JP2002008906A - Resistor and its manufacturing method - Google Patents
Resistor and its manufacturing methodInfo
- Publication number
- JP2002008906A JP2002008906A JP2000185306A JP2000185306A JP2002008906A JP 2002008906 A JP2002008906 A JP 2002008906A JP 2000185306 A JP2000185306 A JP 2000185306A JP 2000185306 A JP2000185306 A JP 2000185306A JP 2002008906 A JP2002008906 A JP 2002008906A
- Authority
- JP
- Japan
- Prior art keywords
- resistor
- temperature coefficient
- layer
- resistors
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、絶縁基板の表面
に蒸着やスパッタリングなどによって薄膜抵抗体を形成
した薄膜抵抗器や金属箔抵抗体を用いた金属箔抵抗器に
関するものである。またこの抵抗器の製造方法に関する
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film resistor in which a thin film resistor is formed on the surface of an insulating substrate by vapor deposition or sputtering, or to a metal foil resistor using a metal foil resistor. The present invention also relates to a method for manufacturing the resistor.
【0002】[0002]
【従来の技術】ガラスやアルミナなどの絶縁基板に薄膜
抵抗材料を蒸着またはスパッタリングすることにより薄
膜抵抗体を形成し、この薄膜抵抗体にフォトエッチング
やレーザー加工などによってパターンを形成して作った
薄膜抵抗器が公知である。また、金属箔を基板に接着
し、フォトエッチングやレーザー加工などによってパタ
ーンを形成した金属箔抵抗器も公知である。2. Description of the Related Art A thin film resistor is formed by depositing or sputtering a thin film resistor material on an insulating substrate such as glass or alumina, and a thin film is formed by forming a pattern on the thin film resistor by photoetching or laser processing. Resistors are known. Further, a metal foil resistor in which a metal foil is bonded to a substrate and a pattern is formed by photoetching, laser processing, or the like is also known.
【0003】この種の抵抗器では、できるだけ広い温度
範囲に亘って抵抗値が安定していること、及び経時的な
抵抗値変化が小さく長期間特性が安定していることが必
要である。In this type of resistor, it is necessary that the resistance is stable over a temperature range as wide as possible, and that the change in the resistance over time is small and the characteristics are stable for a long period of time.
【0004】抵抗値の温度に対する安定性を示すものと
して抵抗温度係数(Temperature Coefficient of Resis
tance、以下TCRという)を用いる。ここにTCR
は、例えば25℃を基準温度とし、この温度での抵抗値
をR(25)、温度tでの抵抗値をR(t)とした時
に、次の式で定義される。 TCR(ppm/℃)={R(t)−R(25)}/R
(25)×[1/(t−25)]×106 The temperature coefficient of resistance (Temperature Coefficient of Resistance) indicates the stability of the resistance value with respect to temperature.
tance (hereinafter referred to as TCR). TCR here
Is defined by the following equation, for example, when 25 ° C. is a reference temperature, the resistance value at this temperature is R (25), and the resistance value at the temperature t is R (t). TCR (ppm / ° C.) = {R (t) −R (25)} / R
(25) × [1 / (t−25)] × 10 6
【0005】抵抗薄膜や金属箔を作る時には、一般にこ
の抵抗温度係数TCRをゼロにしたいものである。その
ため蒸着条件やスパッタリング条件をいろいろ変えた
り、厚さや基板の種類を変えて検討するのが普通であ
る。薄膜抵抗器では現在最も安定な抵抗体の一つとして
Ta(タンタル)を用いたものが知られている。またN
i−Cr(ニッケル・クローム)系合金にAl(アルミ
ニウム)やSi(シリコン)を添加してTCRをゼロに
近づけることも従来行われている。When a resistance thin film or a metal foil is formed, it is generally desired to make the temperature coefficient of resistance TCR zero. Therefore, it is common to change the conditions for vapor deposition and sputtering, and to change the thickness and the type of the substrate. At present, a thin film resistor using Ta (tantalum) is known as one of the most stable resistors. Also N
Conventionally, the TCR approaches zero by adding Al (aluminum) or Si (silicon) to an i-Cr (nickel-chrome) alloy.
【0006】正のTCRを持つ抵抗体と負のTCRを持
つ抵抗体を積層あるいは直列に接続してTCRをゼロに
近づける手法も公知である。例えば特公平8−2148
2には、CrSiN薄膜とNiCrAl薄膜を積層する
ことによって、抵抗値温度変化の非直線性(TCRの温
度依存性と記載されている)を低減する手法が示されて
いる。It is also known to connect a resistor having a positive TCR and a resistor having a negative TCR in series or in series to make the TCR close to zero. For example, Japanese Patent Publication No. 8-2148
No. 2 discloses a technique for reducing the non-linearity of the temperature change of the resistance value (described as the temperature dependence of TCR) by laminating a CrSiN thin film and a NiCrAl thin film.
【0007】また抵抗器の経時的な抵抗値変化を小さく
するためには、基板上に形成した抵抗薄膜を酸化防止膜
で被覆したり、抵抗器全体をハーメチックシール(気密
封止)することが公知であった。In order to reduce the change in the resistance value of the resistor over time, it is necessary to cover the resistor thin film formed on the substrate with an antioxidant film or to hermetically seal the entire resistor. It was known.
【0008】[0008]
【発明が解決しようとする課題】TCRを広い温度範囲
でさらに微小にしたい場合、例えば−55℃〜+125
℃の温度範囲でTCRを±5ppm/℃以内にしたい場
合は、抵抗値温度変化の非直線性成分を制御することが
考えられる。すなわちこの場合には、抵抗値変化率{R
(t)−R(25)}/R(25)を次の2次式で近似
し、まず一次温度係数α(ppm/℃)と二次温度係数
β(ppm/℃2)を求める。 [R(t)−R(25)]/R(25)=α(Δt)+
β(Δt)2 但しΔt=t−25When it is desired to further reduce the TCR in a wide temperature range, for example, -55 ° C. to +125
If it is desired to keep the TCR within ± 5 ppm / ° C. in the temperature range of ° C., it is conceivable to control the non-linear component of the temperature change of the resistance value. That is, in this case, the resistance value change rate 値 R
(T) −R (25)} / R (25) is approximated by the following quadratic equation, and first, a primary temperature coefficient α (ppm / ° C.) and a secondary temperature coefficient β (ppm / ° C. 2 ) are obtained. [R (t) -R (25)] / R (25) = α (Δt) +
β (Δt) 2 where Δt = t−25
【0009】抵抗値温度変化の非直線性を表わす二次温
度係数βは従来制御できないとされていたが、現在Ni
−Cr合金系では一次温度係数αと二次温度係数βの双
方を制御することが可能になっており、−55℃〜+1
25℃の温度範囲でTCRが±5ppm/℃以内を達成
できることを本願の出願人は知った。出願人は特願平1
0−351496にこの手法とNi−Cr合金系抵抗体
の組成を示した。The secondary temperature coefficient β representing the non-linearity of the temperature change of the resistance value was conventionally considered to be uncontrollable.
In the -Cr alloy system, it is possible to control both the primary temperature coefficient α and the secondary temperature coefficient β.
Applicants have found that a TCR within ± 5 ppm / ° C. can be achieved in a temperature range of 25 ° C. Applicant is Japanese Patent Application No. Hei 1
0-351496 shows this method and the composition of the Ni-Cr alloy-based resistor.
【0010】しかし従来の抵抗体は微小なTCRと長期
安定性を同時に達成することは困難であった。例えばN
i−Cr系合金抵抗体においては、長期安定性を達成で
きる組成にすると広い温度範囲でTCRを微小にするこ
とが困難になり、広い温度範囲で微小なTCRを達成で
きる組成にすると抵抗薄膜を酸化から保護できないこと
があった。Ni−Cr系合金以外の抵抗体では長期安定
性を達成できても、抵抗値温度変化の非直線性を制御で
きないため広い温度範囲でTCRを微小にすることは不
可能であった。However, it has been difficult for conventional resistors to simultaneously achieve a very small TCR and long-term stability. For example, N
In an i-Cr-based alloy resistor, it is difficult to reduce the TCR over a wide temperature range if the composition can achieve long-term stability. In some cases, protection from oxidation was not possible. Even if resistors other than the Ni-Cr alloy can achieve long-term stability, it is impossible to control the non-linearity of the temperature change of the resistance value, so that the TCR cannot be reduced over a wide temperature range.
【0011】[0011]
【発明の目的】この発明はこのような事情に鑑みなされ
たものであり、抵抗温度係数TCRを広い温度範囲でゼ
ロに近づけることができ、かつ長期安定性にも優れた抵
抗器を提供することを第1の目的とする。またこの抵抗
器の製造方法を提供することを第2の目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a resistor which can make the temperature coefficient of resistance TCR close to zero in a wide temperature range and has excellent long-term stability. As a first object. A second object is to provide a method for manufacturing this resistor.
【0012】[0012]
【発明の構成】この発明によれば第1の目的は、絶縁基
板表面に複数の抵抗体が積層された抵抗積層体を有する
抵抗器において、前記抵抗積層体の各層は、各々の抵抗
体の温度による抵抗値変化率を温度変化[Δt]の2次
式[αΔt+β(Δt)2]あるいはさらに高次の式で
近似した場合に少なくとも1つの層の一次温度係数α及
び二次温度係数βの符号を他の層の一次温度係数αおよ
び二次温度係数βの符号と逆に設定する一方、最上層を
長期安定性に優れた抵抗体で形成したことを特徴とする
抵抗器、により達成される。According to the present invention, a first object is to provide a resistor having a resistor laminated body in which a plurality of resistors are laminated on a surface of an insulating substrate, wherein each layer of the resistor laminated body is formed of a respective resistor. When the rate of change of the resistance value due to temperature is approximated by a quadratic expression [αΔt + β (Δt) 2 ] of the temperature change [Δt] or a higher-order expression, at least one of the primary temperature coefficient α and the secondary temperature coefficient β The sign is set opposite to the signs of the primary temperature coefficient α and the secondary temperature coefficient β of the other layers, while the uppermost layer is formed of a resistor having excellent long-term stability. You.
【0013】抵抗体のうち少なくとも1つの層は、αと
βを共に正とし、他の層のα、βを共に負とすることが
できる。少なくとも1つの層はNi−Cr系合金抵抗体
とすることができ、この合金は添加物や処理方法などに
よってα、βを相当広い範囲で調整することができるの
で便利である。従って添加物や処理方法によってα、β
を適切に設定した少なくとも2種のNi−Cr系合金抵
抗体を積層することにより所望のTCRを持った抵抗器
を作ることができる。At least one layer of the resistor can have both α and β positive, and both α and β of the other layers can be negative. At least one of the layers can be a Ni-Cr based alloy resistor, which is convenient because α and β can be adjusted over a fairly wide range by additives and processing methods. Therefore, α, β
By appropriately laminating at least two kinds of Ni—Cr-based alloy resistors each having a desired TCR, a resistor having a desired TCR can be produced.
【0014】積層された抵抗積層体のうち少なくとも1
層は、Al、Si、Be、Mg、Ti、Mnのグループ
と、Mn、Fe、Co、Ti、Vのグループの、少なく
とも一方のグループの1または複数の元素を含むNi−
Cr系合金とすることができる。At least one of the stacked resistance laminates
The layer is made of a Ni— layer containing one or more elements of at least one of a group of Al, Si, Be, Mg, Ti, and Mn and a group of Mn, Fe, Co, Ti, and V.
It can be a Cr-based alloy.
【0015】また積層される抵抗積層体は、少なくとも
1つの層を薄膜抵抗体または金属箔抵抗体で構成するこ
とができる。あるいは薄膜抵抗体と金属箔抵抗体を組み
合わせて積層してもよい。[0015] Further, in the laminated resistor laminate, at least one layer can be constituted by a thin film resistor or a metal foil resistor. Alternatively, a thin film resistor and a metal foil resistor may be combined and laminated.
【0016】抵抗積層体の最上層となる長期安定性に優
れる抵抗体は、Ni−Cr−Al合金とすることができ
る。この合金に含まれるAlの自己酸化によりアルミ酸
化膜を形成させ、このアルミ酸化膜により長期安定性を
得ることができるからである。The resistor having excellent long-term stability, which is the uppermost layer of the resistor laminate, may be a Ni-Cr-Al alloy. This is because aluminum oxide film is formed by self-oxidation of Al contained in this alloy, and long-term stability can be obtained by this aluminum oxide film.
【0017】第2の目的は、絶縁基板表面に互いに異な
る組成の抵抗体が積層されて形成された抵抗積層体を有
する抵抗器の製造方法において、抵抗体の各層について
温度による抵抗値変化率を温度変化[Δt]の2次式
[αΔt+β(Δt)2]あるいはさらに高次の式で近
似し、この式から計算された抵抗積層体の温度による抵
抗値変化率が所定範囲内に入るように各層の抵抗体の一
次温度係数αおよび二次温度係数βの値を決定すると共
に各層の厚さを決定することを特徴とする抵抗器の製造
方法、によって達成される。A second object of the present invention is to provide a method of manufacturing a resistor having a resistor laminated body formed by laminating resistors having different compositions on the surface of an insulating substrate. It is approximated by a quadratic expression [αΔt + β (Δt) 2 ] of the temperature change [Δt] or a higher-order expression so that the rate of change in the resistance value of the resistance laminate due to the temperature calculated from this expression falls within a predetermined range. This is achieved by a method of manufacturing a resistor, characterized in that values of a primary temperature coefficient α and a secondary temperature coefficient β of a resistor in each layer are determined and a thickness of each layer is determined.
【0018】[0018]
【実施態様】図1は本発明の一実施態様である抵抗器の
構造を示す断面図、図2は温度による抵抗値変化率の変
化の計算結果と測定結果を比較して示す図、図3は抵抗
値変化率の長期安定性の測定結果を示す図である。図1
において、符号10は絶縁基板、12はこの基板10に
形成した下層、14はこの下層12の上に形成した上層
である。絶縁基板10はここではアルミナとする。FIG. 1 is a cross-sectional view showing the structure of a resistor according to an embodiment of the present invention. FIG. 2 is a diagram showing a comparison between a calculation result and a measurement result of a change in a rate of change in resistance with temperature. FIG. 3 is a view showing a measurement result of long-term stability of a resistance value change rate. FIG.
In the figure, reference numeral 10 denotes an insulating substrate, 12 denotes a lower layer formed on the substrate 10, and 14 denotes an upper layer formed on the lower layer 12. Here, the insulating substrate 10 is made of alumina.
【0019】下層12は、高周波(RF,Radio Freque
ncy)スパッタリングによって形成したもので、Ni−
Cr合金にMnを加えた薄膜抵抗体(以下NiCrMn
薄膜抵抗体)とする。上層14は、この下層12の上に
高周波スパッタリングによって形成したものであり、A
lを加えた薄膜抵抗体(以下NiCrAl薄膜抵抗体)
である。The lower layer 12 is made of a high frequency (RF, Radio Freque
ncy) formed by sputtering, Ni-
Thin film resistor with Mn added to Cr alloy (hereinafter NiCrMn)
Thin film resistor). The upper layer 14 is formed on the lower layer 12 by high frequency sputtering.
Thin film resistor with l (hereinafter referred to as NiCrAl thin film resistor)
It is.
【0020】この時の雰囲気は、Ar(アルゴン)ガス
圧力0.5Paとし、絶縁基板をアルミナとし、RF電
力300Wとし、両抵抗体の薄膜厚をそれぞれ0.3μ
mとした。またNi−Cr合金の組成比Ni/Cr(at
%)は、77/23であり、Alの添加量12at%、M
nの添加量は10at%である。熱処理は、2層とした抵
抗体の形成後に真空中で300℃以上、好ましくは約5
00℃に約3時間放置することによる。The atmosphere at this time was an Ar (argon) gas pressure of 0.5 Pa, an insulating substrate of alumina, an RF power of 300 W, and a thin film thickness of both resistors of 0.3 μm.
m. Further, the composition ratio of the Ni—Cr alloy, Ni / Cr (at
%) Is 77/23, the addition amount of Al is 12 at%,
The amount of n added is 10 at%. The heat treatment is performed at a temperature of 300 ° C. or higher, preferably about 5
By leaving at 00 ° C. for about 3 hours.
【0021】前記2種類の薄膜抵抗体の各々について、
温度による抵抗値変化率を解析した。すなわち抵抗値変
化率(R(t)−R(25))/R(25)を次の2次
式で近似し、一次温度係数α(ppm/℃)と二次温度
係数β(ppm/℃2)を求めた。 [R(t)−R(25)]/R(25)=α(Δt)+
β(Δt)2 但しΔt=t−25For each of the two types of thin film resistors,
The rate of change of resistance value with temperature was analyzed. That is, the rate of change in resistance value (R (t) -R (25)) / R (25) is approximated by the following quadratic equation, and the primary temperature coefficient α (ppm / ° C.) and the secondary temperature coefficient β (ppm / ° C.) 2 ) Asked. [R (t) -R (25)] / R (25) = α (Δt) +
β (Δt) 2 where Δt = t−25
【0022】その結果、NiCrAl薄膜抵抗体からな
る上層14は、α=−59.5ppm/℃、β=−0.
035ppm/℃2であり、NiCrMn薄膜抵抗体か
らなる下層12は、α=44.8ppm/℃、β=0.
055ppm/℃2であった。As a result, the upper layer 14 made of a NiCrAl thin film resistor has α = −59.5 ppm / ° C. and β = −0.
035 ppm / ° C. 2 , and the lower layer 12 made of a NiCrMn thin film resistor has α = 44.8 ppm / ° C. and β = 0.
It was 055 ppm / ° C 2 .
【0023】前記のNiCrAl薄膜抵抗体は非常に高
い長期安定性を持つことは、例えば特願平10−351
497に示す通りであるが、この抵抗体では、一次温度
係数の値は負に大きくなりやすく、二次温度係数βの値
も同様に負に大きな値となりやすい。よってTCRを広
い温度範囲でゼロに近づけることは困難である。一方、
NiCrMn薄膜抵抗体は一次温度係数αが正の値を持
ち、二次温度係数βも正の値を持つ。そこでこれらの両
薄膜抵抗体を積層することによって、広い温度範囲でT
CRをゼロに近づけることが可能になる。The fact that the above-mentioned NiCrAl thin film resistor has very high long-term stability is disclosed in, for example, Japanese Patent Application No. 10-351.
As shown in FIG. 497, in this resistor, the value of the primary temperature coefficient tends to be negatively large, and the value of the secondary temperature coefficient β also tends to be negatively large. Therefore, it is difficult to make TCR close to zero in a wide temperature range. on the other hand,
In the NiCrMn thin-film resistor, the primary temperature coefficient α has a positive value, and the secondary temperature coefficient β also has a positive value. Therefore, by laminating these two thin film resistors, T
It becomes possible to make CR close to zero.
【0024】ここで、抵抗体を2層積層したときの温度
による抵抗値変化率を計算した。上層14の抵抗体と下
層12の抵抗体による並列抵抗とみなすと、2層を積層
した抵抗体の温度による抵抗値変化率〔(R(Δt)−R
(25))/R(25)〕は以下の式で表わされる。Here, the rate of change in resistance value with temperature when two layers of resistors were stacked was calculated. If the resistance in the upper layer 14 and the resistance in the lower layer 12 are regarded as parallel resistance, the rate of change in resistance value of the resistor in which two layers are laminated [(R (Δt) −R
(25)) / R (25)] is represented by the following equation.
【0025】[0025]
【数1】〔[(1+αU(Δt)+βU(Δt)2)(1+αL(Δt)+β
L(Δt)2){ρU(1−h)+ρLh}]/{ρ U(1−h)(1+αU(Δt)+
βU(Δt)2)+ρLh(1+αL(Δt)+βL(Δt)2)}〕−1[Equation 1] [[(1 + αU(Δt) + βU(Δt)Two) (1 + αL(Δt) + β
L(Δt)Two) {ρU(1−h) + ρLh}] / {ρ U(1−h) (1 + αU(Δt) +
βU(Δt)Two) + ρLh (1 + αL(Δt) + βL(Δt)Two)}]-1
【0026】但し、ρUは上層抵抗体の抵抗率、ρLは下
層抵抗体の抵抗率、αU、βUは上層抵抗体の一次と二次
の温度係数、αL、βLは下層抵抗体の温度係数、hは積
層した抵抗体の厚さを1とした場合の上層抵抗体の厚さ
である。Here, ρ U is the resistivity of the upper resistor, ρ L is the resistivity of the lower resistor, α U and β U are the primary and secondary temperature coefficients of the upper resistor, and α L and β L are the lower layer resistors. The temperature coefficient h of the resistor is the thickness of the upper resistor when the thickness of the laminated resistor is 1.
【0027】本実施態様においては、上層と下層が共に
Ni−Cr系合金であるため抵抗率はほぼ等しくなる。
この場合は、ρU=ρLとすることにより、前出の式は以
下のように単純化される。In this embodiment, since both the upper layer and the lower layer are made of a Ni--Cr alloy, the resistivity is substantially equal.
In this case, by setting ρ U = ρ L , the above equation is simplified as follows.
【0028】[0028]
【数2】[(1+αU(Δt)+βU(Δt)2)(1+αL(Δt)+βL
(Δt)2)/{(1+αU(Δt)+βU(Δt)2)(1-h)+(1+αL(Δ
t)+βL(Δt)2)h}]−1## EQU2 ## [(1 + α U (Δt) + β U (Δt) 2 ) (1 + α L (Δt) + β L
(Δt) 2 ) / {(1 + α U (Δt) + β U (Δt) 2 ) (1-h) + (1 + α L (Δ
t) + β L (Δt) 2 ) h}]-1
【0029】上記の式にNiCrAl薄膜とNiCrM
n薄膜のαとβを代入し、数種類の厚さhにおける温度
による抵抗値変化率を計算した。図2に示す曲線A、
B、Cは、それぞれh=0.3,0.4,0.5とした
時の計算結果を示す。この図3によると、h=0.4と
すると温度による抵抗値変化率を最小にできることが分
かった。In the above equation, NiCrAl thin film and NiCrM
By substituting α and β of the n thin film, the resistance value change rate with temperature at several thicknesses h was calculated. Curve A shown in FIG.
B and C show the calculation results when h = 0.3, 0.4, and 0.5, respectively. According to FIG. 3, it was found that when h = 0.4, the rate of change in resistance value due to temperature can be minimized.
【0030】上記の結果を基にしてh=0.4となるよ
うにNiCrAl薄膜とNiCrMn薄膜の積層抵抗体
を作製した。すなわちアルミナ基板上に下層としてNi
CrMn薄膜を0.24μm成膜し、その上に上層とし
てNiCrAl薄膜を0.16μm製膜した。その後熱
処理を施した。On the basis of the above results, a laminated resistor composed of a NiCrAl thin film and a NiCrMn thin film was manufactured so that h = 0.4. That is, Ni is used as a lower layer on an alumina substrate.
A 0.24 μm CrMn thin film was formed, and a 0.16 μm NiCrAl thin film was formed thereon as an upper layer. Thereafter, heat treatment was performed.
【0031】この熱処理は前記したように、真空中で約
500℃で約3時間放置することによる。この熱処理に
より、上層16に含まれるAlが表面に析出する。この
析出したAlは真空容器中に残存する微量の酸素によっ
て自己酸化し、アルミ酸化膜16を形成する。As described above, the heat treatment is performed by leaving the film at about 500 ° C. for about 3 hours in a vacuum. By this heat treatment, Al contained in the upper layer 16 precipitates on the surface. The deposited Al is self-oxidized by a trace amount of oxygen remaining in the vacuum vessel to form an aluminum oxide film 16.
【0032】図2に□印で示す点は、この積層抵抗体の
温度による抵抗値変化率の測定結果を示す。この図2よ
り、温度による実際の抵抗値変化率は、上記で計算した
h=0.4の時の計算値とほぼ一致し、−55℃〜+1
25℃の広い温度範囲においてTCRが±5ppm/℃
以内と微小な値となっていることがわかる。The points indicated by the squares in FIG. 2 show the measurement results of the rate of change of the resistance value of the laminated resistor according to the temperature. From FIG. 2, the actual rate of change in resistance with temperature substantially matches the calculated value at the time of h = 0.4 calculated above, and is −55 ° C. to +1.
TCR of ± 5 ppm / ° C over a wide temperature range of 25 ° C
It can be seen that the value is as small as within.
【0033】また、図3はこの抵抗積層体による抵抗器
の高温放置結果を示すグラフである。この図3のグラフ
では、aは従来例の抵抗器6個について、bは本発明に
係る抵抗器16個について、双方とも200℃に200
時間無負荷放置した時の抵抗値変化率を示すものであ
る。この測定結果によると、本発明にかかる抵抗器によ
れば、抵抗値変化量が従来品に比べて著しく少ないこと
がわかる。FIG. 3 is a graph showing the result of leaving the resistor with the resistor laminate at a high temperature. In the graph of FIG. 3, “a” is for six resistors of the conventional example, and “b” is for sixteen resistors according to the present invention.
It shows the rate of change in resistance when left unloaded for a period of time. According to the measurement results, it can be seen that the resistor according to the present invention has a significantly smaller change in the resistance value than the conventional product.
【0034】以上の実施例では抵抗薄膜を積層した後に
熱処理を施している。しかし下層の抵抗体が複数回の熱
処理によっても温度特性に影響の無い材料であるなら
ば、各層を成膜するごとに熱処理を施してもよい。In the above embodiment, the heat treatment is performed after the resistance thin films are laminated. However, if the lower resistor is made of a material that does not affect the temperature characteristics even after a plurality of heat treatments, the heat treatment may be performed each time each layer is formed.
【0035】[0035]
【他の実施態様】図4は他の実施態様である抵抗器の構
造を示す断面図である。前記図1の実施態様では、下層
12の上に直接上層を積層したため、熱処理後あるいは
成膜直後に各層間で元素の拡散が起きることが考えられ
る。このために計算通りのTCRが得られにくくなるこ
とが考えられる。FIG. 4 is a sectional view showing the structure of a resistor according to another embodiment. In the embodiment shown in FIG. 1, since the upper layer is directly laminated on the lower layer 12, diffusion of elements between the layers may occur after the heat treatment or immediately after the film formation. For this reason, it is considered that it is difficult to obtain a TCR as calculated.
【0036】図4の実施態様は、層間に数nm厚のごく
薄い酸化物や窒化物等の絶縁物膜からなる中間層18を
形成して各層間の拡散を抑えたものである。この中間層
18は、拡散しやすい上層14を成膜する前に、真空槽
に窒素や酸素または大気を導入することにより下層12
となる薄膜表面に気体分子を吸着させて、ごく薄い窒化
物あるいは酸化物を形成させ、これによって層間の拡散
を抑えるものとすることができる。また上層14と下層
12のどちらとも拡散を起こしにくい他の抵抗体を選定
し、この抵抗体を中間層18として下層12と上層14
の間に付加してもよい。In the embodiment shown in FIG. 4, an intermediate layer 18 made of a very thin insulating film such as oxide or nitride having a thickness of several nm is formed between the layers to suppress the diffusion between the layers. The intermediate layer 18 is formed by introducing nitrogen, oxygen or air into a vacuum chamber before forming the upper layer 14 which is easily diffused.
By adsorbing gas molecules on the surface of the thin film to form a very thin nitride or oxide, diffusion between layers can be suppressed. In addition, another resistor that hardly causes diffusion in both the upper layer 14 and the lower layer 12 is selected, and this resistor is used as the intermediate layer 18 as the lower layer 12 and the upper layer 14.
May be added in between.
【0037】[0037]
【他の実施態様】以上の実施態様は抵抗積層体を薄膜抵
抗器で形成したものである。しかしこの発明は、複数の
金属箔抵抗体を積層したものや薄膜抵抗体と金属箔抵抗
体を積層したものを包含する。また熱処理は全層を積層
した後に行なってもよいし、あるいは1層を形成するご
とに行なってもよい。金属箔抵抗体の場合は、基板に金
属箔を固定する前に熱処理を行なう。Other Embodiments In the above embodiments, the resistor laminate is formed by a thin film resistor. However, the present invention includes a laminate of a plurality of metal foil resistors and a laminate of a thin film resistor and a metal foil resistor. The heat treatment may be performed after all the layers are stacked, or may be performed each time one layer is formed. In the case of a metal foil resistor, heat treatment is performed before fixing the metal foil to the substrate.
【0038】なお前記の実施態様では温度による抵抗値
変化率を、2次式[αΔt+β(Δt)2]で近似した
が、さらに高次の式、例えば、[αΔt+β(Δt)2
+γ(Δt)3]を用いて近似することもできる。この
場合は、αとβだけでなくγも考慮して各層のTCRが
相互に相殺して全体のTCRを所望の範囲内に設定する
ようにすればよい。In the above-described embodiment, the rate of change in resistance value due to temperature is approximated by a quadratic equation [αΔt + β (Δt) 2 ], but a higher-order equation, for example, [αΔt + β (Δt) 2]
+ Γ (Δt) 3 ]. In this case, considering not only α and β but also γ, the TCRs of the respective layers may be offset each other and the entire TCR may be set within a desired range.
【0039】[0039]
【発明の効果】請求項1の発明は以上のように、複数の
抵抗体を積層する場合に、各層のTCRを2次式で近似
し、少なくとも1つの層の一次温度係数αおよび二次温
度係数βの符号を他の層のαおよびβの符号と逆に設定
したから、各層のTCRを互いに相殺させることによっ
て抵抗積層体として全体のTCRの非直線性を改善し、
広い温度範囲に亘ってTCRをゼロに近付けることがで
きる。As described above, according to the first aspect of the present invention, when a plurality of resistors are stacked, the TCR of each layer is approximated by a quadratic equation, and the primary temperature coefficient α and the secondary temperature coefficient of at least one layer are obtained. Since the sign of the coefficient β is set opposite to the signs of α and β of the other layers, the non-linearity of the entire TCR is improved as a resistance laminate by offsetting the TCR of each layer with each other,
The TCR can approach zero over a wide temperature range.
【0040】また最上層の抵抗体を、長期安定性に優れ
たものにすることができるから、抵抗積層体の長期安定
性を向上させることができる。すなわち最上層の抵抗体
として長期安定性の良い材料を用いると、この材料のT
CRの非直線性が大きくなったり、TCRが大きくなる
ことがあるが、下層の抵抗体と組合せることにより抵抗
積層体全体としてのTCRを満足できるものにすること
が可能になる。つまり、外界にさらされる最上層の抵抗
体は長期安定性に優れたものを任意に選定でき、第2層
目以降の抵抗体により温度による抵抗値変化率を補正で
きる。Further, since the resistor in the uppermost layer can have excellent long-term stability, the long-term stability of the resistor laminate can be improved. That is, if a material having good long-term stability is used as the uppermost resistor, the T
The nonlinearity of the CR may increase or the TCR may increase. However, by combining the CR with a lower resistor, it is possible to satisfy the TCR of the entire resistor stack. In other words, the uppermost resistor exposed to the outside can be arbitrarily selected to have excellent long-term stability, and the resistance change rate due to temperature can be corrected by the second and subsequent resistors.
【0041】少なくとも1つの層のαおよびβを共に正
とし、他の層のαおよびβを共に負とすれば、各層のT
CRを相殺させるのに都合がよい(請求項2)。Ni−
Cr系合金では、添加する元素の種類や熱処理によって
αおよびβを相当広い範囲で制御することができるの
で、各層あるいは少なくとも1つの層にこのNi−Cr
系合金を用いることにより、積層体の全体のα、βを制
御するのに都合がよい。If α and β of at least one layer are both positive and α and β of the other layer are both negative, the T
This is convenient for canceling CR (claim 2). Ni-
In a Cr-based alloy, α and β can be controlled in a considerably wide range by the type of element to be added and the heat treatment, so that each layer or at least one layer has this Ni-Cr
Use of a system alloy is convenient for controlling α and β of the entire laminate.
【0042】またNi−Cr系合金の抵抗薄膜は、ある
種の元素を添加し熱処理を施すことによって抵抗薄膜表
面に緻密な酸化膜を形成させ、抵抗薄膜の内部を酸化か
ら保護するに都合がよい(請求項3,4)。例えば最上
層をNi−Cr−Al合金として、Alを自己酸化させ
ることによって最上層表面にアルミ酸化膜を形成するこ
とができ長期安定性を高めることができる(請求項
8)。The resistive thin film of the Ni—Cr alloy is formed by adding a certain element and performing a heat treatment to form a dense oxide film on the surface of the resistive thin film, thereby protecting the inside of the resistive thin film from oxidation. Good (claims 3 and 4). For example, an aluminum oxide film can be formed on the surface of the uppermost layer by self-oxidizing Al by using a Ni-Cr-Al alloy as the uppermost layer, thereby improving long-term stability (claim 8).
【0043】なおNi−Cr系合金抵抗体は、一次温度
係数αおよび二次温度係数βを制御する方法が明らかに
なっているので(特願平10−351496参照)、最
上層がいかなる温度特性を持っていてもその補正が可能
であり、積層された抵抗体のTCRを広い温度範囲でゼ
ロに近づけることが可能である。ここに用いるNi−C
r系合金薄膜抵抗体は、Al、Si、Be、Mg、T
i、Mnのグループと、Mn、Fe、Co、Ti、Vの
グループの、少なくとも一方のグループの1または複数
の元素を含むNi−Cr系合金であることが望ましい
(請求項5)。Since the method of controlling the primary temperature coefficient α and the secondary temperature coefficient β of the Ni—Cr alloy resistor has been clarified (see Japanese Patent Application No. 10-351496), the temperature characteristics of the uppermost layer are not limited. Can be corrected even if it has the above, and it is possible to make the TCR of the stacked resistors close to zero in a wide temperature range. Ni-C used here
r-based alloy thin-film resistors include Al, Si, Be, Mg, T
It is desirable that the Ni-Cr alloy contains at least one element of at least one of a group of i and Mn and a group of Mn, Fe, Co, Ti and V (claim 5).
【0044】最上層に長期安定性に優れたNiCrAl
抵抗体を使用する場合は、一次温度係数αおよび二次温
度係数βが共に負であるので、下層には一次温度係数α
および二次温度係数βが共に正であるNiCrMn抵抗
体を使用するのがよい。NiCrAl with excellent long-term stability as the uppermost layer
When a resistor is used, since the primary temperature coefficient α and the secondary temperature coefficient β are both negative, the primary temperature coefficient α
It is preferable to use a NiCrMn resistor having both positive and secondary temperature coefficients β.
【0045】少なくとも1層あるいは全層は、蒸着また
はスパッタリングによって形成した薄膜抵抗体としても
よいし(請求項6)、金属箔抵抗体であってもよい(請
求項7)。また薄膜抵抗体と金属箔抵抗体とを組合せて
もよい。At least one or all of the layers may be a thin film resistor formed by vapor deposition or sputtering (Claim 6) or a metal foil resistor (Claim 7). Further, a thin film resistor and a metal foil resistor may be combined.
【0046】請求項9によれば、抵抗体を積層する際の
各層の最適なα、βおよび厚さを求めることができる。According to the ninth aspect, it is possible to obtain the optimum α, β and thickness of each layer when the resistor is laminated.
【図1】本発明の一実施態様を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】温度による抵抗値変化率の計算結果と測定結果
を比較して示す図FIG. 2 is a diagram showing a comparison between a calculation result and a measurement result of a resistance value change rate depending on temperature.
【図3】抵抗値変化率の経時変化の実測結果を示す図FIG. 3 is a diagram showing actual measurement results of a change with time in a resistance value change rate;
【図4】他の実施態様を示す断面図FIG. 4 is a cross-sectional view showing another embodiment.
10 アルミナ基板(絶縁基板) 12 NiCrMn抵抗体(下層) 14 NiCrAl抵抗体(上層) 16 アルミ酸化膜 18 中間層 Reference Signs List 10 alumina substrate (insulating substrate) 12 NiCrMn resistor (lower layer) 14 NiCrAl resistor (upper layer) 16 aluminum oxide film 18 intermediate layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本多 直樹 秋田県秋田市新屋町字砂奴寄4−21 秋田 県高度技術研究所内 (72)発明者 山川 清志 秋田県秋田市新屋町字砂奴寄4−21 秋田 県高度技術研究所内 (72)発明者 佐藤 牧夫 秋田県由利郡大内町中田代字板井沢238番 地の1 アルファ・エレクトロニクス株式 会社秋田工場内 (72)発明者 大石 明 秋田県由利郡大内町中田代字板井沢238番 地の1 アルファ・エレクトロニクス株式 会社秋田工場内 (72)発明者 佐々木 洋 秋田県由利郡大内町中田代字板井沢238番 地の1 アルファ・エレクトロニクス株式 会社秋田工場内 Fターム(参考) 5E032 BA12 BB01 BB20 CC18 5E033 AA00 AA02 BA03 BB02 BC01 BD12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naoki Honda 4-21, Sanda-Yoro, Niiyacho, Akita City, Akita Prefecture Inside the Advanced Technology Research Institute, Akita (72) Inventor Kiyoshi Yamakawa, Naoya-cho, Shinyacho, Akita City, Akita Prefecture 4-21 Inside Akita Prefectural Advanced Technology Research Institute (72) Inventor Makio Sato 238-1, Itaizawa, Nakatadai, Ouchi-cho, Yuri-gun, Akita Prefecture Alpha Electronics Co., Ltd. Akita Plant (72) Inventor Akira Oishi Akita Alpha Electronics Co., Ltd., 238-1, Itaizawa, Nakatadai, Ouchi-cho, Yuri-gun Inside the Akita Factory (72) Inventor Hiroshi Sasaki 238-1, Itaizawa, Nakatadai, Ouchi-cho, Yuri-gun, Akita Alpha Electronics Co., Ltd. F-term in Akita factory (reference) 5E032 BA12 BB01 BB20 CC18 5E033 AA00 AA02 BA03 BB02 BC01 BD12
Claims (9)
た抵抗積層体を有する抵抗器において、前記抵抗積層体
の各層は、各々の抵抗体の温度による抵抗値変化率を温
度変化[Δt]の2次式[αΔt+β(Δt)2]ある
いはさらに高次の式で近似した場合に少なくとも1つの
層の一次温度係数α及び二次温度係数βの符号を他の層
の一次温度係数αおよび二次温度係数βの符号と逆に設
定する一方、最上層を長期安定性に優れた抵抗体で形成
したことを特徴とする抵抗器。1. A resistor having a resistor laminated body in which a plurality of resistors are laminated on the surface of an insulating substrate, wherein each layer of the resistor laminated body has a resistance value change rate depending on the temperature of each resistor, and a temperature change [Δt [ΑΔt + β (Δt) 2 ] or a higher-order equation, the sign of the primary temperature coefficient α and the secondary temperature coefficient β of at least one layer is changed to the primary temperature coefficient α and A resistor characterized in that the sign is opposite to that of the secondary temperature coefficient β, and the uppermost layer is formed of a resistor having excellent long-term stability.
の層は、一次温度係数αと二次温度係数βがともに正で
あり、他の層は一次温度係数αと二次温度係数βがとも
に負である請求項1の抵抗器。2. At least one layer of the stacked resistors has a positive primary temperature coefficient α and a secondary temperature coefficient β, and the other layers have a primary temperature coefficient α and a secondary temperature coefficient β. 2. The resistor of claim 1 which is negative.
の層はNi−Cr系合金抵抗体であることを特徴とする
請求項1または2の抵抗器。3. The resistor according to claim 1, wherein at least one of the stacked resistors is a Ni—Cr alloy resistor.
−Cr系合金抵抗体を複数層重ねて抵抗積層体が形成さ
れている請求項1または2の抵抗器。4. At least two kinds of Ni having different components.
3. The resistor according to claim 1, wherein a resistor laminated body is formed by stacking a plurality of Cr-based alloy resistors.
Al、Si、Be、Mg、Ti、Mnのグループと、M
n、Fe、Co、Ti、Vのグループの、少なくとも一
方のグループの1または複数の元素を含むものである請
求項1〜4のいずれかの抵抗器。5. The Ni—Cr alloy used for the resistor is:
Al, Si, Be, Mg, Ti, Mn group, and M
The resistor according to any one of claims 1 to 4, wherein the resistor contains one or more elements of at least one group of n, Fe, Co, Ti, and V groups.
は、蒸着またはスパッタリングで形成された薄膜抵抗体
である請求項1〜5のいずれかの抵抗器。6. The resistor according to claim 1, wherein at least one of the plurality of resistors is a thin film resistor formed by vapor deposition or sputtering.
は、金属箔抵抗体である請求項1〜5のいずれかの抵抗
器。7. The resistor according to claim 1, wherein at least one of the plurality of resistors is a metal foil resistor.
合金とし、この合金に含まれるAlが自己酸化されるこ
とによって最上層の表面にアルミ酸化膜が形成されてい
る請求項1〜7のいずれかの抵抗器。8. The method according to claim 1, wherein the uppermost layer of the resistance laminate is Ni-Cr-Al.
8. The resistor according to claim 1, wherein an aluminum oxide film is formed on the surface of the uppermost layer by self-oxidizing Al contained in the alloy.
体が積層されて形成された抵抗積層体を有する抵抗器の
製造方法において、 抵抗積層体の各層について温度による抵抗値変化率を温
度変化[Δt]の2次式[αΔt+β(Δt)2]ある
いはさらに高次の式で近似し、この式から計算された抵
抗積層体の温度による抵抗値変化率が所定範囲内に入る
ように各層の抵抗体の一次温度係数αおよび二次温度係
数βの値を決定すると共に各層の厚さを決定することを
特徴とする抵抗器の製造方法。9. A method of manufacturing a resistor having a resistor laminated body formed by laminating resistors having different compositions on the surface of an insulating substrate, comprising: Δt] is approximated by a quadratic equation [αΔt + β (Δt) 2 ] or a higher-order equation, and the resistance of each layer is adjusted so that the rate of change in the resistance value of the resistance laminate according to the temperature calculated within the equation falls within a predetermined range. A method for manufacturing a resistor, comprising determining values of a primary temperature coefficient α and a secondary temperature coefficient β of a body and determining a thickness of each layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185306A JP4083956B2 (en) | 2000-06-20 | 2000-06-20 | Resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000185306A JP4083956B2 (en) | 2000-06-20 | 2000-06-20 | Resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002008906A true JP2002008906A (en) | 2002-01-11 |
JP4083956B2 JP4083956B2 (en) | 2008-04-30 |
Family
ID=18685639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000185306A Expired - Lifetime JP4083956B2 (en) | 2000-06-20 | 2000-06-20 | Resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4083956B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008513981A (en) * | 2004-09-21 | 2008-05-01 | マイクロブリッジ テクノロジーズ インコーポレイテッド | Compensation for trimming-induced shift of temperature coefficient of resistance |
JP2011228669A (en) * | 2010-03-29 | 2011-11-10 | Koa Corp | Resistive element, resistor, and methods of manufacturing the same |
CN107993782A (en) * | 2017-12-29 | 2018-05-04 | 中国电子科技集团公司第四十三研究所 | A kind of laminated film resistance of low resistance temperature coefficient and preparation method thereof |
-
2000
- 2000-06-20 JP JP2000185306A patent/JP4083956B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008513981A (en) * | 2004-09-21 | 2008-05-01 | マイクロブリッジ テクノロジーズ インコーポレイテッド | Compensation for trimming-induced shift of temperature coefficient of resistance |
JP2011228669A (en) * | 2010-03-29 | 2011-11-10 | Koa Corp | Resistive element, resistor, and methods of manufacturing the same |
CN107993782A (en) * | 2017-12-29 | 2018-05-04 | 中国电子科技集团公司第四十三研究所 | A kind of laminated film resistance of low resistance temperature coefficient and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4083956B2 (en) | 2008-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0821482B2 (en) | High stability laminated film resistor and manufacturing method thereof | |
JP2023087025A (en) | strain gauge | |
CA1157298A (en) | Resistor composition and method of manufacture thereof | |
JPS5945201B2 (en) | Electrical resistance film and its manufacturing method | |
US4454495A (en) | Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity | |
JPH06158272A (en) | Resistance film and production thereof | |
JP2023107861A (en) | strain gauge | |
JP2023087026A (en) | strain gauge | |
US4042479A (en) | Thin film resistor and a method of producing the same | |
JP2002008906A (en) | Resistor and its manufacturing method | |
JPS634321B2 (en) | ||
JPH01291401A (en) | Thin film resistor and manufacture thereof | |
JP4752075B2 (en) | Resistor and its manufacturing method | |
JPH0821502B2 (en) | Thin film permanent magnet | |
JPH0620803A (en) | Thin film resistor and manufacture thereof | |
JPH0786004A (en) | Method of manufacture thin film resistor material and thin film resistor | |
JPH04370901A (en) | Electric resistance material | |
JPH071722B2 (en) | Thin film resistor | |
JPS606547B2 (en) | Thin film hybrid integrated circuit | |
KAWABATA | Electrical properties of titanium nitride thin films | |
JPH0689974A (en) | Resistor and method for setting its resistance and temperature coefficient | |
JPS5845163B2 (en) | How to make resistors | |
TW202427505A (en) | Double-layer structure thin film resistor | |
JPS63104301A (en) | Manufacture of temperature-sensitive resistor | |
JPH01259504A (en) | Manufacture of laminated thin film with resistance nonlinear in voltage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070802 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080214 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4083956 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110222 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140222 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |