JP2002005891A - Magnetic field applying apparatus of squid microscope - Google Patents

Magnetic field applying apparatus of squid microscope

Info

Publication number
JP2002005891A
JP2002005891A JP2000189032A JP2000189032A JP2002005891A JP 2002005891 A JP2002005891 A JP 2002005891A JP 2000189032 A JP2000189032 A JP 2000189032A JP 2000189032 A JP2000189032 A JP 2000189032A JP 2002005891 A JP2002005891 A JP 2002005891A
Authority
JP
Japan
Prior art keywords
magnetic field
squid
sample
sensor
squid sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000189032A
Other languages
Japanese (ja)
Inventor
Atsushi Nagata
篤士 永田
Satoru Nakayama
哲 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000189032A priority Critical patent/JP2002005891A/en
Publication of JP2002005891A publication Critical patent/JP2002005891A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the magnitude of a magnetic field being applied controllable such that a uniform magnetic field can be applied to an object to be measured over the entire measuring range thereof in a scanning SQUID microscope having an SQUID as a magnetic sensor. SOLUTION: In the SQUID microscope, a table 1 for placing a sample 5 being measured and scanning stage 2 for moving the sample table 1 in XYZ direction, a first SQUID sensor 4 disposed oppositely to the sample 5, a magnetic field applying coil 7 disposed to apply a magnetic field to the sample 5, and a second SQUID sensor 6 disposed farther from the sample 5 that the first SQUID sensor 4, are set. The magnitude of the magnetic field being applied is controlled by the output from the second SQUID sensor 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査型の微小磁場
計測装置であり、超伝導材料や磁性材料、およびそれら
による加工品又は機能デバイス等の評価に応用されるSQ
UID顕微鏡に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type small magnetic field measuring apparatus, which is applied to the evaluation of superconducting materials, magnetic materials, and processed products or functional devices using them.
It relates to a UID microscope.

【0002】[0002]

【従来の技術】図2に従来のSQUID顕微鏡の構成図を示
す。SQUID顕微鏡は、計測試料5を設置する試料設置台
1とこの試料設置台1をXYZに移動させる走査ステージ
2と、冷却装置3により冷却され、計測試料5と対抗す
るように設置されたSQUIDセンサ4で構成されている。
走査ステージでZ軸方向の位置調節を行い、SQUIDセンサ
4を計測試料5に近接させ、計測試料5を走査ステージ
でXY面内で走査し、計測試料5によって生じる計測試料
5上における磁場分布を測定する。
2. Description of the Related Art FIG. 2 shows a configuration diagram of a conventional SQUID microscope. The SQUID microscope includes a sample setting table 1 on which a measurement sample 5 is set, a scanning stage 2 for moving the sample setting table 1 to XYZ, and a SQUID sensor cooled by a cooling device 3 and set to oppose the measurement sample 5. 4.
The scanning stage adjusts the position in the Z-axis direction, the SQUID sensor 4 is brought close to the measurement sample 5, the measurement sample 5 is scanned in the XY plane by the scanning stage, and the magnetic field distribution on the measurement sample 5 generated by the measurement sample 5 is determined. Measure.

【0003】[0003]

【発明が解決しようとする課題】磁場印加しながらの測
定するためには、走査範囲全体において一様な磁場を発
生させる必要が有り、そのためにはヘルムホルツコイル
が考えられるが、大きなコイルが必要となるため、従来
は磁場印加を行わず測定するという問題点があった。
In order to perform measurement while applying a magnetic field, it is necessary to generate a uniform magnetic field over the entire scanning range. For this purpose, a Helmholtz coil is considered, but a large coil is required. Therefore, there has been a problem that measurement is conventionally performed without applying a magnetic field.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
為に、本発明では、印可している磁場のみを検出するSQ
UIDセンサを、検出用のSQUIDセンサとは別に設け、印加
磁場の大きさを制御することによって、小型な磁場印加
コイルを使って走査範囲全域に渡って一様な磁場を発生
させることが出来るようにし、SQUID顕微鏡による磁場
印加中での測定を可能にした。
In order to solve the above-mentioned problems, according to the present invention, an SQ for detecting only an applied magnetic field is provided.
By providing a UID sensor separately from the SQUID sensor for detection and controlling the magnitude of the applied magnetic field, a small magnetic field applying coil can be used to generate a uniform magnetic field over the entire scanning range. Thus, measurement was possible while applying a magnetic field using a SQUID microscope.

【0005】[0005]

【発明の実施の形態】以下に請求項1記載の発明に対応
する実施の形態について説明する。図1に本発明のー実
施形態による計測装置の全体構成図を示す。本発明に係
るSQUID顕微鏡は、計測試料5を設置する試料設置台1
とこの試料設置台1をXYZに移動させる走査ステージ2
と、計測試料5と対抗するように設置された第一のSQUI
Dセンサ4と、計測試料5に磁場を印可するように設置
された磁場印加コイル7と、計測試料5に対して第一の
SQUIDセンサ4よりも離れた位置に設置された第二のSQU
IDセンサ6と、この第二のSQUIDセンサ6の出力を制御
信号として磁場印加コイルに流れる電流を制御する電源
8と、第一のSQUIDセンサ4と第二のSQUIDセンサを冷却
するための冷却装置3で構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment corresponding to the first aspect of the present invention will be described below. FIG. 1 shows an overall configuration diagram of a measuring device according to a first embodiment of the present invention. The SQUID microscope according to the present invention includes a sample setting table 1 on which a measurement sample 5 is set.
And scanning stage 2 for moving this sample mounting table 1 to XYZ
And the first SQUI installed to oppose measurement sample 5
A D sensor 4, a magnetic field application coil 7 installed to apply a magnetic field to the measurement sample 5, and a first
The second SQU installed at a position farther than the SQUID sensor 4
An ID sensor 6, a power supply 8 for controlling the current flowing through the magnetic field applying coil using the output of the second SQUID sensor 6 as a control signal, and a cooling device for cooling the first SQUID sensor 4 and the second SQUID sensor 3.

【0006】このような構成で、走査ステージ2によっ
てZ軸を駆動し計測試料5に第一のSQUIDセンサ4
を近づける。次に計測試料5に印可したい磁場を第二の
SQUIDセンサ6で測定しながら、磁場印可用電源8
を調整し磁場印可コイル7に磁場発生用の電流を流す。
そして、走査ステージ2によってXY軸を駆動し計測試
料5の測定範囲を第一のSQUIDセンサ4で走査しな
がら、計測試料5の磁場分布を計測する。第一のSQU
IDセンサ4で計測試料5の磁場分布を計測するととも
に、第二のSQUIDセンサ6によって磁場印可コイル
7で発生している磁場を常に計測する。そして、第二の
SQUIDセンサ6によって常に計測している磁場が常
に一定になるように、第二のSQUIDセンサ6の出力
信号を磁場印可用電源8にフィードバックして、磁場印
可コイル7に流す電流を制御する。
In such a configuration, the Z-axis is driven by the scanning stage 2 and the first SQUID sensor 4
Closer. Next, while measuring the magnetic field to be applied to the measurement sample 5 with the second SQUID sensor 6, the magnetic field applying power source 8
Is adjusted, and a current for generating a magnetic field is caused to flow through the magnetic field application coil 7.
Then, the XY axes are driven by the scanning stage 2, and the magnetic field distribution of the measurement sample 5 is measured while scanning the measurement range of the measurement sample 5 with the first SQUID sensor 4. The first SKU
The magnetic field distribution of the measurement sample 5 is measured by the ID sensor 4, and the magnetic field generated by the magnetic field application coil 7 is constantly measured by the second SQUID sensor 6. Then, the output signal of the second SQUID sensor 6 is fed back to the magnetic field application power supply 8 so that the magnetic field measured by the second SQUID sensor 6 is always constant, and the current flowing through the magnetic field application coil 7 is controlled. Control.

【0007】[0007]

【発明の効果】本発明によれば、走査範囲全域に渡って
一様な磁場を発生させることが出来、超伝導材料や磁性
材料などの計測試料の磁場中における物性の評価をSQ
UID顕微鏡によって実施できるという効果がある。
According to the present invention, a uniform magnetic field can be generated over the entire scanning range, and the physical properties of a measurement sample such as a superconducting material or a magnetic material in a magnetic field can be evaluated by SQ.
There is an effect that it can be performed by a UID microscope.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態による計測装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram showing a configuration of a measuring device according to an embodiment of the present invention.

【図2】従来の技術による計測装置の構成を示すブロッ
ク図である。
FIG. 2 is a block diagram showing a configuration of a measuring device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 試料設置台 2 XYZ走査ステージ 3 冷却装置 4 第一のSQUIDセンサ 5 計測試料 6 第二のSQUIDセンサ 7 磁場印可コイル 8 磁場印可用電源 DESCRIPTION OF SYMBOLS 1 Sample mounting table 2 XYZ scanning stage 3 Cooling device 4 First SQUID sensor 5 Measurement sample 6 Second SQUID sensor 7 Magnetic field application coil 8 Power supply for magnetic field application

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測試料を設置する試料設置台と、走査
ステージと、第一のSQUIDセンサと、前記計測対象物に
磁場が加わるように設置された磁場印加コイルと、第二
のSQUIDセンサと、前記第二のSQUIDセンサの出力に従っ
て前記磁場印加コイルの発生磁場を制御する制御装置
と、前記第一のSQUIDセンサと前記第二のSQUIDセンサを
冷却する冷却装置を備えたことを特徴とするSQUID顕微
鏡の磁場印加装置。
1. A sample mounting table for mounting a measurement sample, a scanning stage, a first SQUID sensor, a magnetic field application coil installed so as to apply a magnetic field to the measurement target, and a second SQUID sensor. A control device that controls a magnetic field generated by the magnetic field applying coil according to an output of the second SQUID sensor, and a cooling device that cools the first SQUID sensor and the second SQUID sensor. Magnetic field applying device for SQUID microscope.
JP2000189032A 2000-06-23 2000-06-23 Magnetic field applying apparatus of squid microscope Pending JP2002005891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189032A JP2002005891A (en) 2000-06-23 2000-06-23 Magnetic field applying apparatus of squid microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189032A JP2002005891A (en) 2000-06-23 2000-06-23 Magnetic field applying apparatus of squid microscope

Publications (1)

Publication Number Publication Date
JP2002005891A true JP2002005891A (en) 2002-01-09

Family

ID=18688715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189032A Pending JP2002005891A (en) 2000-06-23 2000-06-23 Magnetic field applying apparatus of squid microscope

Country Status (1)

Country Link
JP (1) JP2002005891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103534A (en) * 2007-10-22 2009-05-14 Okayama Univ Magnetic measurement apparatus
CN106093476A (en) * 2016-06-15 2016-11-09 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope
CN107991631A (en) * 2017-11-20 2018-05-04 哈尔滨工业大学 A kind of magnetic signal measuring device and method for not depending on phase

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103534A (en) * 2007-10-22 2009-05-14 Okayama Univ Magnetic measurement apparatus
CN106093476A (en) * 2016-06-15 2016-11-09 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope
CN106093476B (en) * 2016-06-15 2019-05-10 北京原力辰超导技术有限公司 A kind of scanning magnetic probe microscope
CN107991631A (en) * 2017-11-20 2018-05-04 哈尔滨工业大学 A kind of magnetic signal measuring device and method for not depending on phase

Similar Documents

Publication Publication Date Title
Xie et al. Hysteresis compensation based on controlled current pulses for magnetoresistive sensors
JPH10300723A (en) Non-contacting method for testing and measuring longitudinal and lateral uniformity of critical current density in strip superconducting material and measuring instrument used therefor
Cardelli et al. Surface field measurements in vector characterization of Si-Fe magnetic steel samples
JP2002005891A (en) Magnetic field applying apparatus of squid microscope
JP2004301548A (en) Electric characteristic evaluating apparatus
CA2077462A1 (en) Method for advanced material characterization by laser induced eddy current imaging
Herz et al. Thermocouple-controlled temperature programmer for flash desorption spectroscopy
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
Pfützner Computer mapping of grain structure in coated silicon iron
Anderson et al. An automated system for the measurement of magnetostriction in electrical steel sheet under applied stress
JPH09229905A (en) Calibration method for magnetic sensor array
US10054494B2 (en) Temperature sensing
JP2001228120A (en) METHOD FOR Si CONCENTRATION MEASUREMENT OF STEEL PRODUCT
Hatsukade et al. Study on nondestructive inspection using HTS-SQUID for friction stir welding between dissimilar metals
CN111551581B (en) Thermoelectric material performance measurement system
Revaz et al. A device for measurements of the temperature response to single discharges with high local resolution and fast response time
JP4302556B2 (en) Critical current density measuring method and apparatus
JPH08152391A (en) Material testing machine
JPH04168384A (en) Measurement of magnetic characteristic of superconductive body
JP2002006018A (en) Magnetic field applying device for squid microscope
JPH06294853A (en) Magnetism detector
Fischer et al. Apparatus for simultaneous stress and weight measurement during film drying in an environmentally controlled chamber
JP2806765B2 (en) Thermal conductivity measuring device and measuring method
Phanchat et al. Implementation of a Measurement System for Inspection of Magnetic Force Microscopy Probes
Hu et al. Thermoelectric Performance Testing Methods and Devices

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526