JP2002006018A - Magnetic field applying device for squid microscope - Google Patents

Magnetic field applying device for squid microscope

Info

Publication number
JP2002006018A
JP2002006018A JP2000189031A JP2000189031A JP2002006018A JP 2002006018 A JP2002006018 A JP 2002006018A JP 2000189031 A JP2000189031 A JP 2000189031A JP 2000189031 A JP2000189031 A JP 2000189031A JP 2002006018 A JP2002006018 A JP 2002006018A
Authority
JP
Japan
Prior art keywords
magnetic field
squid
magnetic
squid sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000189031A
Other languages
Japanese (ja)
Inventor
Satoru Nakayama
哲 中山
Narikazu Odawara
成計 小田原
Atsushi Nagata
篤士 永田
Masanori Ikeda
正徳 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000189031A priority Critical patent/JP2002006018A/en
Publication of JP2002006018A publication Critical patent/JP2002006018A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure while applying a magnetic field by locally magnetic- shielding a part of an SQUID sensor winch is especially affected by a magnetic field. SOLUTION: There is provided such a configuration as to measure while applying a magnetic field by locally magnetic-shielding a part of the SQUID sensor which is especially affected by a magnetic field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、走査型の微小磁場計測装
置であり、超伝導材料や磁性材料、およびそれらによる
加工品又は機能デバイス等の評価に応用されるSQUID顕
微鏡に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type small magnetic field measuring apparatus, and more particularly to a SQUID microscope applied to the evaluation of superconducting materials and magnetic materials, and processed products or functional devices.

【0002】[0002]

【従来の技術】図2に従来のSQUID顕微鏡の構成図を示
す。
2. Description of the Related Art FIG. 2 shows a configuration diagram of a conventional SQUID microscope.

【0003】SQUID顕微鏡は、計測対象物5を設置する
試料設置台1とこの試料設置台1をXYZに移動させる走
査ステージ2と、冷却装置3により冷却され、計測対象
物5と対抗するように設置されたSQUIDセンサ4で構成
されている。走査ステージでZ軸方向の位置調節を行
い、SQUIDセンサ4を計測対象物5に近接させ、計測対
象物5を走査ステージでXY面内で走査し、計測対象物5
によって生じる計測対象物5上における磁場分布を測定
する。
The SQUID microscope is configured such that a sample setting table 1 on which a measurement object 5 is set, a scanning stage 2 for moving the sample setting table 1 to XYZ, and a cooling device 3 are cooled to oppose the measurement object 5. It is composed of the SQUID sensor 4 installed. The scanning stage adjusts the position in the Z-axis direction, brings the SQUID sensor 4 close to the measuring object 5, scans the measuring object 5 in the XY plane with the scanning stage, and
The magnetic field distribution on the measurement object 5 generated by the measurement is measured.

【0004】[0004]

【発明が解決しようとする課題】従来技術では、むき出
しのSQUIDセンサ4で計測対象物5を走査するため、磁
場印加を行うとSQUIDセンサ4の動作に影響を及ぼし、
測定結果のS/Nの劣化や、磁気によりSQUIDセンサが動作
しなくなるなどの問題点が生じた。このため、磁場印加
を行わず測定していた。
In the prior art, since the bare SQUID sensor 4 scans the object 5 to be measured, the application of a magnetic field affects the operation of the SQUID sensor 4.
Problems such as deterioration of the S / N of the measurement result and the inability of the SQUID sensor to operate due to magnetism occurred. For this reason, measurement was performed without applying a magnetic field.

【0005】[0005]

【課題を解決するための手段】そこで、上記の問題点を
解決するために本発明では、SQUIDセンサの特に磁場に
よって影響を受ける部分を、局部的に磁気シールドする
ことにより、磁場印加しながら測定できるようにした。
Therefore, in order to solve the above-mentioned problems, the present invention provides a method for measuring a SQUID sensor while applying a magnetic field by locally magnetically shielding a portion of the SQUID sensor which is particularly affected by a magnetic field. I made it possible.

【0006】[0006]

【発明の実施の形態】以下に請求項1〜5記載の発明に
対応する実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments corresponding to the first to fifth aspects of the present invention will be described below.

【0007】図1に本発明のー実施形態による計測装置
の全体構成図を示す。
FIG. 1 shows an overall configuration diagram of a measuring apparatus according to a first embodiment of the present invention.

【0008】本発明に係るSQUID顕微鏡は、計測対象物
5を設置する試料設置台1とこの試料設置台1をXYZに
移動させる走査ステージ2と、冷却装置3により冷却さ
れ、計測対象物5と対抗するように設置され、磁気シー
ルド6の中に設置されたSQUIDセンサ4と、計測対象物
5に磁場を印可するように設置された磁場印加コイル7
で構成されている。
The SQUID microscope according to the present invention comprises a sample setting table 1 on which a measurement object 5 is set, a scanning stage 2 for moving the sample setting table 1 to XYZ, and a cooling device 3 for cooling the measurement object 5. A SQUID sensor 4 installed in opposition to the magnetic shield 6 and a magnetic field applying coil 7 installed to apply a magnetic field to the measurement object 5
It is composed of

【0009】SQUIDセンサ4と磁気シールド6の構成の
概略図を図3に示す。SQUIDセンサ4は矩形のシリコン
チップ10に集積されており、このシリコンチップ10
のほぼ中央部にジョセフソン接合8を有する超伝導リン
グ9が位置し、角の部分に検出コイル9が位置してい
る。磁気シールド6は、磁場印加コイル7で計測対象物
5に磁場を印可しながら測定を行う。そのとき、この印
加磁場がジョセフソン接合8に磁場がかかると、SQUID
の動作に影響が出るため、磁気シールド6は超伝導リン
グ9の部分に磁場がかからない様に、かつ、測定のため
に検出コイル9が磁気シールド6の外部に出るように設
けられている。
FIG. 3 is a schematic diagram showing the structure of the SQUID sensor 4 and the magnetic shield 6. The SQUID sensor 4 is integrated on a rectangular silicon chip 10.
A superconducting ring 9 having a Josephson junction 8 is located at a substantially central portion of the device, and a detection coil 9 is located at a corner portion. The magnetic shield 6 performs measurement while applying a magnetic field to the measurement object 5 with the magnetic field applying coil 7. Then, when this applied magnetic field applies a magnetic field to the Josephson junction 8, the SQUID
The magnetic shield 6 is provided so that no magnetic field is applied to the portion of the superconducting ring 9 and the detection coil 9 goes out of the magnetic shield 6 for measurement.

【0010】このような構成で、走査ステージ2によっ
てZ軸を駆動し、まず計測対象物5をSQUIDセンサ4の検
出コイル9に近接させる。続いて磁場印加コイル7で計
測対象物5に磁場を印可する。そして、走査ステージ2
で計測対象物5の測定領域を走査し、磁気シールド6の
外部に有る検出コイル9で測定領域の磁気分布を検出す
る。この時、印可した磁場は磁気シールド6によって減
衰され、ジョセフソン接合8に影響しない。磁気シール
ドの材料は、超伝導材料でもパーマロイなどの高透磁率
材料でもかまわない。
In such a configuration, the Z axis is driven by the scanning stage 2, and the object 5 to be measured is first brought close to the detection coil 9 of the SQUID sensor 4. Subsequently, a magnetic field is applied to the measurement object 5 by the magnetic field application coil 7. And the scanning stage 2
Scans the measurement area of the measurement object 5 and detects the magnetic distribution of the measurement area with the detection coil 9 outside the magnetic shield 6. At this time, the applied magnetic field is attenuated by the magnetic shield 6 and does not affect the Josephson junction 8. The material of the magnetic shield may be a superconducting material or a high magnetic permeability material such as permalloy.

【0011】図4に、本発明の他の実施形態による計測
装置の全体構成図を示す。
FIG. 4 shows an overall configuration diagram of a measuring apparatus according to another embodiment of the present invention.

【0012】本発明に係るSQUID顕微鏡は、計測対象物
5を設置する試料設置台1とこの試料設置台1をXYZに
移動させる走査ステージ2と、冷却装置3により冷却さ
れ計測対象物5と対抗するように設置され、一部が磁気
シールド6の中に設置された第一のSQUIDセンサ11
と、全体が磁気シールド6の中に設置された第二のSQUI
Dセンサ12と、計測対象物5に磁場を印可するように
設置された磁場印加コイル7と、磁気シールド6に磁場
を印可する補償用磁場印加コイル13と、第二のSQUID
センサ12の出力に従って補償用磁場印加コイル13で
発生する磁場を制御する制御装置14で構成されてい
る。第一のSQUIDセンサ11は、前述の実施例の図3と
同様であり、検出コイルは磁気シールド6の外部にあ
り、ジョセフソン接合を含む超伝導リングは磁気シール
ドの内部に有り、外部の印加磁場の影響を受けない様に
設置される。第二のSQUIDセンサ12は全体が磁気シー
ルド6内に設置される。このような構成で、第一のSQUI
Dセンサ11によって測定を行う。測定時に磁場印加コ
イル7によって磁場を印可すると、磁気シールド6によ
って磁場は減衰し、磁気シールド6の内部に入る。この
減衰された磁場を第二のSQUIDセンサ12によって検出
し、その値を制御装置14が取り込み、その値が最小に
なるように、磁場印加コイル7によって印可した磁場と
は逆の磁場を発生するように、補償用磁場印加コイル1
3をコントロールする。この方法によってアクティブに
磁気シールド6の内部の磁場を最小にし、印加磁場が第
一のSQUID11に影響を与えない様にする。
The SQUID microscope according to the present invention has a sample setting table 1 on which a measurement object 5 is set, a scanning stage 2 for moving the sample setting table 1 in XYZ, and a cooling apparatus 3 which is cooled by a cooling device 3 and opposes the measurement object 5. And the first SQUID sensor 11 partially installed in the magnetic shield 6.
And the second SQUI installed entirely inside the magnetic shield 6
A D sensor 12, a magnetic field applying coil 7 installed to apply a magnetic field to the measurement object 5, a compensation magnetic field applying coil 13 to apply a magnetic field to the magnetic shield 6, and a second SQUID
The control device 14 is configured to control a magnetic field generated by the compensation magnetic field application coil 13 according to the output of the sensor 12. The first SQUID sensor 11 is the same as in FIG. 3 of the above-described embodiment, the detection coil is outside the magnetic shield 6, the superconducting ring including the Josephson junction is inside the magnetic shield, and the external Installed so as not to be affected by the magnetic field. The entire second SQUID sensor 12 is installed in the magnetic shield 6. With such a configuration, the first SQUI
The measurement is performed by the D sensor 11. When a magnetic field is applied by the magnetic field applying coil 7 during measurement, the magnetic field is attenuated by the magnetic shield 6 and enters the inside of the magnetic shield 6. The attenuated magnetic field is detected by the second SQUID sensor 12, and its value is taken in by the control device 14, and a magnetic field opposite to the magnetic field applied by the magnetic field applying coil 7 is generated so that the value is minimized. As shown in FIG.
Control 3 This method actively minimizes the magnetic field inside the magnetic shield 6 so that the applied magnetic field does not affect the first SQUID 11.

【0013】[0013]

【発明の効果】本発明によれば、SQUIDの動作に影響を
与えない様に磁場を印可し、磁場印加時の測定対象の特
性を測定できるため、これまで不可能であった磁化量測
定や、磁界中の測定対象物の磁区構造の変化の測定な
ど、新しい応用が可能となるという効果がある。
According to the present invention, a magnetic field can be applied so as not to affect the operation of the SQUID, and the characteristics of the object to be measured when the magnetic field is applied can be measured. Thus, there is an effect that a new application such as measurement of a change in a magnetic domain structure of a measurement object in a magnetic field is enabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のー実施形態による構成を示すブロック
図である。
FIG. 1 is a block diagram showing a configuration according to an embodiment of the present invention.

【図2】従来の技術によるSQUID顕微鏡の構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing a configuration of a SQUID microscope according to a conventional technique.

【図3】本発明のー実施形態による磁気シールド部の構
成を示す概略図である。
FIG. 3 is a schematic diagram illustrating a configuration of a magnetic shield unit according to a first embodiment of the present invention.

【図4】本発明の他の実施形態による構成を示すブロッ
ク図である。
FIG. 4 is a block diagram showing a configuration according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 試料設置台 2 走査ステージ 3 冷却装置 4 SQUIDセンサ 5 測定対象物 6 磁気シールド 7 磁場印加コイル 8 ジョセフソン接合 9 検出コイル 10 シリコンチップ 11 第一のSQUIDセンサ 12 第二のSQUIDセンサ 13 補償用磁場印加コイル 14 制御装置 DESCRIPTION OF SYMBOLS 1 Sample setting table 2 Scanning stage 3 Cooling device 4 SQUID sensor 5 Object to be measured 6 Magnetic shield 7 Magnetic field application coil 8 Josephson junction 9 Detection coil 10 Silicon chip 11 First SQUID sensor 12 Second SQUID sensor 13 Compensation magnetic field Applied coil 14 Control device

フロントページの続き (72)発明者 永田 篤士 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 池田 正徳 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 2G017 AC01 AD32 2G053 AA11 AA30 AB14 BB05 CA10 DA01 DB02 DB11 DB20 4M113 AC08 AC46 AD36 AD44 AD45Continued on the front page (72) Inventor Atsushi Nagata 1-8-1, Nakase, Mihama-ku, Chiba-shi, Chiba Prefecture Inside Seiko Instruments Inc. (72) Inventor Masanori Ikeda 1-8-8, Nakase, Mihama-ku, Chiba-shi, Chiba Seiko Instruments Inc. In-house F term (reference) 2G017 AC01 AD32 2G053 AA11 AA30 AB14 BB05 CA10 DA01 DB02 DB11 DB20 4M113 AC08 AC46 AD36 AD44 AD45

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 計測対象物を設置する試料設置台と、走
査ステージと、SQUIDセンサと、前記SQUIDセンサを冷却
する冷却装置からなるSQUID顕微鏡において、前記計測
対象物に磁場が加わるように設置された磁場印加コイル
と、前記SQUIDセンサの一部を覆うように設置された磁
気シールドを備えたことを特徴とするSQUID顕微鏡の磁
場印加装置。
1. A SQUID microscope comprising a sample setting table on which an object to be measured is installed, a scanning stage, an SQUID sensor, and a cooling device for cooling the SQUID sensor, which are installed so that a magnetic field is applied to the object to be measured. A magnetic field applying coil, and a magnetic shield provided so as to cover a part of the SQUID sensor.
【請求項2】 磁気シールドとして、高透磁率材料を用
いたことを特徴とする請求項1記載のSQUID顕微鏡の磁
場印加装置。
2. The magnetic field applying device for a SQUID microscope according to claim 1, wherein a high magnetic permeability material is used as the magnetic shield.
【請求項3】 磁気シールドとして、超伝導材料を用い
たことを特徴とする請求項1記載のSQUID顕微鏡の磁場
印加装置。
3. A magnetic field applying apparatus for a SQUID microscope according to claim 1, wherein a superconducting material is used as the magnetic shield.
【請求項4】 計測対象物を設置する試料設置台と、走
査ステージと、第一のSQUIDセンサと、前記SQUIDセンサ
を冷却する冷却装置からなるSQUID顕微鏡において、 前記計測対象物に磁場が加わるように設置された磁場印
加コイルと、第二のSQUIDセンサと、前記第一のSQUIDセ
ンサの一部と前記第二のSQUIDセンサの全体を覆うよう
に設置された磁気シールドと、 前記磁気シールド付近に磁場を印可する磁場補償コイル
と、 前記第二のSQUIDセンサの出力に従って前記補償用磁場
印可コイルの発生磁場を制御する制御装置を備えたこと
を特徴とするSQUID顕微鏡の磁場印加装置。
4. A SQUID microscope comprising a sample setting table on which an object to be measured is installed, a scanning stage, a first SQUID sensor, and a cooling device for cooling the SQUID sensor, wherein a magnetic field is applied to the object to be measured. A magnetic field applying coil, a second SQUID sensor, a magnetic shield installed so as to cover a part of the first SQUID sensor and the entire second SQUID sensor, and near the magnetic shield. A magnetic field applying device for a SQUID microscope, comprising: a magnetic field compensating coil for applying a magnetic field; and a control device for controlling a magnetic field generated by the compensating magnetic field applying coil in accordance with an output of the second SQUID sensor.
JP2000189031A 2000-06-23 2000-06-23 Magnetic field applying device for squid microscope Pending JP2002006018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000189031A JP2002006018A (en) 2000-06-23 2000-06-23 Magnetic field applying device for squid microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000189031A JP2002006018A (en) 2000-06-23 2000-06-23 Magnetic field applying device for squid microscope

Publications (1)

Publication Number Publication Date
JP2002006018A true JP2002006018A (en) 2002-01-09

Family

ID=18688714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000189031A Pending JP2002006018A (en) 2000-06-23 2000-06-23 Magnetic field applying device for squid microscope

Country Status (1)

Country Link
JP (1) JP2002006018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051665A (en) * 2006-08-25 2008-03-06 National Institute For Materials Science Squid microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051665A (en) * 2006-08-25 2008-03-06 National Institute For Materials Science Squid microscope

Similar Documents

Publication Publication Date Title
US5894220A (en) Apparatus for microscopic imaging of electrical and magnetic properties of room-temperature objects
Lima et al. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields
PL183725B1 (en) Apparatus for detecting analytes by means of magnetic field
JPH09145810A (en) Superconducting quantum interference device fluxmeter and non-destructive inspection device
JP2002538862A (en) Method and apparatus for compensating main magnetic field fluctuation during magnetic resonance imaging
JP2016105046A (en) Magnetic nondestructive inspection device
US5218296A (en) Method and apparatus for determining at least one characteristic of a superconductive film
JP2002006018A (en) Magnetic field applying device for squid microscope
JP2005134196A (en) Non-destructive analysis method and non-destructive analysis device
Tsukada et al. Magnetic property mapping system for analyzing three-dimensional magnetic components
JPH06150264A (en) Method and apparatus for inspection of magnetoresistance effect head
Hurt et al. Versatile SQUID susceptometer with multiple measurement modes
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JP2004198126A (en) Film thickness measuring device
Hatsukade et al. Eddy-current-based nondestructive inspection system using superconducting quantum interference device for thin copper tubes
Mesquida et al. Signal reversal in Kelvin-probe force microscopy
JPH0815229A (en) High resolution eddy current flaw detector
Jonker et al. Automated system for noise-measurements on low-ohmic samples and magnetic sensors
JPH1038984A (en) Method and apparatus for detecting failure site
Meckenstock et al. Kerr detected time average of magnetization precession in ferromagnetic resonance
JP2002005891A (en) Magnetic field applying apparatus of squid microscope
Kögel et al. Magnetic field and current density imaging using off-line lock-in analysis
JPH04218764A (en) Detecting device of deterioration and damage of metal material
JP2005265780A (en) Non-destructive inspection device using squid magnetic sensor
KR100459201B1 (en) apparatus for magnetic non-destructive inspection

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526