JP2002011551A - Austenitic stainless steel thin cast slab excellent in surface quality and its producing method - Google Patents

Austenitic stainless steel thin cast slab excellent in surface quality and its producing method

Info

Publication number
JP2002011551A
JP2002011551A JP2000197064A JP2000197064A JP2002011551A JP 2002011551 A JP2002011551 A JP 2002011551A JP 2000197064 A JP2000197064 A JP 2000197064A JP 2000197064 A JP2000197064 A JP 2000197064A JP 2002011551 A JP2002011551 A JP 2002011551A
Authority
JP
Japan
Prior art keywords
stainless steel
austenitic stainless
dave
heat treatment
thin slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000197064A
Other languages
Japanese (ja)
Inventor
Masuhiro Fukaya
益啓 深谷
Toshikazu Nishimura
敏和 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000197064A priority Critical patent/JP2002011551A/en
Publication of JP2002011551A publication Critical patent/JP2002011551A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel thin cast slab restraining the development of roping and having excellent surface quality, and its producing method. SOLUTION: As for the austenitic stainless steel thin sheet, γcrystal grain diameter in the thin cast slab: the grain diameter conversed into the sphere Dave[=Σ2×SQR (3×Si/2π) ×Si/S, wherein, S: the measured total area of grain diameter, Si: grain area in NO.i] is Dave<70 μm and Dave<150-32..log (v) [v: solidified cooling velocity ( deg.C/sec)]. The molten austenitic stainless steel poured into a pool part formed with one pair of cooling rolls, whose shafts are parallel rotated mutually in the reversed direction and side weirs, contains little quantities of Mg and Ti and continuously cast at >=100 deg.C/sec solidifying/ cooling speed, and a rolling reduction is applied to as <=25% draft to the thin cast slab in the in-line and successively, and also a heat treatment is applied to at 1100 deg.C for <7 sec equivalent heat treatment time to produce the austenitic stainless steel thin sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面品質の優れた
オーステナイト系ステンレス鋼薄鋳片及びその製造方法
に関するものである。
The present invention relates to an austenitic stainless steel thin slab having excellent surface quality and a method for producing the same.

【0002】[0002]

【従来の技術】近年、双ドラム式連続鋳造方法、即ち、
軸が平行で互いに逆方向に回転する一対の冷却ドラムと
サイド堰で形成される湯溜り部溶鋼を注入し、該冷却ド
ラムの周面で該溶鋼を冷却・凝固せしめ、凝固シェルを
生成しつつ連続鋳造する方法を用いて、オーステナイト
系ステンレス鋼の薄板が製造されている。
2. Description of the Related Art In recent years, a twin-drum continuous casting method, that is,
The molten steel in the pool is formed by a pair of cooling drums and side dams whose axes are parallel and rotate in opposite directions, and the molten steel is cooled and solidified on the peripheral surface of the cooling drum to form a solidified shell. Austenitic stainless steel sheets have been manufactured using a continuous casting method.

【0003】この薄鋳片連続鋳造方法によれば、最終形
状に近い薄鋳片を、直接製造することができるので、従
来の熱延、熱処理、冷延等の中間工程を省略したり、ま
たは、軽減することができ、生産効率の点で大きな利点
があるが、連続鋳造で得られる薄鋳片の組織、表面状態
等は、製品としての薄板の材質や表面性状に大きな影響
を与えるので、この面での研究が不可欠である。
[0003] According to the thin cast continuous casting method, a thin cast close to the final shape can be directly produced, so that conventional intermediate steps such as hot rolling, heat treatment, and cold rolling can be omitted, or Although there is a great advantage in terms of production efficiency, it can be reduced, but the structure, surface condition, etc. of the thin slab obtained by continuous casting greatly affect the material and surface properties of the thin plate as a product, Research in this area is essential.

【0004】特に、表層材として使用されるオーステナ
イト系ステンレス鋼の場合、その表面の平滑度や光沢等
が問題とされるが、現状の薄鋳片連続鋳造方法では、こ
の問題を解決するに至っていない。また、オーステナイ
ト系ステンレス鋼においては、冷延後に、ローピングと
称される表面欠陥や光沢ムラが発生しやすいから、薄鋳
片の組織を、冷延しても、表面欠陥や光沢ムラが発生し
難い鋳造組織としなければならない。
[0004] In particular, in the case of austenitic stainless steel used as a surface material, the smoothness and gloss of the surface are problematic, but the current thin slab continuous casting method has solved this problem. Not in. Further, in austenitic stainless steel, surface defects and gloss unevenness called roping are likely to occur after cold rolling. Therefore, even if the structure of thin slab is cold rolled, surface defects and uneven gloss occur. The casting structure must be difficult.

【0005】ところで、オーステナイト系ステンレス鋼
においては、冷間圧延前の鋼材におけるγ粒が大きい場
合に、製品薄鋼板にローピングが顕著に生じることが解
明されている。そして、本出願人は、この解明に基づ
き、特開平2−182354号公報において、結晶粒微
細化元素を単独または合計で0.01〜1モル%、オー
ステナイト系ステンレス鋼の溶鋼に添加し、該溶鋼の凝
固開始から1200℃までの温度域を、100℃/秒以
上の冷却速度で冷却して、γ粒の平均粒径を50μm以
下に微細化し、冷間圧延製品の表面品質を向上させるこ
とを特徴とするオースナイト系ステンレス鋼薄肉鋳片の
製造方法を提案した。
[0005] Incidentally, in austenitic stainless steels, it has been clarified that when the γ grains in the steel material before cold rolling are large, roping occurs remarkably in the product thin steel sheet. Based on this elucidation, the present applicant disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2-182354 that a grain refinement element was added alone or in a total amount of 0.01 to 1 mol% to molten steel of austenitic stainless steel. Cooling the temperature range from the start of solidification of molten steel to 1200 ° C at a cooling rate of 100 ° C / sec or more to reduce the average grain size of γ grains to 50 µm or less and improve the surface quality of cold rolled products. A method of manufacturing an austenitic stainless steel thin cast slab characterized by the following was proposed.

【0006】しかし、この製造方法は、溶鋼の凝固開始
から1200℃までの温度域における冷却速度の制御が
難しく、実用的でない。その後、特開平3−71902
号公報や、特開平8−277423号公報により、ロー
ピングの発生を抑制するための鋳片の圧延条件(圧下率
と温度の関係)や、鋳造後の熱延・冷却条件が提案され
ているが、鋳造以降の工程において、各種条件を制御す
ることは、コスト増を招来し好ましくない。
However, this manufacturing method is difficult to control the cooling rate in a temperature range from the start of solidification of molten steel to 1200 ° C., and is not practical. Then, Japanese Patent Application Laid-Open No. 3-71902
JP-A-8-277423 and Japanese Patent Application Laid-Open No. 8-277423 have proposed slab rolling conditions (relation between rolling reduction and temperature) for suppressing the occurrence of roping, and hot rolling and cooling conditions after casting. Controlling various conditions in the process after casting is not preferable because it causes an increase in cost.

【0007】そこで、本出願人は、鋳造以降の工程条件
を特段制御しなくても、表面性状に優れたオーステナイ
ト系ステンレス鋼を得ることができないかとの観点に立
ち研究を進め、特願平11−11193号において、オ
ーステナイト系ステンレス鋼の溶鋼に、所定量のTi及び
/またはMgを添加し、介在物の形態及び量を制御するこ
とにより、その表面性状(凹凸)を改善する方法を提案
した。
[0007] The present applicant has conducted research from the viewpoint that an austenitic stainless steel having excellent surface properties can be obtained without special control of the process conditions after casting. No.-11193, a method was proposed in which a predetermined amount of Ti and / or Mg was added to molten steel of austenitic stainless steel to control the form and amount of inclusions, thereby improving the surface properties (irregularities). .

【0008】[0008]

【発明が解決しようとする課題】本発明は、双ドラム式
連続鋳造により製造されるオーステナイト系ステンレス
鋼薄鋳片において、γ結晶粒径を所定の範囲に制御し、
製品薄板の表面品質の向上を図ることを課題とするもの
である。
SUMMARY OF THE INVENTION The present invention provides an austenitic stainless steel thin slab manufactured by twin-drum continuous casting, in which the γ crystal grain size is controlled within a predetermined range.
It is an object to improve the surface quality of a product thin plate.

【0009】[0009]

【課題を解決するための手段】本出願人は、オーステナ
イト系ステンレス鋼の溶鋼に、所定量のTiとMgを添加す
ると、溶鋼中に形成される介在物の形態及び量が時間に
従って変化し、この変化が、表面性状の改善に寄与して
いるとの知見を得て、上記特願平11−11193号を
出願するに至ったのであるが、本発明者は、所定量のTi
及び/またはMgの添加が表面性状(凹凸)を改善する冶
金学的理由を解明すべく、さらに調査・研究を行った結
果、次の(a)〜(d)の知見を得た。
SUMMARY OF THE INVENTION The present applicant has proposed that, when a predetermined amount of Ti and Mg is added to molten steel of austenitic stainless steel, the form and amount of inclusions formed in the molten steel change with time, The inventors obtained the knowledge that this change contributed to the improvement of the surface properties, and came to apply for Japanese Patent Application No. 11-11193.
Further investigations and studies were conducted to elucidate the metallurgical reasons for the addition of Mg to improve the surface properties (irregularities), and as a result, the following findings (a) to (d) were obtained.

【0010】(a)溶鋼に、微量のTiとMgを添加し、Mg
O・Al2O3 系介在物の上にTiNが晶出して形成された微
細なMg−(Al,Ti) −O−TiN系介在物は、bcc鉄との
格子整合性が高く、溶鋼中において、初晶δフェライト
の凝固核生成接種核として作用する。 (b)下記式で定義されるγ結晶粒径:球換算粒径Dav
e が70μm未満であると、冷延薄板製品にローピング
が生じない。
(A) A small amount of Ti and Mg are added to molten steel,
O · Al 2 O 3 based fine Mg- (Al, Ti) -O- TiN type inclusions TiN is formed crystallize out on the inclusions have a high lattice matching with the bcc iron, molten steel In the above, it acts as an inoculation nucleus for solidification nucleation of primary crystal δ ferrite. (B) γ crystal particle diameter defined by the following formula: spherical equivalent particle diameter Dav
When e is less than 70 μm, no roping occurs in the cold rolled sheet product.

【0011】[0011]

【数2】 (Equation 2)

【0012】(c)凝固冷却速度vを制御することによ
り、凝固組織を微細化することができる。 (d)冷延薄板製品においてローピングの発生を抑制す
るためには、薄鋳片の上記γ結晶粒径Dave と凝固冷却
速度vが所要の関係を満たす必要がある。本発明は、上
記知見(a)〜(d)に基づくものであり、その要旨と
するところは、次のとおりである。 (1)軸が平行で互いに逆方向に回転する一対の冷却ド
ラムとサイド堰で形成される湯溜り部に注入したオース
テナイト系ステンレス鋼の溶鋼が、TiとMgを微量含有
し、凝固冷却速度v:100℃/s以上で連続鋳造したオ
ーステナイト系ステンレス鋼薄板であって、下記式で定
義される該薄鋳片のγ結晶粒径:球換算粒径Dave が、 Dave <70μm 及び Dave <150−32・log(v)〔v:凝固冷却速
度(℃/秒)〕 を満たすことを特徴とする表面品質の優れたオーステナ
イト系ステンレス鋼薄鋳片。
(C) The solidification structure can be refined by controlling the solidification cooling rate v. (D) In order to suppress the occurrence of roping in a cold rolled sheet product, the above-mentioned γ crystal grain size Dave of the thin slab and the solidification cooling rate v must satisfy a required relationship. The present invention is based on the above findings (a) to (d), and the gist thereof is as follows. (1) Molten steel of austenitic stainless steel injected into a pool formed by a pair of cooling drums and side dams whose axes are parallel and rotate in opposite directions contains a small amount of Ti and Mg, and has a solidification cooling rate v : Austenitic stainless steel sheet continuously cast at 100 ° C./s or more, and the γ crystal grain diameter of the thin slab defined by the following equation: sphere-converted particle diameter Dave is Dave <70 μm and Dave <150− An austenitic stainless steel thin slab having excellent surface quality, characterized by satisfying 32 · log (v) [v: solidification cooling rate (° C./sec)].

【0013】[0013]

【数3】 (Equation 3)

【0014】(2)軸が平行で互いに逆方向に回転する
一対の冷却ドラムとサイド堰で形成される湯溜り部に注
入したオーステナイト系ステンレス鋼の溶鋼が、TiとMg
を微量含有し、凝固冷却速度v:100℃/秒以上で薄
鋳片を連続鋳造し、該薄鋳片に、インラインにて圧下率
25%以下の圧下を施し、次いで、1100℃、等価熱
処理時間7秒以下の熱処理を施すことを特徴とする上記
(1)記載の表面品質の優れたオーステナイト系ステン
レス鋼薄鋳片の製造方法。 (3)Tiを0.015〜0.08質量%添加することを
特徴とする上記(2)記載の表面品質の優れたオーステ
ナイト系ステンレス鋼薄鋳片の製造方法。 (4)Mgを0.0005〜0.01質量%添加すること
を特徴とする上記(2)または(3)記載の表面品質の
優れたオーステナイト系ステンレス鋼薄鋳片の製造方
法。
(2) Molten steel of austenitic stainless steel injected into a pool formed by a pair of cooling drums and side dams whose axes are parallel and rotate in opposite directions is Ti and Mg.
, A thin slab is continuously cast at a solidification cooling rate v: 100 ° C./sec or more, and the thin slab is subjected to in-line rolling at a rolling reduction of 25% or less, and then to an equivalent heat treatment at 1100 ° C. The method for producing an austenitic stainless steel thin slab having excellent surface quality according to the above (1), wherein the heat treatment is performed for a time of 7 seconds or less. (3) The method for producing an austenitic stainless steel thin cast piece having excellent surface quality according to the above (2), wherein Ti is added in an amount of 0.015 to 0.08% by mass. (4) The method for producing an austenitic stainless steel thin slab having excellent surface quality according to the above (2) or (3), wherein 0.0005 to 0.01% by mass of Mg is added.

【0015】[0015]

【発明の実施の形態】まず、本発明の製造方法について
説明する。本発明の製造方法においては、軸が平行で互
いに逆方向に回転する一対の冷却ドラムとサイド堰で形
成される湯溜り部に注入したオーステナイト系ステンレ
ス鋼の溶鋼に、TiとMgを微量添加し、該溶鋼中に、初晶
δフェライトの凝固核生成接種核として有効に作用する
介在物を生成せしめることを特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the manufacturing method of the present invention will be described. In the production method of the present invention, a small amount of Ti and Mg are added to molten steel of austenitic stainless steel injected into a pool formed by a pair of cooling drums and side dams whose axes are parallel and rotate in opposite directions. The method is characterized in that inclusions which effectively act as inoculation nuclei for solidifying nuclei of primary crystal δ ferrite are formed in the molten steel.

【0016】上記溶鋼にTiを添加するとTi2O3 が形成さ
れ、次いで、Mgを添加するとMg系酸化物に置換され、微
細なMgO・Al2O3 系またはMgO・(Al2O3,Ti2O3) 系の介
在物が形成される。次いで、溶鋼の温度降下に伴い、こ
のMgO・Al2O3 系またはMgO・(Al2O3,Ti2O3) 系介在物
の上にTiNが晶出し、微細なMg−(Al,Ti) −O−TiN系
介在物が形成される。この介在物は、bcc鉄と格子整
合度(性)が高いので、溶鋼の凝固過程で、初晶δフェ
ライトの凝固核生成接種核として作用する。
When Ti is added to the above molten steel, Ti 2 O 3 is formed, and when Mg is added, it is replaced with Mg-based oxide, and fine MgO.Al 2 O 3 -based or MgO. (Al 2 O 3 , Ti 2 O 3 ) -based inclusions are formed. Then, with the temperature drop of the molten steel, TiN crystallized on the MgO.Al 2 O 3 -based or MgO. (Al 2 O 3 , Ti 2 O 3 ) -based inclusions, and fine Mg- (Al, Ti ) -O-TiN-based inclusions are formed. This inclusion has a high degree of lattice matching (property) with bcc iron, and thus acts as a solidification nucleation inoculation nucleus for primary δ ferrite in the process of solidifying molten steel.

【0017】Tiは、0.015〜0.08質量%添加す
るのが好ましい。Tiの添加量が0.015%未満である
と、所望の介在物の形成に充分な量のTi2O3 や、TiNを
確保することができず、一方、Tiを0.08%を超えて
多量に添加すると、コストが増加し、また、冷延時に表
面疵が生じる等の問題もあるので、Tiの添加量は0.0
15〜0.08%が好ましい。
It is preferable to add 0.015 to 0.08% by mass of Ti. If the added amount of Ti is less than 0.015%, Ti 2 O 3 or TiN in an amount sufficient to form desired inclusions cannot be secured, while Ti exceeds 0.08%. If a large amount of Ti is added, the cost increases, and there are problems such as surface flaws occurring during cold rolling.
15-0.08% is preferable.

【0018】Mgは、0.0005〜0.01質量%添加
するのが好ましい。Mgの添加量が0.0005%未満で
あると、TiNの晶出核として作用するMg系酸化物を充分
な量確保することができず、一方、Mgを0.01%を超
えて多量に添加しても、添加効果が飽和するので、Mgの
添加量は0.0005〜0.01%が好ましい。連続鋳
造は、溶鋼中で、微細に分散しているMg−(Al,Ti) −O
−TiN系介在物が凝集しない間に、凝固冷却速度vを1
00℃/秒以上として行う。この凝固冷却速度の下で、
微細な凝固組織を得ることができる。凝固冷却速度vが
100℃/秒未満では、薄鋳片のγ結晶粒径が粗大とな
り、鋳造後、インラインで熱延−熱処理を施しても、下
記式で定義されるγ結晶粒径:球換算粒径Dave が70
μm未満にならない。
Mg is preferably added in an amount of 0.0005 to 0.01% by mass. If the added amount of Mg is less than 0.0005%, it is not possible to secure a sufficient amount of the Mg-based oxide acting as the crystallization nucleus of TiN, while increasing the amount of Mg to more than 0.01%. Even if it is added, the effect of addition is saturated. Therefore, the addition amount of Mg is preferably 0.0005 to 0.01%. In continuous casting, Mg- (Al, Ti) -O
-While the TiN-based inclusions do not agglomerate,
It is performed at a temperature of at least 00 ° C./sec. Under this solidification cooling rate,
A fine solidified structure can be obtained. When the solidification cooling rate v is less than 100 ° C./sec, the γ crystal grain size of the thin slab becomes coarse, and even if hot rolling and heat treatment are performed in-line after casting, the γ crystal grain size defined by the following formula: sphere Converted particle size Dave is 70
Not less than μm.

【0019】[0019]

【数4】 (Equation 4)

【0020】上記Dave は、従来から便宜的に用いられ
ている結晶粒の個数頻度の期待値として定義されるDn
〔=Σ2×SQR(3×Si /2π)/n〕に替わる指
標であり、混粒組織の実態を表す指標として有用な指標
である(特開平8−281385号公報、参照)。本発
明においては結晶粒径の大小に依存するローピングの発
生を抑制するため、組織の実態に合った指標として、上
記Dave を採用した。
The above Dave is Dn defined as an expected value of the number frequency of crystal grains conventionally used for convenience.
It is an index replacing [= (2 × SQR (3 × Si / 2π) / n], and is a useful index as an index indicating the actual state of the mixed grain structure (see Japanese Patent Application Laid-Open No. 8-281385). In the present invention, in order to suppress the occurrence of roping depending on the crystal grain size, the above Dave is adopted as an index suitable for the actual structure.

【0021】また、凝固冷却速度v(℃/秒)は、上記
γ結晶粒径Dave (<70μm)との関係で、 Dave <150−32・log(v) を満たす範囲で選択する必要がある。本発明において
は、前記のように、薄鋳片におけるγ結晶粒径Dave
(μm)と凝固冷却速度v(℃/秒)との間に所要の関
係が成立し、凝固冷却速度vを制御することにより、薄
鋳片の凝固組織を微細化することができるとの知見
(d)を得たが、該関係を明らかにするため、次の試験
を行った。 (試験)所定量のTi、Mgを添加したオーステナイト系ス
テンレス鋼の溶鋼とTi、Mg無添加の該溶鋼を、板厚3.
5mmの薄鋳片に連続鋳造し、該薄鋳片に1200℃×1
分の熱処理を施し、次いで、ショット、酸洗によりデス
ケーリングを行った。凝固冷却速度vとγ結晶粒径Dav
e との関係を把握するため、上記薄鋳片上に、TIGビ
ードオンプレート溶接を行った。溶接速度を1m/分、
アーク長を1mm、シールドガスをArとし、入熱量を変化
させることにより、凝固冷却速度vを変化させた。
The solidification cooling rate v (° C./sec) needs to be selected within a range satisfying Dave <150−32 · log (v) in relation to the γ crystal grain size Dave (<70 μm). . In the present invention, as described above, the γ crystal grain size Dave
(Μm) and the solidification cooling rate v (° C./sec) are established, and the knowledge that the solidification cooling rate v can be controlled to make the solidified structure of thin cast pieces finer. (D) was obtained, but the following test was performed to clarify the relationship. ( Test ) Molten steel of austenitic stainless steel to which predetermined amounts of Ti and Mg were added and the molten steel to which Ti and Mg were not added were used.
Continuous casting to 5mm thin slab, 1200 ° C x 1
Heat treatment and then descaling by shot and pickling. Solidification cooling rate v and γ grain size Dav
In order to grasp the relationship with e, TIG bead-on-plate welding was performed on the thin slab. Welding speed 1m / min,
The arc length was 1 mm, the shield gas was Ar, and the amount of heat input was changed to change the solidification cooling rate v.

【0022】凝固冷却速度は伝熱計算により概算する
が、該概算に基づき、1423℃における冷却凝固速度
を262〜868K/秒まで変化させた。一方、γ結晶
粒径Dave は、200倍の顕微鏡写真を画像解析して求
めた。この時、δフェライトを拡散させ結晶粒界を現出
させる目的で、事前に1200℃で1分の熱処理を施し
た。図1に、凝固冷却速度vとγ結晶粒径Dave との関
係を示す。概ね、凝固冷却速度vが大きくなるに従い、
γ結晶粒径Dave は小さくなることが分かる。また、T
i、Mg無添加(図中、白丸と黒丸)の場合、Dave は1
40μm以上で粗大であるが、Ti、Mg添加(図中、白三
角と白四角)の場合、Dave は70μm未満であること
が分かる。
The solidification cooling rate is estimated by heat transfer calculation, and the cooling solidification rate at 1423 ° C. was changed from 262 to 868 K / sec based on the estimation. On the other hand, the γ crystal grain size Dave was determined by image analysis of a 200 × photomicrograph. At this time, a heat treatment was performed at 1200 ° C. for 1 minute in advance for the purpose of diffusing δ ferrite to reveal crystal grain boundaries. FIG. 1 shows the relationship between the solidification cooling rate v and the γ crystal grain size Dave. Generally, as the solidification cooling rate v increases,
It can be seen that the γ crystal grain size Dave becomes smaller. Also, T
When i and Mg are not added (open circles and black circles in the figure), Dave is 1
Although it is coarse at 40 μm or more, it can be seen that Dave is less than 70 μm when Ti and Mg are added (open triangles and open squares in the figure).

【0023】そして、Ti、Mg添加の場合、凝固冷却速度
vとγ結晶粒径Dave との関係は、以下の式で近似され
る。 Dave =130−32・log(v) Tiの下限値(0.015%)を考慮すると、 Dave =150−32・log(v) であり、 Dave <150−32・log(v) の関係が満たされていれば、冷延薄板製品において、ロ
ーピングの発生が抑制されていることが明らかになっ
た。
In the case of adding Ti and Mg, the relationship between the solidification cooling rate v and the γ crystal grain size Dave is approximated by the following equation. Considering the lower limit of Dave = 130−32 · log (v) Ti (0.015%), Dave = 150−32 · log (v), and the relationship of Dave <150−32 · log (v) is satisfied. When it was satisfied, it became clear that the occurrence of roping was suppressed in the cold rolled sheet product.

【0024】このように、本発明の製造方法では、凝固
冷却速度は100℃/秒以上で、かつ、γ結晶粒径Dav
e は、70μm未満の範囲で、 Dave <150−32・log(v) を満たす必要がある。そして、本発明の製造方法では、
上記範囲の凝固冷却速度で連続鋳造して得た薄鋳片に対
し、必要に応じ、インラインにて、圧下率25%以下の
圧下を施し、次いで、1100℃等価熱処理時間7秒以
下の熱処理を施すことを特徴とする。
As described above, in the production method of the present invention, the solidification cooling rate is 100 ° C./sec or more, and the γ crystal grain size Dav
e needs to satisfy Dave <150−32 · log (v) within a range of less than 70 μm. And in the manufacturing method of the present invention,
The thin slab obtained by continuous casting at the solidification cooling rate in the above range is subjected to a reduction of 25% or less in line, if necessary, and then subjected to a heat treatment of 1100 ° C. equivalent heat treatment time of 7 seconds or less. It is characterized by applying.

【0025】この圧下と熱処理により、凝固組織を再結
晶させ、γ結晶粒の微細化を図ることができる。インラ
インにおける圧下で、圧下率25%を超える圧下を施せ
ば、薄鋳片の板厚方向の全域に渡り、再結晶に充分な歪
みが付与されて、引き続く熱処理による再結晶により、
γ結晶粒はより微細化されるが、微細化に伴うローピン
グの抑制効果は飽和するので、生産効率や、消費エネル
ギーの点をも考慮して、圧下率の上限を25%とする。
By this reduction and heat treatment, the solidified structure can be recrystallized, and the γ crystal grains can be refined. If a reduction of more than 25% is applied under in-line reduction, sufficient strain is given to recrystallization over the entire region in the thickness direction of the thin slab, and by recrystallization by a subsequent heat treatment,
Although the γ crystal grains are further refined, the effect of suppressing roping due to the refinement is saturated. Therefore, the upper limit of the rolling reduction is set to 25% in consideration of production efficiency and energy consumption.

【0026】本発明の製造方法では、上記圧下率の圧下
に次いで、薄鋳片に、1100℃等価熱処理時間7秒以
下の熱処理を施す。等価熱処理時間は、昇温・降温を繰
り返すヒートパターンが有する熱エネルギーを、任意の
温度で恒温・保持したときの熱エネルギーと等価と定義
する場合に用いる指標であり、下記式で定義されるもの
である(特開昭8−281385号公報、参照)。
In the manufacturing method of the present invention, the thin slab is subjected to a heat treatment at 1100 ° C. for an equivalent heat treatment time of 7 seconds or less, following the reduction at the above-described reduction ratio. The equivalent heat treatment time is an index used to define the thermal energy of a heat pattern that repeats heating and cooling to be equivalent to the thermal energy when kept at a constant temperature and maintained at an arbitrary temperature, and is defined by the following equation. (See JP-A-8-281385).

【0027】[0027]

【数5】 (Equation 5)

【0028】上記等価熱処理時間は、本発明の製造方法
のように、鋳造後、冷却することなく、直ちにインライ
ンで圧下−熱処理を行い、所要の再結晶を促すような場
合、適切な熱処理時間を設定するうえで、有用な指標で
ある。本発明の製造方法において、所望の再結晶は、等
価熱処理時間7秒以下で充分に進行する。7秒を超えて
熱処理しても、冷延薄板製品のローピングの発生に対す
る抑制効果は飽和するし、また、7秒を超えてさらに長
時間熱処理すれば、γ結晶粒が粗大化してしまう。
When the equivalent heat treatment time is such that the reduction-heat treatment is immediately performed in-line without cooling after casting as in the production method of the present invention to promote the required recrystallization, an appropriate heat treatment time is required. It is a useful index for setting. In the manufacturing method of the present invention, the desired recrystallization sufficiently proceeds with an equivalent heat treatment time of 7 seconds or less. Even if the heat treatment is performed for more than 7 seconds, the effect of suppressing the occurrence of roping of the cold rolled sheet product is saturated, and if the heat treatment is performed for more than 7 seconds, the γ crystal grains are coarsened.

【0029】次に、本発明の薄鋳片について説明する。
本発明の薄鋳片において、γ結晶粒径Dave は70μm
未満である必要がある。70μm以上では、冷延薄板製
品において、ローピング(表面凹凸)が顕著に発現す
る。さらに、γ結晶粒径Dave は、凝固冷却速度vとの
関係式、 Dave <150−32・log(v) を満たす必要がある。
Next, the thin cast piece of the present invention will be described.
In the thin slab of the present invention, the γ grain size Dave is 70 μm
Must be less than When the thickness is 70 μm or more, roping (surface irregularities) is remarkably exhibited in the cold rolled thin sheet product. Further, the γ crystal grain size Dave needs to satisfy the relational expression with the solidification cooling rate v, Dave <150−32 · log (v).

【0030】これは、前記したように、冷延薄板製品に
おいて、ローピング(表面凹凸)の発生を抑制するため
には、γ結晶粒径Dave と凝固冷却速度vが上記関係式
を満たす必要があるからである。上記関係式に従えば、
凝固冷却速度vを制御することにより、薄鋳片のγ結晶
粒径を調整することができるので、所望の品質の冷延薄
板製品を安定して製造することができる。
As described above, in order to suppress the occurrence of roping (surface unevenness) in a cold-rolled thin sheet product, the γ crystal grain size Dave and the solidification cooling rate v must satisfy the above relational expression. Because. According to the above relational expression,
By controlling the solidification cooling rate v, the γ crystal grain size of the thin slab can be adjusted, so that a cold-rolled sheet product of desired quality can be stably manufactured.

【0031】[0031]

【実施例】本発明の実施例を以下に示す。表1に示す18
%Cr-8%Niを基本とする各種のCr−Ni系ステンレス鋼の
溶鋼を、ランダムにディンプルを配設した1330mm幅
の冷却ドラムを有する双ドラム式連続鋳造機により、板
厚3.5mmの薄鋳片に連続鋳造した。次いで、インライ
ンにて、0〜35%の圧下率で熱間圧延を行い、引く続
き、インライン熱処理炉にて、1100℃で0〜20秒
相当の熱処理を施し、その後、常法により、薄鋳片をデ
スケーリングして冷間圧延を行い、次いで、最終焼鈍、
デスケーリング、さらに、調質圧延を行って冷延薄板製
品とした。表2に、各種製造条件、γ結晶粒径Dave 、
及び、表面品質(ローピング特性)を示す。
Embodiments of the present invention will be described below. 18 shown in Table 1
% Cr-8% Ni based molten steel of various Cr-Ni-based stainless steels with a thickness of 3.5 mm by a twin-drum continuous casting machine having a cooling drum with a width of 1330 mm in which dimples are randomly arranged. It was continuously cast into thin slabs. Next, in-line hot rolling is performed at a rolling reduction of 0 to 35%, and subsequently, a heat treatment is performed in an in-line heat treatment furnace at 1100 ° C. for 0 to 20 seconds. The pieces are descaled and cold rolled, followed by final annealing,
Descaling and temper rolling were performed to obtain a cold-rolled thin sheet product. Table 2 shows various production conditions, γ crystal grain size Dave,
And surface quality (roping characteristics).

【0032】発明例では、インライン熱間圧延25%以
下、インライン熱処理での1100℃等価熱処理時間が
7秒以下で、γ結晶粒径Dave が70μm未満を達成し
ている。一方、Ti、Mg無添加の比較例では、インライン
での圧下率30%以上、インライン熱処理で、1100
℃等価熱処理時間7秒以上が不可欠であり、圧下率25
%以下、1100℃等価熱処理時間7秒以下では、γ結
晶粒径Dave は、70μm以下を達成できていない。
In the invention example, the in-line hot rolling is 25% or less, the equivalent heat treatment time at 1100 ° C. in the in-line heat treatment is 7 seconds or less, and the γ grain size Dave is less than 70 μm. On the other hand, in the comparative example in which Ti and Mg were not added, the in-line reduction rate was 30% or more, and
The equivalent heat treatment time of 7 ° C is indispensable for 7 seconds or more.
% Or less, and the equivalent heat treatment time of 7 seconds or less at 1100 ° C. cannot achieve the γ crystal grain size Dave of 70 μm or less.

【0033】なお、平均凝固冷却測度は、鋳造温度と冷
却ロール直下での鋳片温度の差を鋳造速度より求められ
る経過時間で割ることにより概算した。表2において、
冷延薄板製品のローピング特性については、良好な場合
を○、不良の場合を×、さらに、極めて悪い場合を××
で示した。表2に示すように、発明例の薄鋳片は冷延薄
板製品のローピング特性がいずれも良好であり、表面性
状に優れているものである。
The average solidification cooling measure was roughly calculated by dividing the difference between the casting temperature and the slab temperature immediately below the cooling roll by the elapsed time obtained from the casting speed. In Table 2,
Regarding the roping properties of the cold rolled sheet products, 良好 indicates good cases, × indicates poor cases, and XX indicates extremely poor cases.
Indicated by As shown in Table 2, the thin cast slabs of the invention examples have good roping properties of cold rolled thin sheet products and excellent surface properties.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明によれば、表面性状の優れたオー
ステナイト系ステンレス鋼薄板製品を安定して製造する
ことができ、消費エネルギーやコストの低減し、さら
に、製造時間の短縮を図ることができる。したがって、
本発明は、STCプロセスの効果を充分に発揮するもの
であり、産業に寄与するところが大きい。
According to the present invention, an austenitic stainless steel sheet product having excellent surface properties can be stably manufactured, energy consumption and cost can be reduced, and the manufacturing time can be shortened. it can. Therefore,
The present invention sufficiently exerts the effects of the STC process, and greatly contributes to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】凝固冷却速度vとγ結晶粒径Dave との関係を
示す図である。
FIG. 1 is a diagram showing a relationship between a solidification cooling rate v and a γ crystal grain size Dave.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軸が平行で互いに逆方向に回転する一対
の冷却ドラムとサイド堰で形成される湯溜り部に注入し
たオーステナイト系ステンレス鋼の溶鋼が、TiとMgを微
量含有し、凝固冷却速度v:100℃/s以上で連続鋳造
したオーステナイト系ステンレス鋼薄鋳片であって、下
記式で定義される該薄鋳片のγ結晶粒径:球換算粒径D
ave が、 Dave <70μm 及び Dave <150−32・log(v)〔v:凝固冷却速
度(℃/秒)〕 を満たすことを特徴とする表面品質の優れたオーステナ
イト系ステンレス鋼薄鋳片。 【数1】
1. A molten austenitic stainless steel injected into a pool formed by a pair of cooling drums and side weirs, whose axes are parallel and rotate in opposite directions, contains a small amount of Ti and Mg, and solidifies and cools. Velocity v: Austenitic stainless steel thin slab continuously cast at 100 ° C./s or more, wherein γ crystal grain diameter of the thin slab defined by the following formula: sphere-converted particle diameter D
An austenitic stainless steel thin slab excellent in surface quality, characterized in that ave satisfies Dave <70 μm and Dave <150-32 · log (v) [v: solidification cooling rate (° C./sec)]. (Equation 1)
【請求項2】 軸が平行で互いに逆方向に回転する一対
の冷却ドラムとサイド堰で形成される湯溜り部に注入し
たオーステナイト系ステンレス鋼の溶鋼が、TiとMgを微
量含有し、凝固冷却速度v:100℃/秒以上で薄鋳片
を連続鋳造し、該薄鋳片に、インラインにて圧下率25
%以下の圧下を施し、次いで、1100℃、等価熱処理
時間7秒以下の熱処理を施すことを特徴とする請求項1
記載の表面品質の優れたオーステナイト系ステンレス鋼
薄鋳片の製造方法。
2. A molten steel of austenitic stainless steel injected into a pool formed by a pair of cooling drums and side weirs, whose axes are parallel to each other and rotates in opposite directions, contains a small amount of Ti and Mg, and solidifies and cools. Speed v: Continuous casting of a thin slab at 100 ° C./sec or more, and a reduction rate of 25
%, Followed by heat treatment at 1100 ° C. for an equivalent heat treatment time of 7 seconds or less.
A method for producing an austenitic stainless steel thin slab having excellent surface quality as described.
【請求項3】 Tiを0.015〜0.08質量%添加す
ることを特徴とする請求項2記載の表面品質の優れたオ
ーステナイト系ステンレス鋼薄鋳片の製造方法。
3. The method according to claim 2, wherein Ti is added in an amount of 0.015 to 0.08% by mass.
【請求項4】 Mgを0.0005〜0.01質量%添加
することを特徴とする請求項2または3記載の表面品質
の優れたオーステナイト系ステンレス鋼薄鋳片の製造方
法。
4. The method for producing an austenitic stainless steel thin slab having excellent surface quality according to claim 2, wherein 0.0005 to 0.01% by mass of Mg is added.
JP2000197064A 2000-06-29 2000-06-29 Austenitic stainless steel thin cast slab excellent in surface quality and its producing method Withdrawn JP2002011551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197064A JP2002011551A (en) 2000-06-29 2000-06-29 Austenitic stainless steel thin cast slab excellent in surface quality and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197064A JP2002011551A (en) 2000-06-29 2000-06-29 Austenitic stainless steel thin cast slab excellent in surface quality and its producing method

Publications (1)

Publication Number Publication Date
JP2002011551A true JP2002011551A (en) 2002-01-15

Family

ID=18695451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197064A Withdrawn JP2002011551A (en) 2000-06-29 2000-06-29 Austenitic stainless steel thin cast slab excellent in surface quality and its producing method

Country Status (1)

Country Link
JP (1) JP2002011551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348990A (en) * 2015-11-12 2018-07-31 株式会社Posco Austenitic stainless steel and its manufacturing method with excellent resistance to tangerine peel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108348990A (en) * 2015-11-12 2018-07-31 株式会社Posco Austenitic stainless steel and its manufacturing method with excellent resistance to tangerine peel

Similar Documents

Publication Publication Date Title
CN102069167A (en) Method for preparing oriented silicon steel isometric crystal thin strip blank by twin-roll thin strip continuous casting
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JP3423818B2 (en) Method for producing austenitic stainless steel sheet slab
JPS63123556A (en) Production of cr-ni stainless steel being hard to crack at casting and hot rolling process
JP3373078B2 (en) Method of producing austenitic stainless steel ribbon-shaped slab with excellent cold-rolled surface quality and slab
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
JP2002011551A (en) Austenitic stainless steel thin cast slab excellent in surface quality and its producing method
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
JP3595369B2 (en) Method for producing austenitic stainless steel sheet with excellent surface quality
JPS63230856A (en) Manufacture of aluminum-alloy sheet
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
US5853501A (en) Hot rolled Cr-Ni stainless steel plate of low anisotropy and process for producing the same
JPH02263931A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JPH0219426A (en) Manufacture of cr-ni stainless steel sheet having excellent quality and surface property
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JP2002001495A (en) Manufacturing method for austenitic stainless steel sheet iron excellent in surface quality and thin casting slab
JPH02133522A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JPS61189846A (en) Manufacture of metallic sheet
JPH0371902A (en) Manufacture of austenitic stainless thin steel strip of good surface property and excellent in ductility
JPH02263930A (en) Production of cr-ni stainless steel sheet excellent in surface quality
JP2548942B2 (en) Method for preventing cracking during rapid solidification of Fe-Ni based alloy
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JPH02263929A (en) Production of cr-ni stainless steel sheet excellent in surface quality
CN115627408A (en) Production method of magnetic induction non-oriented silicon steel based on thin strip casting and rolling

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904