistance of Sn. By adding an appropriate amount of Si, it improves the fluidity of the molten metal during casting and suppresses the segregation of Sn, completely improving the effect of improving the dezincing resistance of Sn even without heat treatment after hot extrusion and hot forging. Drawer to
Stable and excellent dezincing resistance and mechanical properties can be obtained.

【0021】しかし、Siは1.5%を超えると、α相の粒界
にSiとCuで形成したγ相、κ相またはβ相が多くなり、
耐脱亜鉛性を劣化させると共に多量のSi酸化物による鋳
造性、熱間加工性の低下が起こる。さらに、Si量が1.8
%以上になると、材料の熱伝導度が著しく低下し、切削
する場合、刃先の温度上昇が大きくなり、刃物の寿命が
短くなると共に切削精度も悪くなり、切削速度も上げら
れない等多くの問題を引き起こす。
However, if Si exceeds 1.5%, the γ phase, κ phase or β phase formed of Si and Cu at the α phase grain boundary increases,
Dezincification resistance is deteriorated, and castability and hot workability are reduced due to a large amount of Si oxide. Furthermore, when the amount of Si is 1.8
% Or more, the thermal conductivity of the material decreases significantly, and when cutting, the temperature rise of the cutting edge increases, shortening the service life of the cutting tool, lowering the cutting accuracy, and increasing the cutting speed. cause.

【0022】また、Siは0.02%より低いと上記の鋳造性
向上効果またはSnの偏析を抑える効果が得られない。上
記の理由から、Siの組成範囲を0.02〜1.5%とした。更
に、0.06〜0.6%の範囲が好ましい。
On the other hand, if the content of Si is less than 0.02%, the effect of improving castability or the effect of suppressing the segregation of Sn cannot be obtained. For the above reasons, the composition range of Si is set to 0.02 to 1.5%. Furthermore, the range of 0.06 to 0.6% is preferable.

【0023】Si/Sn:Si/Sn値を規定する目的はSnの耐脱
亜鉛性向上効果を最大限に引き出すために、Snの添加量
に応じて最適なSi添加量が必要である。適切なSi/Sn値
を制御することにより、凝固時にデントライトの2次枝
がより細長く発達し、Snの偏析を抑え、熱間加工後にγ
相がα相の間に均一に分散して、耐脱亜鉛性を向上する
と共に熱間変形性を確保する。Si/Sn値が1より大きい
場合には、Si量が過剰になる。Siの亜鉛当量が大きいた
め、β相が多く析出し、α相の周りに存在するβ層はγ
層による分断ができなくなり、耐脱亜鉛性を損なう。ま
た、Si/Sn値が0.05より小さいとSnの偏析を抑える効果
が十分現れず、耐脱亜鉛性向上効果を引き出すために熱
間加工後の熱処理が必要になる。従って、Si/Sn値の範
囲は0.05〜1が好ましい。更に好ましくは、0.1〜0.5の
範囲である。
Si / Sn: The purpose of defining the Si / Sn value is to maximize the effect of improving the dezincing resistance of Sn, so that the optimum amount of Si added is required in accordance with the amount of Sn added. By controlling the appropriate Si / Sn value, the secondary branches of the dentite grow longer and thinner during solidification, suppressing the segregation of Sn and the γ after hot working.
The phases are evenly dispersed between the α phases to improve dezincification resistance and ensure hot deformability. When the Si / Sn value is larger than 1, the Si amount becomes excessive. Since the zinc equivalent of Si is large, a large amount of β phase is precipitated, and the β layer around the α phase is γ
Separation by the layer becomes impossible, and the zinc removal resistance is impaired. On the other hand, if the Si / Sn value is smaller than 0.05, the effect of suppressing the segregation of Sn is not sufficiently exhibited, and heat treatment after hot working is required to bring out the effect of improving the dezincification resistance. Therefore, the range of the Si / Sn value is preferably 0.05 to 1. More preferably, it is in the range of 0.1 to 0.5.

【0024】P、Sb、As:これらの元素の添加により、
切削性、鍛造性を害することなく、脱亜鉛の抑制に効果
がある。しかし、0.02%より少ない添加では、脱亜鉛の
抑制効果が十分に現れない。一方、0.2%を超えて添加す
ると粒界偏析が生じ、延性が低下すると共に応力腐食割
れ感受性が増加する。従って、P、Sb、Asの含有量をそ
れぞれ0.02〜0.2%とした。
P, Sb, As: By adding these elements,
Effective for suppressing dezincification without impairing machinability and forgeability. However, if the addition is less than 0.02%, the effect of suppressing zinc removal is not sufficiently exhibited. On the other hand, if added in excess of 0.2%, grain boundary segregation will occur, reducing ductility and increasing stress corrosion cracking susceptibility. Therefore, the contents of P, Sb, and As are each set to 0.02 to 0.2%.

【0025】Pb:Pbは材料の切削加工性の向上を目的と
する。0.5%以下では十分な切削加工性が得られず、ま
た、3%を超えると、押し出し、鍛造等の熱間加工が困難
になる。Pbを添加する際の組成範囲は0.5〜3%であり、
更に、1.5〜2.3%の範囲が好ましい。
Pb: Pb aims at improving the machinability of the material. If it is less than 0.5%, sufficient cutting workability cannot be obtained, and if it exceeds 3%, hot working such as extrusion and forging becomes difficult. The composition range when adding Pb is 0.5 to 3%,
Further, a range of 1.5 to 2.3% is preferable.

【0026】さらに、添加元素として、Fe0.01〜2%、Ni
0.01〜2%、Mn0.01〜2%、Al0.01〜2%、Cr0.01〜2%、Bi0.
01〜3%、Be0.01〜2%、Zr0.01〜2%、Ce0.01〜3%、Ag0.01
〜2%、Ti0.01〜2%、Mg0.01〜2%、Co0.01〜2%、Te0.01〜
1%、Au0.01〜2%、Y0.01〜2%、La0.01〜2%、Cd0.01〜2
%、Ca0.01〜1%の内少なくとも一種以上の元素を含み、
その総量が0.01〜3%を含んでも良い。これらの元素を上
記範囲内に添加することにより、耐脱亜鉛性、切削性お
よび熱間加工性を害することなく、機械的特性および切
削加工性を向上する効果がある。
Further, as additional elements, Fe 0.01 to 2%, Ni
0.01-2%, Mn0.01-2%, Al0.01-2%, Cr0.01-2%, Bi0.
01-3%, Be0.01-2%, Zr0.01-2%, Ce0.01-3%, Ag0.01
~ 2%, Ti0.01 ~ 2%, Mg0.01 ~ 2%, Co0.01 ~ 2%, Te0.01 ~
1%, Au 0.01-2%, Y 0.01-2%, La 0.01-2%, Cd 0.01-2
%, Containing at least one or more elements of Ca 0.01-1%,
The total amount may include 0.01-3%. The addition of these elements within the above ranges has the effect of improving mechanical properties and machinability without deteriorating dezincing resistance, machinability and hot workability.

【0027】このような成分範囲に調整した本発明の銅
基合金は、耐脱亜鉛性、熱間鍛造性および切削性に優
れ、しかも安価に製造することができる。
The copper-based alloy of the present invention adjusted to such a component range has excellent dezincing resistance, hot forgeability and machinability, and can be manufactured at low cost.

【0028】次に、本発明に係る発明の実施の形態を実
施例により説明する。
Next, embodiments of the present invention according to the present invention will be described with reference to examples.

【発明の実施の形態】実施例 本発明における耐脱亜鉛性銅基合金を適用した実施例並
びに比較例を説明する。表1に示す化学成分をそれぞれ
誘導炉で溶解した後、液相線温度+100℃前後で、80mm
直径のビレットを半連続鋳造した。各組成について鋳造
したビレットの表面巻き込み等の表面欠陥深さを用いて
鋳造性を評価した。表面欠陥深さ1mm以下は◎印、1〜3m
mは○印、3mm以上は×印で示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples and comparative examples using the dezincification-resistant copper-based alloy according to the present invention will be described. After each of the chemical components shown in Table 1 were melted in an induction furnace, 80 mm
A billet having a diameter was semi-continuously cast. For each composition, castability was evaluated using the depth of surface defects such as surface entanglement of the billet cast. ◎ mark, 1-3m for surface defect depth 1mm or less
m is indicated by a circle, and 3 mm or more is indicated by a cross.

【0029】[0029]

【表1】 [Table 1]

【0030】鋳造で得られた80mm直径のビレットを800
℃で、30分保持した後、熱間押し出しを行った。何れも
80mm直径から30mm直径まで熱間押し出し加工した。
The billet of 80 mm diameter obtained by casting was
After holding at 30 ° C. for 30 minutes, hot extrusion was performed. Any
Hot extrusion was performed from 80 mm diameter to 30 mm diameter.

【0031】熱間押し出しで得られた棒を用いて、さら
に耐脱亜鉛性、熱間変形抵抗、硬さ、引張強さ及び伸び
を評価した。脱亜鉛試験はJBMA T303―1988に指定され
た試験方法、条件により、試験片は押し出し棒から切り
出したもので、腐食方向が押し出し方向と一致するよう
にセットした。また、各組成において、熱処理による耐
脱亜鉛性変化の程度を調べるために、それぞれ400℃×3
hで熱処理を行ったものについても、耐脱亜鉛性を評価
した。
Using the bars obtained by hot extrusion, the dezincing resistance, hot deformation resistance, hardness, tensile strength and elongation were further evaluated. In the dezincing test, according to the test method and conditions specified in JBMA T303-1988, the test piece was cut out from an extruded rod and set so that the corrosion direction coincided with the extruded direction. In addition, in each composition, to examine the degree of change in dezincing resistance due to heat treatment, 400 ° C × 3
Dezincification resistance was also evaluated for those heat-treated in h.

【0032】熱間変形抵抗測定は落下ハンマー試験によ
り、押し出し棒から旋盤で切削した直径15mm、高さ15
mmの円柱試験片を用いた。試験温度、歪み速度をそれぞ
れ750℃、180s-1とした。
The hot deformation resistance was measured by a drop hammer test using a lathe from an extruded rod with a diameter of 15 mm and a height of 15 mm.
A cylindrical test piece of mm was used. The test temperature and strain rate were 750 ° C. and 180 s −1 , respectively.

【0033】切削性試験は旋盤切削により、切屑の分断
性についてはすべての切屑が完全分断した場合を○と
し、切屑が分断できなかった場合を×として示した。ま
た、融着性については、連続送り量100mmで、10回切削
試験して刃物の先に銅分が付着した場合を×とし、銅分
が付着しなかった場合を○とした。なお、切削条件は、
回転速度950rpm、切り込み量0.5mm、送り速度0.06mm/re
v.、送り量は100mm、切削油はなし、切削工具の材質は
超硬鋼であった。銅基合金の硬さはビッカース硬さで、
JIS Z 2244により、試験力49Nで、押し出し方向と直交
する断面上で測定したものである。引張試験はJIS Z 22
41の規定により、4号試験片を用いて、押し出し方向と
平行する方向で行った。
In the machinability test, as to the chip breaking property by lathe cutting, the case where all the chips were completely cut was indicated by ○, and the case where the chips could not be cut was indicated by x. Regarding the fusibility, when a continuous feed amount of 100 mm and a cutting test were performed ten times, copper was attached to the tip of the blade, and x was given. The cutting conditions are
Rotation speed 950rpm, depth of cut 0.5mm, feed speed 0.06mm / re
v., feed amount was 100 mm, no cutting oil, and the material of the cutting tool was carbide steel. The hardness of the copper-based alloy is Vickers hardness,
Measured on a cross section perpendicular to the extrusion direction according to JIS Z 2244 with a test force of 49N. Tensile test is JIS Z 22
According to the provisions of 41, the test was performed in the direction parallel to the extrusion direction using the No. 4 test piece.

【0034】[0034]

【表2】 [Table 2]

【0035】表2に上記の試験結果を示している。本発
明の組成を適用した例No.1〜No.9は何れも優れた鋳造
性、機械特性、切削性及び熱間鍛造用合金C3771並(変
形抵抗70MPa)の熱間変形抵抗を示した。最大脱亜鉛深
さはいずれも65μm以下であり、耐脱亜鉛性に優れてい
ることが明らかである。
Table 2 shows the test results. Examples No. 1 to No. 9 to which the composition of the present invention was applied all exhibited excellent castability, mechanical properties, machinability, and hot deformation resistance equivalent to that of hot forging alloy C3771 (deformation resistance 70 MPa). The maximum dezincing depth is 65 μm or less in each case, and it is clear that the dezincing resistance is excellent.

【0036】また、注目すべきなのは、熱処理前後のサ
ンプルの最大脱亜鉛深さに差がなく、いずれも低いこと
である。すなわち、Siを適量に配合することより、特殊
な熱処理を加えることがなく、熱間加工したままでも安
定的かつ優れた耐脱亜鉛性が得られる。
It should also be noted that there is no difference in the maximum dezincing depth of the sample before and after the heat treatment, and that both are low. That is, by mixing Si in an appropriate amount, a stable and excellent dezincification resistance can be obtained without performing a special heat treatment and with hot working.

【0037】一方、比較例のNo.10では、Siを含有して
いないため、鋳造性、耐脱亜鉛性が劣ると共に、熱処理
前後の最大脱亜鉛深さに大きな差を生じた。No.11で
は、Si/Sn比率が本発明の範囲を超えたため、耐脱亜鉛
性にも劣る。
On the other hand, in Comparative Example No. 10, since no Si was contained, the castability and the dezincification resistance were poor, and the maximum dezincification depth before and after the heat treatment was greatly different. In No. 11, since the Si / Sn ratio exceeded the range of the present invention, the zinc removal resistance was poor.

【0038】また、No.12では、Sn含有量、Si含有量が
共に本発明の下限よりも低くなっており、耐脱亜鉛性が
著しく低下した。No.13、No.14では、Si量が本発明の範
囲より多いため、刃先の融着が生じ、耐脱亜鉛性および
鋳造性も劣る。
In No. 12, both the Sn content and the Si content were lower than the lower limits of the present invention, and the dezincification resistance was significantly reduced. In Nos. 13 and 14, since the amount of Si is larger than the range of the present invention, fusion of the cutting edge occurs, and the zinc removal resistance and the castability are inferior.

【0039】No.15では、Sn、Siを同時に含有するもの
の、Si量とSi/Sn比は本発明の範囲を超え、また、Siが
1.8%より多いため、やはり、耐脱亜鉛性及び鋳造性が劣
り、刃先の融着も生じた。またPbを含有していないた
め、切屑も分断しなかった。
In No. 15, although Sn and Si are simultaneously contained, the amount of Si and the Si / Sn ratio exceed the range of the present invention, and
Since it was more than 1.8%, the dezincing resistance and the castability were also inferior, and the edge was fused. Also, because it did not contain Pb, chips were not separated.

【0040】[0040]

【発明の効果】以上のように、本発明によれば、耐脱亜
鉛性、熱間鍛造性及び切削性に優れ、しかも安価で製造
できる耐脱亜鉛性銅基合金が得られるのである。
As described above, according to the present invention, a dezincification-resistant copper-based alloy which is excellent in dezincification resistance, hot forgeability and machinability and can be manufactured at low cost can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】重量%において、Cu:57〜69%、Sn:0.3〜3
%、Si:0.02〜1.5%を含み、Si/Snの値が0.05〜1の範囲
で、残部がZnと不可避的不純物からなることを特徴とす
る耐脱亜鉛性銅基合金。
(1) Cu: 57 to 69%, Sn: 0.3 to 3% by weight
%, Si: 0.02 to 1.5%, wherein the value of Si / Sn is in the range of 0.05 to 1, and the balance is made of Zn and inevitable impurities.
【請求項2】重量%において、Cu:57〜69%、Sn:0.3〜3
%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Snの値が
0.05〜1の範囲であり、残部がZnと不可避的不純物から
なることを特徴とする耐脱亜鉛性銅基合金。
2. Cu: 57-69%, Sn: 0.3-3% by weight.
%, Si: 0.02-1.5%, Pb: 0.5-3%, the value of Si / Sn
A dezincification-resistant copper-based alloy in the range of 0.05 to 1, with the balance being Zn and unavoidable impurities.
【請求項3】重量%において、Cu:57〜69%、Sn:0.3〜3
%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Snの値が
0.05〜1の範囲であり、さらにP:0.02〜0.2%、Sb:0.02
〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくとも
一種以上の元素を総量で0.02〜0.2%を含み、残部がZnと
不可避的不純物からなることを特徴とする耐脱亜鉛性銅
基合金。
3. Cu: 57-69%, Sn: 0.3-3% by weight.
%, Si: 0.02-1.5%, Pb: 0.5-3%, the value of Si / Sn
It is in the range of 0.05 to 1, P: 0.02 to 0.2%, Sb: 0.02
Dezinc-resistant copper base, characterized by containing at least one element selected from 0.02 to 0.2%, and 0.02 to 0.2% in total, and the balance consisting of Zn and unavoidable impurities. alloy.
【請求項4】重量%において、Cu:57〜69%、Sn:0.3〜3
%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Snの値が
0.05〜1の範囲であり、さらに、Fe:0.01〜2%、Ni:0.0
1〜2%、Mn:0.01〜2%、Al:0.01〜2%、Cr:0.01〜2%、B
i:0.01〜3%、Be:0.01〜2%、Zr:0.01〜2%、Ce:0.01
〜3%、Ag:0.01〜2%、Ti:0.01〜2%、Mg:0.01〜2%、C
o:0.01〜2%、Te:0.01〜1%、Au:0.01〜2%、Y:0.01〜
2%、La:0.01〜2%、Cd:0.01〜2%、Ca:0.01〜1%のうち
から選ばれる少なくとも一種以上の元素を総量で0.01〜
3%を含み、残部がZnと不可避的不純物からなることを特
徴とする耐脱亜鉛性銅基合金。
(4) In terms of weight%, Cu: 57-69%, Sn: 0.3-3.
%, Si: 0.02-1.5%, Pb: 0.5-3%, the value of Si / Sn
0.05 to 1, Fe: 0.01 to 2%, Ni: 0.0
1-2%, Mn: 0.01-2%, Al: 0.01-2%, Cr: 0.01-2%, B
i: 0.01-3%, Be: 0.01-2%, Zr: 0.01-2%, Ce: 0.01
~ 3%, Ag: 0.01 ~ 2%, Ti: 0.01 ~ 2%, Mg: 0.01 ~ 2%, C
o: 0.01-2%, Te: 0.01-1%, Au: 0.01-2%, Y: 0.01-
2%, La: 0.01 to 2%, Cd: 0.01 to 2%, Ca: 0.01 to 1% At least one or more elements selected from a total amount of 0.01 to 1%
A dezincification-resistant copper-based alloy containing 3%, with the balance being Zn and unavoidable impurities.
【請求項5】重量%において、Cu:57〜69%、Sn:0.3〜3
%、Si:0.02〜1.5%、Pb:0.5〜3%を含み、Si/Snの値が
0.05〜1の範囲であり、さらに、P:0.02〜0.2%、Sb:0.
02〜0.2%、As:0.02〜0.2%のうちから選ばれる少なくと
も一種以上の元素を総量で0.02〜0.2%を含み、かつFe:
0.01〜0.2%、Ni:0.01〜2%、Mn:0.01〜2%、Al:0.01
〜2%、Cr:0.01〜2%、Bi:0.01〜3%、Be:0.01〜2%、Z
r:0.01〜2%、Ce:0.01〜3%、Ag:0.01〜2%、Ti:0.01
〜2%、Mg:0.01〜2%、Co:0.01〜2%、Te:0.01〜1%、A
u:0.01〜2%、Y:0.01〜2%、La:0.01〜2%、Cd:0.01〜
2%、Ca:0.01〜1%のうちから選ばれる少なくとも一種以
上の元素を総量で0.01〜3%を含み、残部がZnと不可避不
純物からなることを特徴とする耐脱亜鉛性銅基合金。
(5) In terms of weight%, Cu: 57-69%, Sn: 0.3-3.
%, Si: 0.02-1.5%, Pb: 0.5-3%, the value of Si / Sn
It is in the range of 0.05 to 1, P: 0.02 to 0.2%, Sb: 0.
02-0.2%, As: At least one or more elements selected from 0.02-0.2% are contained in a total amount of 0.02-0.2%, and Fe:
0.01-0.2%, Ni: 0.01-2%, Mn: 0.01-2%, Al: 0.01
~ 2%, Cr: 0.01 ~ 2%, Bi: 0.01 ~ 3%, Be: 0.01 ~ 2%, Z
r: 0.01 to 2%, Ce: 0.01 to 3%, Ag: 0.01 to 2%, Ti: 0.01
~ 2%, Mg: 0.01 ~ 2%, Co: 0.01 ~ 2%, Te: 0.01 ~ 1%, A
u: 0.01-2%, Y: 0.01-2%, La: 0.01-2%, Cd: 0.01-
2%, Ca: A zinc-free zinc-base alloy containing at least one element selected from 0.01 to 1% in a total amount of 0.01 to 3%, with the balance being Zn and unavoidable impurities.
JP2000198825A 2000-06-30 2000-06-30 Dezincing resistant copper base alloy Expired - Lifetime JP3903297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000198825A JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy
US09/891,650 US20020015657A1 (en) 2000-06-30 2001-06-26 Copper-base alloys having resistance to dezincification
US10/302,037 US20030095887A1 (en) 2000-06-30 2002-11-22 Copper-base alloys having resistance to dezincification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198825A JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy

Publications (2)

Publication Number Publication Date
JP2002012927A true JP2002012927A (en) 2002-01-15
JP3903297B2 JP3903297B2 (en) 2007-04-11

Family

ID=18696927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198825A Expired - Lifetime JP3903297B2 (en) 2000-06-30 2000-06-30 Dezincing resistant copper base alloy

Country Status (2)

Country Link
US (1) US20020015657A1 (en)
JP (1) JP3903297B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247035A (en) * 2002-02-25 2003-09-05 Dowa Mining Co Ltd Copper alloy having excellent stress corrosion cracking resistance and dezincification resistance and production method thereof
JP2003277855A (en) * 2002-03-22 2003-10-02 San-Etsu Metals Co Ltd Lead-free, free-cutting brass alloy material and production method thereof
JP2004263301A (en) * 2003-02-28 2004-09-24 Wieland Werke Ag Lead-free copper alloy and method for using the same
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
JP2008001964A (en) * 2006-06-26 2008-01-10 Chuetsu Metal Works Co Ltd Method for producing valve plate
CN100404713C (en) * 2005-11-28 2008-07-23 浙江大学 Lead-free easy-to-cut zinc white copper alloy
CN100415911C (en) * 2003-08-25 2008-09-03 同和矿业株式会社 Copper alloy with high corrosion-and dezincification-resisting performance and mfg. method thereof
CN101851711A (en) * 2010-06-09 2010-10-06 襄樊博亚精工机器有限公司 Copper alloy weld wheel and manufacturing method thereof
WO2011121799A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining bronze casting alloy
WO2011121798A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining brass alloy
JP2011219857A (en) * 2010-03-25 2011-11-04 San-Etsu Metals Co Ltd Copper-based alloy for die casting having excellent dezincification corrosion resistance
WO2012140977A1 (en) * 2011-04-13 2012-10-18 サンエツ金属株式会社 Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
JPWO2013115363A1 (en) * 2012-02-01 2015-05-11 Toto株式会社 Brass with excellent corrosion resistance
CN104630555A (en) * 2015-03-10 2015-05-20 济南大学 High-strength corrosion resisting brass material and preparation method thereof
CN108495942A (en) * 2016-05-25 2018-09-04 三菱伸铜株式会社 The manufacturing method of brass alloys hot-working product and brass alloys hot-working product

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506730B2 (en) * 1998-10-09 2013-08-13 Mitsubishi Shindoh Co., Ltd. Copper/zinc alloys having low levels of lead and good machinability
US6506203B1 (en) * 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US6929652B1 (en) * 2001-06-01 2005-08-16 Advanced Cardiovascular Systems, Inc. Delivery and recovery systems having steerability and rapid exchange operating modes for embolic protection systems
US7172614B2 (en) * 2002-06-27 2007-02-06 Advanced Cardiovascular Systems, Inc. Support structures for embolic filtering devices
US7252675B2 (en) * 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US20040088000A1 (en) * 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
US20040155097A1 (en) * 2003-02-04 2004-08-12 Matsushita Electric Industrial Co., Ltd. Soldering method and method for manufacturing component mounting board
FR2856411B1 (en) * 2003-06-17 2007-03-02 Trefimetaux CuZnPbSn ALLOYS FOR HOT MATRIXING
US20050039827A1 (en) * 2003-08-20 2005-02-24 Yoshinori Yamagishi Copper alloy having excellent corrosion cracking resistance and dezincing resistance, and method for producing same
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
KR101040909B1 (en) * 2004-03-29 2011-06-10 산에츠긴조쿠가부시키가이샤 Brass material
JP4118832B2 (en) * 2004-04-14 2008-07-16 三菱伸銅株式会社 Copper alloy and manufacturing method thereof
DE102009038657A1 (en) * 2009-08-18 2011-02-24 Aurubis Stolberg Gmbh & Co. Kg brass alloy
CN101787461B (en) * 2010-03-02 2014-11-19 路达(厦门)工业有限公司 Environment-friendly manganese brass alloy and manufacturing method thereof
CN101812611A (en) * 2010-04-29 2010-08-25 路达(厦门)工业有限公司 Lead-free corrosion resistant brass alloy and manufacturing method thereof
US8721765B2 (en) * 2011-11-14 2014-05-13 Mueller Industries, Inc. Lead free dezincification alloy and method of making same
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003247035A (en) * 2002-02-25 2003-09-05 Dowa Mining Co Ltd Copper alloy having excellent stress corrosion cracking resistance and dezincification resistance and production method thereof
JP2003277855A (en) * 2002-03-22 2003-10-02 San-Etsu Metals Co Ltd Lead-free, free-cutting brass alloy material and production method thereof
US6942742B2 (en) 2003-02-13 2005-09-13 Dowa Mining Co., Ltd. Copper-based alloy excellent in dezincing resistance
JP2004263301A (en) * 2003-02-28 2004-09-24 Wieland Werke Ag Lead-free copper alloy and method for using the same
JP4537728B2 (en) * 2003-02-28 2010-09-08 ヴィーラント ウェルケ アクチーエン ゲゼルシャフト Lead-free copper alloy and method of use
CN100415911C (en) * 2003-08-25 2008-09-03 同和矿业株式会社 Copper alloy with high corrosion-and dezincification-resisting performance and mfg. method thereof
JP4522736B2 (en) * 2004-03-30 2010-08-11 株式会社キッツ Copper-base alloy for die casting and ingots and products using this alloy
JP2005281800A (en) * 2004-03-30 2005-10-13 Kitz Corp Copper-based alloy, and ingot and product using it
CN100404713C (en) * 2005-11-28 2008-07-23 浙江大学 Lead-free easy-to-cut zinc white copper alloy
JP2008001964A (en) * 2006-06-26 2008-01-10 Chuetsu Metal Works Co Ltd Method for producing valve plate
JP2011219857A (en) * 2010-03-25 2011-11-04 San-Etsu Metals Co Ltd Copper-based alloy for die casting having excellent dezincification corrosion resistance
WO2011121799A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining bronze casting alloy
WO2011121798A1 (en) * 2010-03-31 2011-10-06 Jマテ.カッパープロダクツ 株式会社 Lead-free free-machining brass alloy
CN101851711A (en) * 2010-06-09 2010-10-06 襄樊博亚精工机器有限公司 Copper alloy weld wheel and manufacturing method thereof
WO2012140977A1 (en) * 2011-04-13 2012-10-18 サンエツ金属株式会社 Copper-based alloy having excellent forgeability, stress corrosion cracking resistance and dezincification corrosion resistance
JPWO2013115363A1 (en) * 2012-02-01 2015-05-11 Toto株式会社 Brass with excellent corrosion resistance
US10351933B2 (en) 2012-02-01 2019-07-16 Toto Ltd. Brass with excellent corrosion resistance
CN104630555A (en) * 2015-03-10 2015-05-20 济南大学 High-strength corrosion resisting brass material and preparation method thereof
CN108495942A (en) * 2016-05-25 2018-09-04 三菱伸铜株式会社 The manufacturing method of brass alloys hot-working product and brass alloys hot-working product

Also Published As

Publication number Publication date
JP3903297B2 (en) 2007-04-11
US20020015657A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
JP3903297B2 (en) Dezincing resistant copper base alloy
EP1777305B1 (en) Copper-base alloy casting with refined crystal grains
US6942742B2 (en) Copper-based alloy excellent in dezincing resistance
EP1045041B1 (en) Leadless free-cutting copper alloy
EP1038981B1 (en) Free-cutting copper alloy
US6413330B1 (en) Lead-free free-cutting copper alloys
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP5135491B2 (en) Pressure-resistant and corrosion-resistant copper alloy, brazed structure, and method for producing brazed structure
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
CA2826185A1 (en) Cu-ni-zn-mn alloy
JPWO2005093108A1 (en) Brass
US8506730B2 (en) Copper/zinc alloys having low levels of lead and good machinability
KR20210129149A (en) Nickel alloy with excellent corrosion resistance and high tensile strength, and method for producing semi-finished products
US20030095887A1 (en) Copper-base alloys having resistance to dezincification
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
JP2003277855A (en) Lead-free, free-cutting brass alloy material and production method thereof
JP3824944B2 (en) Copper alloy excellent in stress corrosion cracking resistance and dezincing resistance and manufacturing method thereof
EP0909830A1 (en) Hot working high chromium alloy
JP5062829B2 (en) Brass material and method for producing brass material
JP2841270B2 (en) Copper base alloy excellent in corrosion resistance and hot workability and valve parts using the alloy
RU2791029C1 (en) Nickel alloy with good corrosion resistance and high tensile strength and method for production of semi-products
JP2001294956A (en) Free cutting brass excellent in dezincification resistance and its producing method
JP4524584B2 (en) Free-cutting β-type Ti alloy
KR100834201B1 (en) Copper-base alloy casting with refined crystal grains
Tomlinson et al. The fabrication and mechanical properties of Ta-V (0–60 at.%) alloys

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3903297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term