JP2001515138A - Iron and steel making - Google Patents

Iron and steel making

Info

Publication number
JP2001515138A
JP2001515138A JP2000508831A JP2000508831A JP2001515138A JP 2001515138 A JP2001515138 A JP 2001515138A JP 2000508831 A JP2000508831 A JP 2000508831A JP 2000508831 A JP2000508831 A JP 2000508831A JP 2001515138 A JP2001515138 A JP 2001515138A
Authority
JP
Japan
Prior art keywords
iron
molten
reduced iron
melting furnace
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000508831A
Other languages
Japanese (ja)
Other versions
JP3509072B2 (en
Inventor
昭 浦上
修三 伊東
耕司 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority claimed from PCT/JP1998/003869 external-priority patent/WO1999011826A1/en
Publication of JP2001515138A publication Critical patent/JP2001515138A/en
Application granted granted Critical
Publication of JP3509072B2 publication Critical patent/JP3509072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】 (1)酸化鉄と炭素質還元剤を準備し、(2)前記炭素質還元剤と酸化鉄から成形体を製造し、(3)該成形体から、金属化率が少なくとも60%で、比重が少なくとも1.7以上であり、且つ、残存する酸化鉄を還元するのに必要な理論当量に対し50%以上の炭素を含む固形還元鉄を製造する、(4)該固形還元鉄が実質的に冷却する前にアーク加熱式溶解炉で加熱することによって溶融鉄を製造する。鉄成分含量の比較的低い鉄鉱石からでも、耐火物の溶損を生じることなく且つ高いエネルギー効率および還元効率で、しかも簡単な設備および操作で効率よく溶融鉄を得ることができる。 (57) [Summary] (1) Prepare iron oxide and a carbonaceous reducing agent, (2) manufacture a molded body from the carbonaceous reducing agent and iron oxide, and (3) obtain a metallization rate from the molded body. (4) producing a solid reduced iron having at least 60%, a specific gravity of at least 1.7 or more, and containing 50% or more of carbon relative to a theoretical equivalent required for reducing remaining iron oxide; The molten iron is produced by heating in an arc-heated melting furnace before the solid reduced iron is substantially cooled. Even from an iron ore having a relatively low iron component content, molten iron can be efficiently obtained with high energy efficiency and reduction efficiency without causing erosion of refractories and with simple equipment and operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は、酸化鉄(鉄鉱石等)を炭素質還元剤(炭材等)と共に加熱還元して
金属鉄を製造する製鉄法および製鋼法の改良技術に関し、特に、炭素質還元剤を
内装した酸化鉄含有成形体(ペレットやブリケット等)を固形状態で加熱還元し
た後、これを更に還元溶融して溶融鉄を製造する際に、加熱還元から還元溶融に
渡る一連の工程の熱効率を高めると共に、脈石成分の分離を効率よく遂行できる
様に改善された製鉄法および製鋼法に関するものである。
The present invention relates to an iron making method for producing metallic iron by heating and reducing iron oxide (iron ore or the like) together with a carbonaceous reducing agent (carbonaceous material or the like) and an improvement technique of the steel making method. After heat-reducing the iron oxide-containing molded product (pellets, briquettes, etc.) in the solid state, and then further reducing and melting this to produce molten iron, while increasing the thermal efficiency of a series of steps from heat reduction to reduction melting The present invention relates to an improved iron making method and a steel making method capable of efficiently separating gangue components.

【0002】[0002]

【従来の技術】[Prior art]

鉄鉱石や酸化鉄ペレット等の酸化鉄を炭材や還元性ガスにより直接還元して還
元鉄を製造する直接製鉄法としては、従来よりミドレックス法に代表されるシャ
フト炉法が知られている。この種の直接製鉄法は、天然ガス等から製造される還
元ガスをシャフト炉下部の羽口より吹込み、その還元力を利用し酸化鉄を還元し
て還元鉄を得る方法である。また最近では、天然ガスに代わる還元剤として石炭
等の炭材を使用する還元鉄製造プロセスが注目されており、具体的には、鉄鉱石
等の焼成ペレットを石炭粉と共にロータリーキルンで加熱還元する所謂SL/R
N法が既に実用化されている。
As a direct iron-making method for producing reduced iron by directly reducing iron oxide such as iron ore and iron oxide pellets with a carbon material or a reducing gas, a shaft furnace method represented by the Midrex method has been conventionally known. . This type of direct iron making method is a method in which a reducing gas produced from natural gas or the like is blown from a tuyere at a lower portion of a shaft furnace, and the reducing power is used to reduce iron oxide to obtain reduced iron. Recently, a reduced iron production process using a carbon material such as coal as a reducing agent in place of natural gas has been attracting attention. Specifically, a so-called heat reduction of a fired pellet of iron ore together with coal powder in a rotary kiln has been attracting attention. SL / R
The N method has already been put to practical use.

【0003】 また他の製鉄法として米国特許第3,443,931号には、炭材と粉状酸化
鉄を混合して塊状化し、ロータリーハース上で加熱還元して還元鉄を製造するプ
ロセスが開示されている。このプロセスでは、粉鉱石と粉炭を混合して塊状化し
、これを高温雰囲気下で加熱還元するものである。
[0003] Further, as another iron making method, US Patent No. 3,443,931 discloses a process of mixing carbonaceous material and powdered iron oxide to form an agglomerate, and reducing it by heating on a rotary hearth to produce reduced iron. It has been disclosed. In this process, fine ore and fine coal are mixed and agglomerated, and this is heated and reduced in a high-temperature atmosphere.

【0004】 これらの方法で製造された還元鉄は、そのまま或はブリケット状などに成形し
てから常温で電気炉へ装入し、鉄源として利用される。この還元鉄はトランプエ
レメント等の不純金属成分の含有量が少ないので、鉄スクラップのリサイクルが
活発化している近年においては、この還元鉄はスクラップ中に混入してくるトラ
ンプエレメントの希釈材として注目されている。
[0004] Reduced iron produced by these methods is used as an iron source as it is or formed into a briquette or the like, and then charged into an electric furnace at room temperature. Since this reduced iron has a low content of an impurity metal component such as a playing card element, in recent years in which recycling of iron scrap has been activated, this reduced iron has attracted attention as a diluent for the playing card element mixed into the scrap. ing.

【0005】 ところが従来の還元製鉄法によって得られる還元鉄には、原料として用いた酸
化鉄(鉄鉱石など)や炭材(石炭など)に脈石成分として含まれるSiO2,A l23,CaO等のスラグ成分がそのまま混入してくるため、製品の鉄品位(金
属鉄としての純度)が低くなる。実用に当たっては、これらのスラグ成分は次の
製錬工程で分離除去されるが、スラグ量の増加は製錬溶融鉄の歩留りを低下させ
るばかりでなく、電気炉の操業コストにも大きな悪影響を及ぼすので、鉄品位が
高くスラグ成分含有量の少ない還元鉄が求められるが、前述の如き従来の還元鉄
の製法でこうした要求に応えるには、還元鉄製造原料として鉄品位の高い鉄鉱石
を使用しなければならず、実用可能な製鉄原料の選択の幅を大幅に狭めることに
なる。
[0005] However, the reduced iron obtained by the conventional reduction iron making method includes SiO 2 and Al 2 O 3 contained as gangue components in iron oxide (iron ore or the like) or carbonaceous material (coal or the like) used as a raw material. , Slag components such as CaO are directly mixed in, so that the iron quality (purity as metallic iron) of the product is lowered. In practical use, these slag components are separated and removed in the next smelting process, but an increase in the amount of slag not only lowers the yield of smelted molten iron but also has a large adverse effect on the operating cost of the electric furnace Therefore, reduced iron with high iron grade and low slag content is required, but in order to meet such demands with the conventional reduced iron production method as described above, high-grade iron ore is used as a raw material for reduced iron production. Therefore, the range of selection of practical steelmaking raw materials is greatly reduced.

【0006】 更に上記の様な従来法は、還元された固体製品を中間製品として得ることを最
終の目的としており、実用化に当たっては次の工程となる精錬工程へ送るまでに
ブリケット化、冷却、搬送、貯蔵といった工程が必要となり、この間に大きなエ
ネルギー損失が生じたり、ブリケット化のために余分の設備やエネルギーが必要
になってくる。
[0006] Further, the conventional method as described above has a final purpose of obtaining a reduced solid product as an intermediate product, and in practical use, forms a briquette, a cooling, and a cooling process before sending it to the next refining process. Processes such as transportation and storage are required, during which a large energy loss occurs and extra equipment and energy are required for briquetting.

【0007】 他方、酸化鉄を直接還元して予備還元鉄を得る方法としてDIOS法などの溶
融還元法も知られている。この方法は、酸化鉄を予め鉄純度で30〜50%程度
まで予備還元しておき、その後、鉄浴中で炭材および/または一酸化炭素と直接
還元反応させることによって金属鉄にまで還元してから溶融する方法であるが、
この方法では、予備還元工程に必要な還元性ガスを溶融炉で生成して予備還元炉
へ導入するリサイクルシステムを構築しているため、プロセスのバランスを図る
のが煩雑で且つ非常に困難となる。しかも、鉄浴中に存在する溶融酸化鉄(Fe
O)と耐火物が溶融状態で直接接触するため、耐火物の損耗が激しいという問題
も指摘される。
On the other hand, as a method of directly reducing iron oxide to obtain pre-reduced iron, a smelting reduction method such as a DIOS method is also known. In this method, iron oxide is preliminarily reduced to an iron purity of about 30 to 50%, and then reduced to metallic iron by a direct reduction reaction with a carbonaceous material and / or carbon monoxide in an iron bath. It is a method of melting after
In this method, since a recycle system for generating a reducing gas necessary for the preliminary reduction step in the melting furnace and introducing the gas into the preliminary reduction furnace is constructed, it is complicated and extremely difficult to balance the process. . In addition, the molten iron oxide (Fe
O) and the refractory are in direct contact with each other in a molten state, so that the problem of severe wear of the refractory is pointed out.

【0008】 更に他の方法として特公平3−60883号公報には、粉末状の鉄鉱石と炭材
を混合して団塊状に成形した成形体を回転炉型の加熱炉で予備還元した後、得ら
れる予備還元物を冷却することなく溶融炉へ装入して溶融させ、これに炭材を加
えて還元を進め、更に酸素吹込みにより精錬を行う製鉄法が開示されている。こ
の方法は、予備還元物を冷却することなく溶融炉へ送って還元・精錬を行う方法
であるから、熱エネルギーのロスが少なく且つ連続操業が可能で生産性の上でも
有効な方法と考えられる。
[0008] As still another method, Japanese Patent Publication No. 60883/1991 discloses that a compact formed by mixing powdery iron ore and a carbon material into a nodular shape is preliminarily reduced in a rotary furnace type heating furnace. There is disclosed an iron making method in which an obtained pre-reduced product is charged into a melting furnace without cooling, melted, a carbon material is added thereto, reduction is performed, and refining is performed by blowing oxygen. This method is a method of reducing and refining by sending the pre-reduced product to the melting furnace without cooling, and thus is considered to be an effective method in terms of productivity with little loss of heat energy and capable of continuous operation. .

【0009】 この製鉄法では、加熱および精錬のため溶融炉内に多量の炭材と共に酸素(あ
るいは空気)が吹き込まれる。そして、該溶融炉へ送り込まれる前記予備還元物
の中には、前述の如く鉄鉱石や炭材中の脈石成分がスラグ形成成分として多量含
まれているため、該溶融炉内では溶融鉄の湯面上に多量のスラグが浮遊した状態
で激しい撹拌状態に曝されるが、該スラグ中には未還元状態の酸化鉄(FeO)
が多量混入しているため、内張り耐火物が著しく溶損されるという実用上重大な
問題を生じるので、工業規模での実用化は期し難い。
In this iron making method, oxygen (or air) is blown together with a large amount of carbon material into a melting furnace for heating and refining. And, as described above, since a large amount of gangue components in iron ore and carbonaceous materials are contained as slag forming components in the preliminary reduced product sent to the melting furnace, the molten iron The slag is exposed to a violent stirring state with a large amount of slag floating on the surface of the molten metal, and unreduced iron oxide (FeO)
, A serious problem in practical use that refractory lining is remarkably melted down, so that practical application on an industrial scale is difficult.

【0010】 いずれにしても、上流側の予備還元炉で必要となる十分な還元ポレンシャルを
持った還元性ガスを溶融炉で確保するには、該溶融炉に多量の酸素と炭材[数百
kg/tmi(mi:製造される溶融鉄)]を補給してこれらを燃焼させなけれ
ばならないので、溶融炉の熱負荷は非常に大きく、しかも溶融鉄とスラグの激し
い攪拌により、内張り耐火物は激しい溶損を受ける。更に、予備還元炉で必要と
なる適正な組成と量の還元性ガスを安定して供給するのに、設備全体としてのバ
ランスを取る為の制御が非常に煩雑で高度の制御システムが必要となる。
In any case, in order to secure a reducing gas having a sufficient reducing potential required in the upstream pre-reduction furnace in the melting furnace, a large amount of oxygen and carbon material [several hundreds kg / tmi (mi: molten iron to be produced)] and burn them, so that the heat load of the melting furnace is very large, and furthermore, due to vigorous stirring of the molten iron and slag, the refractory lining is Receives severe erosion. Furthermore, in order to stably supply a proper composition and amount of reducing gas required in the preliminary reduction furnace, control for balancing the entire facility is very complicated, and an advanced control system is required. .

【0011】[0011]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明は上記の様な事情に着目してなされたものであって、その目的は、鉄成
分含有量の高い酸化鉄源はもとより、鉄成分含有量の比較的低い鉄鉱石などから
であっても、耐火物の溶損を生じることなく且つ高いエネルギー効率および還元
効率で、しかも簡単な設備および操作で効率よく溶融鉄を得ることのできる製鉄
法、更にはこの方法によって得られる還元鉄を用いた製鋼法を提供することにあ
る。
The present invention has been made in view of the above-described circumstances, and the purpose thereof is not only from an iron oxide source having a high iron content but also from an iron ore having a relatively low iron content. It is also possible to use the iron making method which can obtain molten iron efficiently with high energy efficiency and reduction efficiency without causing erosion of refractories, with simple equipment and operation, and further with reduced iron obtained by this method. To provide a steelmaking method.

【0012】[0012]

【課題を解決するための手段】[Means for Solving the Problems]

上記課題を解決することのできた本発明に係る製鉄法とは、炭素質還元剤を内
装した酸化鉄含有成形体を主原料とする還元鉄製造設備により製造される高温の
固形還元鉄を、実質的に冷却することなくアーク加熱式溶解炉へ供給し、該溶解
炉で加熱して溶融鉄を得る製鉄法であって、前記固形還元鉄の金属化率を60%
以上に進めると共に、該固形還元鉄内の炭素分含有量を、該固形還元鉄内に残存
する酸化鉄を還元するのに必要な理論当量に対し50%以上、該固形還元鉄の比
重を1.7以上に制御し、該固形還元鉄を、前記アーク加熱式溶解炉で加熱する
ことにより、炭素含有量1.5〜4.5%の溶融鉄を得るところに要旨を有して
いる。
The iron making method according to the present invention that can solve the above-mentioned problems is a method in which a high-temperature solid reduced iron manufactured by a reduced iron manufacturing facility whose main material is an iron oxide-containing molded body containing a carbonaceous reducing agent is substantially used. An iron making method in which a molten iron is supplied to an arc-heating type melting furnace without being cooled and heated in the melting furnace to obtain molten iron.
In addition to the above, the carbon content in the solid reduced iron is 50% or more of the theoretical equivalent required for reducing the iron oxide remaining in the solid reduced iron, and the specific gravity of the solid reduced iron is 1 0.7 or more, and the solid reduced iron is heated in the arc-heating type melting furnace to obtain molten iron having a carbon content of 1.5 to 4.5%.

【0013】 上記本発明を実施するに当たっては、上記アーク加熱式溶解炉の内張り耐火物
の溶損を最小限に抑えつつ溶融還元を効率よく進めるため、前記固形還元鉄を、
前記アーク加熱式溶解炉内の溶融スラグ上へ装入して加熱溶解することとし、該
溶融スラグの塩基度を1.0〜1.8の範囲に制御するのがよく、且つ該溶融ス
ラグ中の酸化鉄成分含量は、Fe換算で9%以下、更に好ましくは5%以下に抑
えることが望ましい。
In carrying out the present invention, in order to efficiently promote smelting reduction while minimizing erosion of the refractory lining of the arc-heating type melting furnace, the solid reduced iron is
The molten slag is charged into the arc-heating type melting furnace and heated and melted, and the basicity of the molten slag is preferably controlled in the range of 1.0 to 1.8. It is desirable that the content of the iron oxide component is controlled to 9% or less, more preferably 5% or less in terms of Fe.

【0014】 また、上記アーク加熱式溶解炉において、不足分の炭素質還元剤を追加装入す
る際には、前記固形還元鉄の添加位置に向けて該炭素質還元剤を添加することに
より、溶融還元を一層効率よく進めることができるので望ましい。
In the above-mentioned arc-heating type melting furnace, when the insufficient amount of the carbonaceous reducing agent is additionally charged, by adding the carbonaceous reducing agent toward the addition position of the solid reduced iron, This is desirable because the smelting reduction can proceed more efficiently.

【0015】 また、上記アーク加熱式溶解炉内に追加装入される炭素質還元剤の装入量は、
溶融還元によって得られる還元鉄中の炭素含有量を本発明で定める上記1.5〜
4.5%の範囲に納める上で重要となるが、該炭素質還元剤の追加装入量の調整
法としては、 前記アーク加熱式溶解炉中の溶融鉄を採取し、該溶融鉄を直接分析してその 炭素含有量が上記範囲となる様に炭素質還元剤の添加量を調整する方法、 あるいは 前記アーク加熱式溶解炉から排出される排ガス組成と排出量を測定し、該測 定値から算出される排ガスの酸素当量に基づいて、溶融鉄の炭素含有量を計 算によって求め、炭素質還元剤の添加量を調整する方法 が好ましい方法として推奨される。
The amount of the carbonaceous reducing agent additionally charged in the arc-heating type melting furnace is as follows:
The carbon content in the reduced iron obtained by smelting reduction is 1.5 to
It is important to keep the content within the range of 4.5%. As a method of adjusting the additional charge of the carbonaceous reducing agent, the molten iron in the arc heating type melting furnace is sampled, and the molten iron is directly collected. Analyze and adjust the addition amount of the carbonaceous reducing agent so that the carbon content is within the above range, or measure the composition and amount of exhaust gas discharged from the arc-heating type melting furnace, and calculate the It is recommended that a method of calculating the carbon content of the molten iron based on the calculated oxygen equivalent of the exhaust gas and adjusting the addition amount of the carbonaceous reducing agent be a preferable method.

【0016】 更に本発明においては、追って詳述する如く溶融鉄の炭素含有量が上記範囲内
となる様に制御するところに大きな技術的特徴を有しているが、この溶融鉄は、
Si含有量が0.05%以下、Mn含有量が0.1%以下、P含有量が0.1%
以下、S含有量が0.20%以下のものとして得ることができ、これを後述する
様な方法で脱硫、脱燐処理を行なうと、S含有量は0.050%程度以下、P含
有量は0.040%程度以下に低減し、電気炉(以下、EAFと略記する)や転
炉(以下、BOFと略記する)などの製鋼原料として有用な不純物含量の少ない
溶融鉄として得ることができる。
Further, in the present invention, there is a great technical feature in that the carbon content of the molten iron is controlled so as to be within the above range, as will be described in detail later.
Si content 0.05% or less, Mn content 0.1% or less, P content 0.1%
In the following, the content of S can be obtained as 0.20% or less, and when this is subjected to desulfurization and dephosphorization treatment by the method described later, the S content is about 0.050% or less, and the P content is Can be reduced to about 0.040% or less, and can be obtained as molten iron with a low impurity content useful as a steelmaking raw material such as an electric furnace (hereinafter abbreviated as EAF) or a converter (hereinafter abbreviated as BOF). .

【0017】 ここで採用される脱硫および/または脱燐法としては以下の方法が推奨される
。前記アーク加熱式溶解炉で溶解された溶融鉄を別容器に移し、石灰系の脱流用
フラックスを添加(もしくはガスと共にインジェクション)して脱硫し、及び/
又は、固体酸素源(酸化鉄など)を含む石灰系フラックスと気体酸素を吹き込ん
で脱燐する方法。
The following method is recommended as the desulfurization and / or phosphorus removal method employed here. The molten iron melted in the arc-heating type melting furnace is transferred to another container, and a lime-based flux for deflow is added (or injected with a gas) to desulfurize, and / or
Alternatively, a method of removing phosphorus by blowing gaseous oxygen and a lime-based flux containing a solid oxygen source (such as iron oxide).

【0018】 なお本発明の方法では、高炉製鉄法に比べて鉄鉱石等の酸化鉄源を還元する際
の還元ポテンシャルが低く、脈石成分中のSiO2は還元を受けることなくSi O2としてスラグ化する。従って、得られる溶融鉄のSi含有量は低い(0.0 5%以下)ので格別の脱珪処理は必要とされない。しかも該溶融鉄中のSi含有
量は低いので、予備脱珪等を全く要することなく、上記の様な脱燐処理によって
容易に低P溶融鉄を得ることができるのである。
[0018] Note that the method of the present invention, low reduction potential when reducing iron oxide sources such as iron ore as compared to blast furnace iron making method, SiO 2 gangue component as Si O 2 without being reduced Slag. Therefore, since the Si content of the obtained molten iron is low (less than 0.05%), no special desiliconization treatment is required. Moreover, since the Si content in the molten iron is low, low P molten iron can be easily obtained by the above-mentioned dephosphorization treatment without any need for preliminary desiliconization.

【0019】 かくして得られる不純物含量の低減された溶融鉄は、隣接して設けたEAFあ
るいはBOF等へ溶融状態のままで製鋼原料として供給することにより製鉄・製
鋼一貫法として実用化することができるし、あるいは製造した溶融鉄を一旦炉外
へ排出し、冷却凝固した金属状鉄をEAFあるいはBOF等へ製鋼原料として供
給することもできる。特に、上記方法で製造された不純物含量の少ない高温の溶
融鉄を溶融状態のままでEAFやBOFへ製鋼原料として供給して製鋼を行う方
法を採用すれば、溶融鉄が保有する熱エネルギーを精錬のための熱源として有効
に活用できるので、経済的にも極めて有効な方法として推奨される。
The thus obtained molten iron having a reduced impurity content can be put to practical use as an integrated steelmaking / steelmaking method by supplying it as a steelmaking raw material to an adjacent EAF or BOF in a molten state. Alternatively, the produced molten iron may be once discharged outside the furnace, and the cooled and solidified metallic iron may be supplied to EAF or BOF as a steelmaking raw material. In particular, if a method is used in which high-temperature molten iron with a low impurity content produced by the above method is supplied to EAF or BOF as a raw material for steelmaking in a molten state and steelmaking is performed, the thermal energy held by the molten iron is refined. It is recommended as a very economical method because it can be effectively used as a heat source for the process.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

以下、一実施例を示す全体フロー図によって本発明の全体構成を概説する。そ
して個々の工程について条件等を定めた理由を詳細に説明する。
Hereinafter, an overall configuration of the present invention will be outlined with reference to an overall flowchart showing one embodiment. The reason why conditions and the like are determined for each process will be described in detail.

【0021】 図1は、本発明に係る製鉄法および製鉄/製鋼一貫法を示す概略フロー図であ り、図中において原料成形体製造部1、還元鉄製造設備2、アーク加熱式溶解炉
3、製鋼炉4を夫々示す。矢印Aで示す一連の工程は、製鉄(還元鉄の製造)法
に相当し、矢印Bで示す工程は、製鋼法に相当する。
FIG. 1 is a schematic flow chart showing an iron making method and an integrated iron / steel making method according to the present invention. In the figure, a raw material forming unit 1, reduced iron manufacturing equipment 2, and an arc heating type melting furnace 3 are shown. And the steelmaking furnace 4 are shown. A series of steps indicated by an arrow A corresponds to an iron making (production of reduced iron) method, and a step indicated by an arrow B corresponds to a steel making method.

【0022】 まず製鉄法においては、原料成形体製造部1で、鉄鉱石等の酸化鉄源と石炭粉
やコークス粉等の炭素質還元剤の粉末を原料として、炭材内装酸化鉄含有成形体
(ペレットやブリケットなど)の製造が行われ、そして製造された該成形体は逐
次還元鉄製造設備2へ送り込まれる。該還元鉄製造設備2としては、要は炭材内
装酸化鉄含有成形体(以下、単に成形体ということがある)を加熱し、実質的に
固形状態を保ったままで内装炭材の還元力およびその燃焼によって生じるCOガ
スの還元力により成形体内の酸化鉄分の還元を進める機能を備えたものであれば
よい。例えばロータリーキルン型や回転炉床型など任意の構造の物を使用するこ
とができる。この設備2には上記成形体の移送手段が設けられる他、バーナ等の
加熱源、燃焼用酸素供給部、必要によっては還元性ガス供給部、更には温度計や
温度制御手段などを組み込んで還元進行状態を適宜制御できる様にした構造のも
のが用いられる。図1では、回転炉床型のもので、装入部2aから装入された成
形体を回転炉床の移動に伴って移動させながら加熱還元し、所定の還元率に達し
た時点で逐次排出部2bから固形状態のままで排出する構成のものを示している
First, in the iron making method, a raw material molded body manufacturing unit 1 uses a carbonaceous material-containing iron oxide-containing molded body using an iron oxide source such as iron ore and a powder of a carbonaceous reducing agent such as coal powder and coke powder as raw materials. (Pellets, briquettes, etc.) are produced, and the produced compacts are successively sent to the reduced iron production facility 2. The reduced iron production facility 2 is configured to heat a carbonaceous material-containing iron oxide-containing molded body (hereinafter, sometimes simply referred to as a molded body), and to reduce the reducing power of the interior carbonaceous material while maintaining a substantially solid state. What is necessary is just to have a function of promoting the reduction of the iron oxide content in the compact by the reducing power of the CO gas generated by the combustion. For example, a product having an arbitrary structure such as a rotary kiln type or a rotary hearth type can be used. The equipment 2 is provided with a means for transferring the compact, a heating source such as a burner, an oxygen supply section for combustion, a reducing gas supply section if necessary, and a thermometer or temperature control means. A structure in which the progress state can be appropriately controlled is used. In FIG. 1, a rotary hearth type is used, in which the compact charged from the charging portion 2a is heated and reduced while moving along with the movement of the rotary hearth, and is sequentially discharged when a predetermined reduction rate is reached. This shows a configuration in which the liquid is discharged from the portion 2b in a solid state.

【0023】 上記還元鉄製造設備2で還元を受けて排出される固形還元鉄は、実質的に冷却
することなく引き続いてアーク加熱式溶解炉3へ送り込まれ、該溶解炉3におい
て成形体中に未還元状態で残存する酸化鉄の加熱還元が進められると共に、還元
鉄の溶解が同時に行われる。なお上記還元鉄製造設備2から排出される固形還元
鉄は通常700〜1300℃程度の熱を保有しており、この熱は実質的にそのま
まアーク加熱式溶解炉3の熱源として利用されるので、アーク加熱のための消費
エネルギー低減に寄与できる。
The solid reduced iron discharged after being reduced in the reduced iron production facility 2 is continuously sent to the arc-heating type melting furnace 3 without being substantially cooled, and is formed into a compact in the melting furnace 3. The heat reduction of the iron oxide remaining in the unreduced state proceeds, and the dissolution of the reduced iron is performed simultaneously. Note that the solid reduced iron discharged from the reduced iron manufacturing facility 2 generally has heat of about 700 to 1300 ° C., and this heat is used as it is as a heat source of the arc heating type melting furnace 3. This can contribute to a reduction in energy consumption for arc heating.

【0024】 ここで用いられるアーク加熱式溶解炉3は、アーク熱を利用して溶融鉄を強制
撹拌することなく加熱し、内張り耐火物の溶損を可及的に抑えつつ還元と溶解を
効率よく進める機能を有しており、そしてアークには、溶解炉3内の溶鉄に浮上
するスラグ内に電極3aを装入して通電することにより生じるサブマージアーク
が含まれる。そして、アーク加熱式溶解炉3へ装入される前記固形還元鉄がアー
ク熱を受けて速やかに還元され且つ溶解する様、アーク加熱部(即ち、電極3a
の挿入部)付近に原料(固形還元鉄)装入部3bが設けられる。また炭素質還元
剤の追加装入部3cは、固形還元鉄の装入位置に向けて設けられている。
The arc-heating type melting furnace 3 used here heats the molten iron using the arc heat without forcibly stirring, and reduces the melting loss of the refractory lining as much as possible while efficiently reducing and melting. The arc has a function to advance well, and the arc includes a submerged arc generated by charging the electrode 3a into the slag floating on the molten iron in the melting furnace 3 and energizing the slag. Then, an arc heating unit (that is, the electrode 3a) is provided so that the solid reduced iron charged into the arc heating melting furnace 3 is quickly reduced and melted by receiving the arc heat.
The raw material (solid reduced iron) charging portion 3b is provided near the (insertion portion). Further, the additional charging section 3c for the carbonaceous reducing agent is provided toward the charging position of the solid reduced iron.

【0025】 そして該アーク加熱式溶解炉3では、装入された固形還元鉄Aの還元と溶融に
よって溶融鉄(溶融金属または溶融鉄ということもある)が生成し、これは、そ
の前に既に生成し滞留している溶融鉄に逐次取り込まれ、固形還元鉄A内に共存
している脈石成分は、溶融スラグとなり湯面上に浮遊している溶融スラグに合流
していく。従って、該アーク加熱式溶解炉3内に溶融鉄や溶融スラグが所定量溜
った時点で、適宜該溶解炉3の側壁下方位置から溶融鉄を逐次抜き出すか、また
溶融スラグと溶融鉄の界面位置よりやや上方から溶融スラグを適宜抜き出してい
けばよい。
In the arc-heating type melting furnace 3, molten iron (sometimes referred to as molten metal or molten iron) is generated by reduction and melting of the charged solid reduced iron A, which has already been generated before. The gangue component that is sequentially taken into the generated and retained molten iron and coexisting in the solid reduced iron A becomes molten slag and joins with the molten slag floating on the molten metal surface. Therefore, when a predetermined amount of molten iron or molten slag accumulates in the arc-heating type melting furnace 3, molten iron or molten slag is appropriately extracted sequentially from a position below the side wall of the melting furnace 3 or an interface position between the molten slag and the molten iron. The molten slag may be appropriately extracted from slightly above.

【0026】 得られた溶融金属鉄は、必要により脱硫、脱燐等の清浄化処理を行った後、製
鋼炉4へ製鋼原料として送り込まれる。製鋼炉4としては、EAF4aまたはB
OF4b等が使用され、この部分で鉄スクラップや銑鉄等と混合して精錬処理が
行われる。このとき、アーク加熱式溶解炉3に隣接して製鋼炉4を配置しておけ
ば、高温の溶融還元鉄を実質的に降温させることなく製鋼炉4の原料として供給
することができ、それにより溶融還元鉄の保有熱をそのまま精錬のための熱源と
して利用できるので熱効率上最も好ましい。場合によっては、アーク加熱式溶解
炉3で得た溶融還元鉄を一旦鋳型等に受けて冷却固化し、中間製鋼原料として商
品化したり、或は離れた位置の製鋼炉へ製鋼原料として送ることも可能である。
The obtained molten metal iron is subjected to a purifying treatment such as desulfurization or dephosphorization if necessary, and then sent to the steelmaking furnace 4 as a steelmaking raw material. EAF4a or B as steelmaking furnace 4
OF4b or the like is used, and refining is performed in this portion by mixing with iron scrap, pig iron, or the like. At this time, if the steelmaking furnace 4 is arranged adjacent to the arc-heating type melting furnace 3, high-temperature molten reduced iron can be supplied as a raw material of the steelmaking furnace 4 without substantially lowering the temperature. This is most preferable in terms of thermal efficiency because the retained heat of the molten reduced iron can be used as it is as a heat source for refining. Depending on the case, the molten reduced iron obtained in the arc-heating type melting furnace 3 may be once received in a mold or the like, cooled and solidified, and commercialized as an intermediate steelmaking raw material, or may be sent as a steelmaking raw material to a remote steelmaking furnace. It is possible.

【0027】 本発明によって得られる溶融還元鉄は、前にも述べた様にスクラップに比べて
異種金属元素の混入量が極めて少ないので、スクラップと適量併用することによ
りスクラップ中の不純金属元素の希釈剤として有効に活用することができる。
As described above, the molten reduced iron obtained by the present invention has an extremely small amount of mixed foreign metal elements as compared with scrap. Therefore, by using an appropriate amount of scrap together with the scrap, it is possible to dilute the impurity metal elements in the scrap. It can be effectively used as an agent.

【0028】 本発明における基本的な工程は上記の通りであるが、こうした工程を工業的規
模で効率よく実施するには、上記還元鉄製造設備における固形還元鉄の金属化率
、該固形還元鉄内の炭素分含量、該固形還元鉄の比重等の調整が極めて重要にな
る他、アーク加熱式溶解炉3により溶融還元することによって製造される溶融鉄
の炭素含有量を適正に制御することが極めて重要となる。以下、それらについて
詳述する。
Although the basic steps in the present invention are as described above, in order to carry out such steps efficiently on an industrial scale, the metallization ratio of the solid reduced iron in the reduced iron production facility, the solid reduced iron It is extremely important to adjust the carbon content in the steel, the specific gravity of the solid reduced iron, and the like, and it is necessary to appropriately control the carbon content of the molten iron produced by smelting reduction using the arc-heating type melting furnace 3. It is extremely important. Hereinafter, they will be described in detail.

【0029】 まず、還元鉄製造設備2へ供給される酸化鉄含有成形体の成形に当たっては、
成形原料として鉄鉱石等の酸化鉄源と石炭やコークス等の炭素質還元剤の各粉末
を、必要により適量のバインダーと共に混練し、該混練物を任意の造粒装置やペ
レタイザー等を用いて任意の形状に成形し、必要により予備焼成したものが使用
される。該成形体の製造に当たっては、還元鉄製造設備2における還元を効率よ
く進めるため、酸化鉄源中に含まれる酸化鉄に対し、酸化鉄を還元するのに必要
な理論当量と、還元鉄製造設備の還元反応特性を考慮し、目標の残留炭素量を得
るのに必要な炭素質還元剤を酸化鉄源と共に混合することが望ましい。なお本発
明法の安定操業を遂行する上で重要となる「金属化率60%以上」の固形還元鉄
を得るには、予め設定された目標の金属化率の還元鉄を得るのに必要な炭材を配
合し、還元炉の雰囲気温度や反応時間などを適正に制御すればよい。
First, in forming the iron oxide-containing compact supplied to the reduced iron production facility 2,
Each powder of an iron oxide source such as iron ore and a carbonaceous reducing agent such as coal or coke is kneaded with an appropriate amount of a binder as necessary, and the kneaded material is optionally mixed using a granulating device or a pelletizer. What is shape | molded in the shape of and the pre-baked as needed is used. In the production of the compact, in order to promote the reduction in the reduced iron production facility 2 efficiently, the theoretical equivalent required to reduce the iron oxide with respect to the iron oxide contained in the iron oxide source and the reduced iron production facility In view of the reduction reaction characteristics of the above, it is desirable to mix a carbonaceous reducing agent necessary for obtaining a target residual carbon amount with an iron oxide source. In addition, in order to obtain solid reduced iron having a “metallization ratio of 60% or more” which is important in performing the stable operation of the method of the present invention, it is necessary to obtain reduced iron having a predetermined target metallization ratio. What is necessary is just to mix a carbon material, and to appropriately control the atmospheric temperature of the reduction furnace, the reaction time, and the like.

【0030】 次に本発明においては、上記の様に還元鉄製造設備2における予備還元工程で
で得られる固形還元鉄の金属化率を60%以上に進めておくことが重要な要件と
なる。即ち、該還元鉄製造設備2による予備還元から次工程のアーク加熱式溶解
炉3による溶融還元を一貫プロセスとして安定に効率よく遂行するには、還元鉄
製造設備2からアーク加熱式溶解炉3へ供給される固形還元鉄の金属化率のバラ
ツキを最小限に抑えることが肝要である。該金属化率が大幅に変動すると、上記
溶解炉3で追加投入される炭素質還元剤の添加量や加熱条件などの操業条件の制
御が困難となり、ひいては固形還元鉄の速やかな溶融還元が困難になるばかりで
なく、溶融還元鉄中の炭素含有量の制御も難しくなるからである。
Next, in the present invention, it is an important requirement to advance the metallization rate of the solid reduced iron obtained in the preliminary reduction step in the reduced iron manufacturing facility 2 to 60% or more as described above. That is, in order to carry out the smelting reduction by the arc heating type melting furnace 3 in the next step from the preliminary reduction by the reduced iron manufacturing equipment 2 stably and efficiently as an integrated process, the reduced iron manufacturing equipment 2 is transferred to the arc heating type melting furnace 3. It is important to minimize the variation in the metallization rate of the supplied solid reduced iron. If the metallization ratio fluctuates greatly, it becomes difficult to control the operating conditions such as the amount of the carbonaceous reducing agent added in the melting furnace 3 and the heating conditions, and it is difficult to rapidly reduce the smelting of solid reduced iron. In addition to this, it becomes difficult to control the carbon content in the molten reduced iron.

【0031】 即ちアーク加熱式溶解炉3へ供給される固形還元鉄の金属化率が60%未満で
は、該固形還元鉄中に残存している未還元酸化鉄の還元に要する反応熱(吸熱反
応)を補償するため、溶解炉3で大量の熱を補給しなければならなくなる。具体
的にはアーク加熱用の電極に大量の電力を供給しなければならず、該溶解炉の還
元負荷が著しく増大するばかりでなく、該溶解炉3の内張り耐火物の溶損も激し
くなり、該溶解炉3の極端な寿命短縮を招くことになり、工業的規模での実用化
が困難になるからである。ところが、固形還元鉄の金属化率を60%以上、好ま
しくは70%以上に高めておけば、アーク加熱式溶解炉3における過度の還元負
荷を生じることがなく、上記の様な問題が回避されて円滑な溶融還元を遂行する
ことが可能となる。
That is, when the metallization ratio of the solid reduced iron supplied to the arc heating type melting furnace 3 is less than 60%, the heat of reaction (endothermic reaction) required for the reduction of the unreduced iron oxide remaining in the solid reduced iron ), A large amount of heat must be supplied in the melting furnace 3. Specifically, a large amount of electric power must be supplied to the electrode for arc heating, and not only the reduction load of the melting furnace is remarkably increased, but also the erosion of the refractory lining of the melting furnace 3 becomes severe, This is because this extremely shortens the life of the melting furnace 3 and makes it difficult to put it to practical use on an industrial scale. However, if the metallization rate of the solid reduced iron is increased to 60% or more, preferably 70% or more, an excessive reduction load does not occur in the arc-heating type melting furnace 3 and the above-described problem is avoided. Thus, smooth smelting reduction can be performed.

【0032】 還元鉄製造設備2で得られる固形還元鉄の金属化率を60%以上に高めるため
の具体的手段は特に制限されず、原料成形体を製造する際の炭素質還元剤の配合
量(酸化鉄分に対する当量比)を適正に調整し、また還元鉄製造設備2における
予備還元条件(温度、還元ポテンシャル、処理時間など)を適正に制御すればよ
い。これらの条件については、予備実験でそれらの条件と金属化率の関係を予め
調べておいてこれを実操業に適用すれば、大幅なバラツキを生じることなく所定
の金属化率を容易に確保することができる。
The specific means for increasing the metallization ratio of the solid reduced iron obtained in the reduced iron manufacturing facility 2 to 60% or more is not particularly limited, and the amount of the carbonaceous reducing agent when the raw material molded body is manufactured (Equivalent ratio to iron oxide content) may be appropriately adjusted, and pre-reduction conditions (temperature, reduction potential, processing time, etc.) in reduced iron production facility 2 may be appropriately controlled. Regarding these conditions, the relationship between these conditions and the metallization ratio is checked in advance in a preliminary experiment, and if this is applied to actual operation, a predetermined metallization ratio can be easily secured without causing significant variation. be able to.

【0033】 またアーク加熱式溶解炉3へ供給される固形還元鉄は、上記金属化率に加えて
、該固形還元鉄の比重を1.7以上にすると共に、該固形還元鉄内の炭素分含有
量を、該固形還元鉄内に残存する酸化鉄を還元するのに必要な理論当量に対して
50%以上とすることが重要となる。
The solid reduced iron supplied to the arc-heating type melting furnace 3 has the specific gravity of the solid reduced iron of 1.7 or more in addition to the above-mentioned metallization ratio, and has a carbon content in the solid reduced iron. It is important that the content is 50% or more of the theoretical equivalent required for reducing the iron oxide remaining in the solid reduced iron.

【0034】 上記要件を定めた理由は以下の通りである。即ち、アーク加熱式溶解炉3内に
装入される固形還元鉄Aは、例えば図2(模式図)に示す如く、該溶解炉3内で
既に生成し溶融鉄上に浮上している溶融スラグS上に投入される。この固形還元
鉄Aをアーク熱によって効率よく加熱して還元を速やかに進めるには、該固形還
元鉄Aが溶融スラグS内に潜り込んで全面から熱を受ける様にする必要がある。
そして種々実験の結果、この様に固形還元鉄Aを速やかに溶融スラグS内に潜り
込ませて速やかに還元を進めるには、該固形還元鉄Aの比重を1.7以上とし、
且つ固形還元鉄A内の炭素分含有量を、該固形還元鉄A内に残存する酸化鉄を還
元するのに必要な理論当量に対して50%以上とすればよいことが確認された。
The reasons for defining the above requirements are as follows. That is, as shown in FIG. 2 (schematic diagram), for example, as shown in FIG. 2 (schematic diagram), the solid reduced iron A charged into the arc-heating type melting furnace 3 is molten slag that has already been generated in the melting furnace 3 and floated on the molten iron. It is thrown on S. In order to efficiently heat the solid reduced iron A by the arc heat and promptly carry out the reduction, it is necessary that the solid reduced iron A sinks into the molten slag S and receives heat from the entire surface.
As a result of various experiments, in order to promptly reduce the solid reduced iron A into the molten slag S and promptly promote the reduction, the specific gravity of the solid reduced iron A is set to 1.7 or more.
In addition, it was confirmed that the carbon content in the solid reduced iron A should be 50% or more with respect to the theoretical equivalent necessary for reducing the iron oxide remaining in the solid reduced iron A.

【0035】 溶融スラグの一般的な比重は2.4〜2.7程度であるが、比重1.8程度の
固形還元鉄Aが該溶融スラグS内に潜り込む理由は次の様に考えている。即ち、
溶解炉3内の溶融スラグS上に装入された固形還元鉄Aは、該溶融スラグSの表
面部からの熱を受け、内部に残存する炭素質還元剤によって生じる還元反応によ
り、該固形還元鉄Aの周りに主にCOガスと若干量のCO2ガスが発生し、これ らが泡状となって溶融スラグS内へ混入して泡立ち(図2A参照)、溶融スラグ
Sの比重は低下していく。そして、該固形還元鉄Aが溶融スラグS内に更に沈み
込んでいくと(図2B)、固形還元鉄Aから発生する前記ガスは更に多くなって
溶融スラグSの発泡は一層激しくなる。その比重は更に低くなって固形還元鉄A
は更に溶融スラグS内に沈み込み、固形還元鉄A全体が沈み込んだ時点以降は、
該還元鉄Aはその全面から溶融スラグSからの熱を受け(図2C)、固形還元鉄
Aは速やかに還元されると共に溶融する。そして、溶融した鉄分は溶融鉄Feに
逐次取り込まれると共に、副生するスラグ成分は逐次溶融スラグS中に取り込ま
れていく。
The general specific gravity of the molten slag is about 2.4 to 2.7, but the reason why the solid reduced iron A having a specific gravity of about 1.8 gets into the molten slag S is considered as follows. . That is,
The solid reduced iron A charged on the molten slag S in the melting furnace 3 receives heat from the surface of the molten slag S, and undergoes a reduction reaction generated by a carbonaceous reducing agent remaining inside, thereby causing the solid reduced iron A to undergo solid reduction. CO gas and a small amount of CO 2 gas are mainly generated around the iron A, and these are foamed and mixed into the molten slag S to foam (see FIG. 2A), and the specific gravity of the molten slag S decreases. I will do it. Then, when the solid reduced iron A further sinks into the molten slag S (FIG. 2B), the gas generated from the solid reduced iron A further increases, and the foaming of the molten slag S becomes more intense. The specific gravity of the solid reduced iron A
Further sinks into the molten slag S, and after the entire solid reduced iron A sinks,
The reduced iron A receives heat from the molten slag S from the entire surface (FIG. 2C), and the solid reduced iron A is rapidly reduced and melted. Then, the molten iron is sequentially taken into the molten iron Fe, and the by-product slag component is sequentially taken into the molten slag S.

【0036】 このとき、固形還元鉄の比重が1.7未満である場合は、前記図2Aに示した
如くアーク加熱式溶解炉3内の溶融スラグS上に投入された固形還元鉄Aが、溶
融スラグS上に浮上したままで溶融スラグS内に沈み込まなくなり、溶融スラグ
Sとの接触面積が少なくなって加熱効率が低下し、還元反応速度が遅くなって処
理時間が長くなる。その結果として生産性が著しく低下し、工業的且つ経済的な
実用化が困難となる。
At this time, when the specific gravity of the solid reduced iron is less than 1.7, the solid reduced iron A put on the molten slag S in the arc heating type melting furnace 3 as shown in FIG. As it floats on the molten slag S, it does not sink into the molten slag S, the contact area with the molten slag S decreases, the heating efficiency decreases, the reduction reaction speed decreases, and the processing time increases. As a result, productivity is remarkably reduced, and industrial and economical practical use becomes difficult.

【0037】 ところが、固形還元鉄Aの比重が1.7以上、より好ましくは1.8以上、更
に好ましくは1.9以上である場合は、上記図2B,2Cで示した如く溶融スラ
グS上に装入された固形還元鉄Aは比重差で極く短時間のうちに溶融スラグS内
に沈み込み、全面で溶融スラグSの熱を受けて加熱還元が速やかに進行するため
、還元効率が著しく向上して速やかに還元反応が完了する。その一方では、溶融
スラグSへの酸化鉄の溶解量も最小限に抑えられ、内張り耐火物の溶損も最小限
に抑えられることになる。
However, when the specific gravity of the solid reduced iron A is 1.7 or more, more preferably 1.8 or more, and still more preferably 1.9 or more, on the molten slag S as shown in FIGS. 2B and 2C. The solid reduced iron A charged into the slag sinks into the molten slag S within a very short time due to a specific gravity difference, and receives heat of the molten slag S over the entire surface, so that the heating and reduction proceeds rapidly, so that the reduction efficiency is reduced. The reduction reaction is remarkably improved and the reduction reaction is completed promptly. On the other hand, the amount of iron oxide dissolved in the molten slag S is also minimized, and the erosion of the refractory lining is also minimized.

【0038】 固形還元鉄Aの還元効率は、上記の様に溶融スラグSを経て伝えられるアーク
熱の伝熱効率が極めて重要となる。たとえ比重が適正であっても、該固形還元鉄
A中に含まれる炭素質還元剤の量が不足する場合は、満足のいく還元効率は得ら
れない。しかして該溶解炉3では、還元に必要な炭素質還元剤を固形還元鉄Aと
は別に追加投入することも可能であるが、追加投入される炭素質還元剤はあくま
でも固形還元鉄Aの周辺に供給されるだけであって、固形還元鉄Aの内部まで侵
入していくわけではなく、固形還元鉄Aが溶融しない限りその還元力は有効に発
揮されず、固形還元鉄A内における還元速度は当該固形還元鉄A内に存在する炭
素質還元剤の量に依存する。
As described above, the heat transfer efficiency of the arc heat transmitted through the molten slag S is extremely important for the reduction efficiency of the solid reduced iron A. Even if the specific gravity is proper, if the amount of the carbonaceous reducing agent contained in the solid reduced iron A is insufficient, a satisfactory reduction efficiency cannot be obtained. In the melting furnace 3, it is possible to additionally add the carbonaceous reducing agent necessary for reduction separately from the solid reduced iron A. However, the additional carbonaceous reducing agent is only added around the solid reduced iron A. Is not supplied to the inside of the solid reduced iron A, but the reducing power is not effectively exerted unless the solid reduced iron A is melted. Depends on the amount of the carbonaceous reducing agent present in the solid reduced iron A.

【0039】 こうした観点から、溶解炉3内に投入された固形還元鉄Aの加熱還元を短時間
で効率よく進めるための他の要件として、当該固形還元鉄A内に含まれる炭素質
還元剤の量について検討した結果、当該固形還元鉄A内の炭素分含有量を、該固
形還元鉄A内に残存する酸化鉄を還元するのに必要な理論当量に対し50%以上
、より好ましくは70%以上にしてやれば、固形還元鉄A内で未還元酸化鉄の還
元が外部からの熱を受けて速やかに進行し、高い還元溶融効率が得られることを
知った。
From such a viewpoint, as another requirement for efficiently promoting the heat reduction of the solid reduced iron A charged into the melting furnace 3 in a short time, the carbonaceous reducing agent contained in the solid reduced iron A is required. As a result of examining the amount, the carbon content in the solid reduced iron A was set to 50% or more, more preferably 70%, with respect to the theoretical equivalent required for reducing the iron oxide remaining in the solid reduced iron A. By doing so, it has been found that reduction of unreduced iron oxide in solid reduced iron A proceeds promptly by receiving heat from the outside, and high reduction melting efficiency is obtained.

【0040】 なお上記炭素分含有量は100%以上にすることが最善であるが、炭素分含有
量に50%程度の不足分があっても、該不足分の炭素分については別途炭素質還
元剤を追加投入することによって、固形還元鉄Aの溶融により流出してくる未還
元状態の酸化鉄は速やかに還元されるので、実用上の障害は殆んど生じないこと
を確認している。従って、アーク加熱式溶解炉3へ供給される固形還元鉄A内の
炭素分含有量が、未還元状態で残存する酸化鉄の還元に必要な理論当量に対し1
00%に満たない場合は、不足分の炭素分は、別途炭素質還元剤として固形還元
鉄Aの投入部近辺に追加投入すればよい。
It is best that the carbon content is 100% or more. However, even if there is a shortage of about 50% in the carbon content, the carbon content of the shortage is separately reduced by carbonaceous reduction. It has been confirmed that by adding an additional agent, the iron oxide in the unreduced state flowing out due to the melting of the solid reduced iron A is rapidly reduced, and practically no obstacle is caused. Therefore, the carbon content in the solid reduced iron A supplied to the arc-heating type melting furnace 3 is 1 to the theoretical equivalent required for the reduction of the iron oxide remaining in the unreduced state.
If it is less than 00%, the shortage of carbon may be additionally charged as a carbonaceous reducing agent in the vicinity of the input portion of the solid reduced iron A.

【0041】 上記還元鉄製造設備で製造される固形還元鉄の比重は、還元鉄製造設備へ供給
される原料の性状や配合率、更には該還元鉄製造設備における還元条件(特に雰
囲気温度や時間)などにより変わってくるので、これらの条件と比重の関係を予
備実験によって予め確認しておき、それらに応じて適正な条件設定を行なえばよ
い。
The specific gravity of the solid reduced iron produced in the above-mentioned reduced iron production facility depends on the properties and the mixing ratio of the raw materials supplied to the reduced iron production facility, and also on the reduction conditions (particularly the ambient temperature and time) in the reduced iron production facility. ), The relationship between these conditions and the specific gravity may be confirmed in advance by a preliminary experiment, and appropriate conditions may be set in accordance with them.

【0042】 また、当該固形還元鉄中の残存炭素量を調整するには、還元鉄製造設備におけ
る還元特性を十分に把握した上で、配合原料の銘柄やその組成からそれらの還元
反応特性を考慮に入れて配合量を決定し、加熱還元条件(温度、時間、雰囲気ガ
ス組成など)を適正に制御すればよい。
In addition, in order to adjust the amount of residual carbon in the solid reduced iron, the reduction characteristics in the reduced iron production facility should be sufficiently understood, and their reduction reaction characteristics should be considered from the brand and composition of the blended raw materials. , The amount to be blended is determined, and the heating and reducing conditions (temperature, time, atmosphere gas composition, etc.) may be appropriately controlled.

【0043】 次に、上記アーク加熱式溶解炉3によって得られる溶融還元鉄Aの酸素含有量
を1.5〜4.5%の範囲に設定した理由について説明する。
Next, the reason why the oxygen content of the molten reduced iron A obtained by the arc heating type melting furnace 3 is set in the range of 1.5 to 4.5% will be described.

【0044】 炭素質還元剤の内装された酸化鉄含有成形体から製造された還元鉄の場合、通
常は石炭等の炭素質還元剤に含まれる硫黄分のうち約70%が還元鉄内に残留す
る。そして、この還元鉄を溶解炉で溶解する場合、特に低金属化率の還元鉄を溶
解するときは、溶解炉内での脱硫は殆んど期待できず、そのため、溶解炉内へ持
ち込まれた硫黄分の大部分は溶鉄内へ移行し、高Sの溶融鉄が製造されることに
なる。
In the case of the reduced iron manufactured from the iron oxide-containing molded body in which the carbonaceous reducing agent is provided, about 70% of the sulfur contained in the carbonaceous reducing agent such as coal usually remains in the reduced iron. I do. And when this reduced iron is melted in a melting furnace, desulfurization in the melting furnace can hardly be expected, especially when dissolving reduced iron with a low metallization rate, and therefore, it was brought into the melting furnace. Most of the sulfur content migrates into the molten iron, resulting in the production of high S molten iron.

【0045】 該溶融鉄中の硫黄分は、溶解炉から出湯した後取鍋内で主に石灰系フラックス
を用いて脱硫することができる。ところが、溶融鉄中の炭素含有量[C]が1.
5%未満になると、溶融鉄中に平衡状態で存在する酸素濃度[O]レベルが高く
なるため、その後の脱硫効率が著しく阻害される。従って、脱硫効率を高めて低
Sの溶融鉄の製造を容易にするには、前記アーク加熱式溶解炉3によって製造さ
れる溶融鉄の[C]を1.5%以上に高めておくことが必要となる。ただし、該
溶融鉄中の[C]は4.5%付近でほぼ飽和状態となり、飽和[C]の溶融鉄を
安定して得るにはかなり過剰量の炭素質還元剤を溶解炉内へ投入し、該炉内のス
ラグ中に炭素質還元剤を常時10%程度以上存在させることが必要となり、炭素
質還元剤に要する費用が高騰するばかりでなく、その後の精錬時における脱炭負
荷も増大するので好ましくない。操業安定性を高める上で特に好ましい該溶融鉄
の炭素含有量の下限は2.0%、好ましい上限は3.5%である。
The sulfur content in the molten iron can be desulfurized using a lime-based flux in a ladle after tapping from a melting furnace. However, the carbon content [C] in the molten iron is 1.
If it is less than 5%, the oxygen concentration [O] existing in the molten iron in an equilibrium state becomes high, so that the subsequent desulfurization efficiency is significantly impaired. Therefore, in order to increase the desulfurization efficiency and facilitate the production of low S molten iron, it is necessary to increase the [C] of the molten iron produced by the arc-heating type melting furnace 3 to 1.5% or more. Required. However, the [C] in the molten iron becomes almost saturated at about 4.5%, and a considerably excessive amount of the carbonaceous reducing agent is introduced into the melting furnace to stably obtain the saturated [C] molten iron. However, it is necessary that the carbonaceous reductant is always present in the slag in the furnace at about 10% or more, which not only increases the cost of the carbonaceous reductant but also increases the decarburization load during the subsequent refining. Is not preferred. A particularly preferable lower limit of the carbon content of the molten iron is 2.0%, and a preferable upper limit is 3.5% in order to enhance the operation stability.

【0046】 アーク加熱式溶解炉9によって製造される溶融鉄中の炭素量を上記1.5〜4
.5%の範囲に制御するための具体的な方法は特に制限されず、こうした炭素量
を確保するための最適条件(原料成形体を製造する際の内装炭材量、還元鉄製造
設備での予備還元条件、アーク加熱式溶解炉での炭素質還元剤の追加投入量や操
業条件など)を予備実験により予め設定しておき、設定された条件で操業を行う
ことも可能であるが、上記成形体の原料となる酸化鉄源や炭素質還元剤の品質等
は必ずしも安定しておらず、かなり変動するのが普通であるから、こうした変動
要因にも拘らず前記適正範囲で安定した炭素含有量の溶融鉄を得るには、例えば
次の様な方法を採用することが望ましい。
The amount of carbon in the molten iron produced by the arc-heating type melting furnace 9 is adjusted to 1.5 to 4
. The specific method for controlling the content to the range of 5% is not particularly limited, and the optimal conditions for securing such carbon amount (the amount of interior carbon material when manufacturing a raw material molded article, the preliminary The reduction conditions, the additional amount of the carbonaceous reducing agent in the arc-heating type melting furnace, the operation conditions, and the like) can be set in advance by preliminary experiments, and the operation can be performed under the set conditions. The quality of the iron oxide source and carbonaceous reducing agent used as raw materials for the body is not always stable, and usually fluctuates considerably. In order to obtain molten iron, it is desirable to employ, for example, the following method.

【0047】 アーク加熱式溶解炉内の溶融鉄を採取し、該溶融鉄を分析して溶融鉄中の炭 素量を実測しながら炭素質還元剤の添加量を調整し、該溶融鉄中の炭素含有量を
適正範囲に調整する方法。
The molten iron in the arc-heating type melting furnace is sampled, the molten iron is analyzed, and the amount of the carbonaceous reducing agent is adjusted while measuring the amount of carbon in the molten iron. A method of adjusting the carbon content to an appropriate range.

【0048】 アーク加熱式溶解炉から排出される排ガス組成と排出量を測定し、該測定値 から算出される排ガスの酸素当量から溶融鉄中の炭素含有量を計算によって求め
、該炭素含有量に応じて追加投入する炭素質還元剤の量を調整する方法。
The composition and amount of exhaust gas discharged from the arc-heating type melting furnace are measured, and the carbon content in the molten iron is calculated from the oxygen equivalent of the exhaust gas calculated from the measured values. A method of adjusting the amount of a carbonaceous reducing agent to be additionally charged according to the amount.

【0049】 ところで上記アーク加熱式溶解炉で固形還元鉄の還元を進めると共に溶解させ
る際には、該固形還元鉄中の脈石成分に由来して生成する溶融スラグが湯面上に
浮上する。該溶融スラグの塩基度と酸化鉄含有量を適正に制御することは、該溶
解炉内での還元効率や溶融スラグの分離効率を高めたり、溶解炉の内張り耐火物
の溶損を抑えるうえで実用上極めて有効である。本発明を実施する際には、該溶
融スラグの塩基度を1.0〜1.8(より好ましい下限は1.1、より好ましい
上限は1.5)の範囲に調整すると共に、該溶融スラグ中のトータル鉄分(T.
Fe)、(鉄酸化物として存在する鉄分の合計量)を9%以下、より好ましくは
5%以下に制御することが望ましい。
Meanwhile, when the solid reduced iron is reduced and melted in the above-mentioned arc-heating type melting furnace, molten slag generated from the gangue component in the solid reduced iron floats on the molten metal surface. Appropriately controlling the basicity and the iron oxide content of the molten slag increases the reduction efficiency and the separation efficiency of the molten slag in the melting furnace, and suppresses the melting damage of the refractory lining of the melting furnace. It is extremely effective in practical use. In carrying out the present invention, the basicity of the molten slag is adjusted to a range of 1.0 to 1.8 (a more preferred lower limit is 1.1, and a more preferred upper limit is 1.5), and the molten slag is also adjusted. Total iron (T.
Fe), (total amount of iron present as iron oxide) is preferably controlled to 9% or less, more preferably 5% or less.

【0050】 スラグ塩基度は、スラグ性状を特徴付ける基本的且つ代表的な特性の1つで、
溶融スラグ中に含まれる代表的な成分であるCaOとSiO2の比、即ち(Ca O)/(SiO2)で表される。溶融スラグの塩基度が1.8を超えるとスラグ の融点が急上昇して流動性が低下し、溶融鉄温度を故意に高くしない限り溶解炉
内での還元と溶解が円滑に進行しにくくなり、また該塩基度が1.0未満になる
と内張り耐火物の溶損が激しくなる。また溶解炉の内張り耐火物の溶損は、溶融
スラグ中の酸化鉄量が多くなるほど激しくなる。こうした傾向は溶融スラグの(
T.Fe)が9%を超えると顕著に現れてくる。従って、該溶解炉における固形
還元鉄の還元と溶解を短時間で効率よく進めると共に内張り耐火物の溶損を最小
限に抑えて溶解炉の寿命延長を図るには、アーク加熱式溶解炉による固形還元鉄
の還元・溶解工程で適宜溶融スラグを採取してその塩基度や(T.Fe)量を測
定し、スラグ塩基度調整剤(CaOやSiO2)を添加してスラグ塩基度を適正 範囲に調整し、或は炭素質還元剤の追加投入量を調整して溶融スラグ中の(T.
Fe)量を抑えることが望まれる。
Slag basicity is one of the basic and representative characteristics that characterize slag properties.
A typical component contained in the molten slag CaO and SiO 2 ratio, represented by words (Ca O) / (SiO 2 ). When the basicity of the molten slag exceeds 1.8, the melting point of the slag rises sharply and the fluidity decreases, and unless the molten iron temperature is intentionally raised, reduction and melting in the melting furnace become difficult to proceed smoothly. If the basicity is less than 1.0, the erosion of the refractory lining becomes severe. Further, the melting damage of the refractory lining of the melting furnace increases as the amount of iron oxide in the molten slag increases. This tendency is due to the
T. When Fe) exceeds 9%, it appears remarkably. Accordingly, in order to efficiently promote the reduction and melting of the solid reduced iron in the melting furnace in a short time and to extend the life of the melting furnace by minimizing the erosion of the refractory lining, it is necessary to use a solid-state furnace using an arc heating melting furnace. In the reduction / dissolution step of reduced iron, a molten slag is appropriately collected, its basicity and (T.Fe) amount are measured, and a slag basicity modifier (CaO or SiO 2 ) is added to adjust the basicity of the slag to an appropriate range. Or the additional amount of the carbonaceous reducing agent is adjusted so that (T.
It is desired to reduce the amount of Fe).

【0051】 上記の様にして、アーク加熱式溶解炉3で還元し溶融することにより、炭素含
有量が1.5〜4.5%でSi含有量が0.05%程度以下の溶融鉄として得る
ことができ、これは、先に図1で説明した様に、溶融鉄中の[C]量によって若
干異なるが、概1350℃程度以上の熱を保有した溶融状態のままでEAFやB
OF等の製鋼炉へ供給し、あるいは一旦鋳型に取り出し冷却固化させてから、製
鋼用の中間製品として利用することができる。しかしながら、上記で得られる溶
融鉄の中には多量の硫黄や燐が含まれているので、好ましくは製鋼工程へ送るま
でにこれらの硫黄や燐を除去しておくことが望ましい。
As described above, by reducing and melting in the arc heating melting furnace 3, molten iron having a carbon content of 1.5 to 4.5% and a Si content of about 0.05% or less is obtained. As described above with reference to FIG. 1, this is slightly different depending on the amount of [C] in the molten iron, but it is possible to obtain EAF or B in a molten state having heat of about 1350 ° C. or more.
It can be used as an intermediate product for steelmaking after being supplied to a steelmaking furnace such as OF, or once taken out into a mold and cooled and solidified. However, since a large amount of sulfur and phosphorus is contained in the molten iron obtained above, it is preferable to remove these sulfur and phosphorus before sending to the steelmaking process.

【0052】 そのために採用される好ましい脱硫法としては、上記溶解炉3で製造した溶融
鉄を取鍋等に出湯し、これに脱硫用として新たに石灰系フラックスを添加し、好
ましくは溶融鉄内に浸漬した吹込みランスを用いて石灰系フラックスを不活性ガ
スと共に溶融鉄内へインジェクションし、該フラックスにより硫黄を捕捉してス
ラグとして湯面上に分離除去する方法が例示される。また好ましい脱燐法として
は、取鍋などに出湯した溶融鉄に、石灰系フラックスと共に固体酸素源(酸化鉄
など)或は気体酸素源(酸素や空気など)を供給し、燐成分を優先的に酸化しフ
ラックスに捕捉させて溶融鉄上に浮上分離する方法、等が例示される。これら脱
硫法や脱燐法は制限的でなく、公知の他の脱硫・脱燐法を採用することも勿論可
能である。しかし後者の脱燐法を採用すれば、公知の高炉溶銑とは異なり、溶解
炉で製造される溶融鉄の[Si]は前述の如く0.05%以下と低く、特別の脱
珪処理をせずとも高い脱燐率を確保できるので好ましい。
As a preferable desulfurization method employed for this purpose, the molten iron produced in the melting furnace 3 is poured into a ladle or the like, and a new lime-based flux is added thereto for desulfurization. A method of injecting a lime-based flux into molten iron together with an inert gas using a blowing lance immersed in water, trapping sulfur with the flux and separating and removing it as slag on the surface of the molten metal is exemplified. As a preferable dephosphorization method, a solid oxygen source (eg, iron oxide) or a gaseous oxygen source (eg, oxygen or air) is supplied to the molten iron discharged from a ladle or the like, together with a lime-based flux, so that the phosphorus component is given priority. Oxidized to the flux, trapped by the flux, and floated and separated on the molten iron. These desulfurization methods and dephosphorization methods are not limited, and it is of course possible to employ other known desulfurization and dephosphorization methods. However, if the latter dephosphorization method is adopted, unlike the known blast furnace hot metal, the [Si] of the molten iron produced in the melting furnace is as low as 0.05% or less as described above, and special desiliconization treatment is performed. This is preferable because a high dephosphorization rate can be ensured at least.

【0053】 これら脱硫・脱燐処理を行うと、[C]:1.5〜4.5%、[Si]:0.
05%程度以下、[Mn]:0.1%程度以下、[S]:0.05%程度以下、
[P]:0.04%程度以下で、残部は実質的にFeからなる高純度の還元鉄と
して得ることができ、製鋼原料として極めて有効に活用することができる。特に
この方法によって得られる溶融鉄は鉄分純度が高く、他の不純金属成分の含有量
が非常に少ないので、これを製鋼原料として例えば20〜50%程度を他の鉄源
(スクラップや銑鉄など)と併用すれば、スクラップ等から混入してくる不純金
属元素の希釈材として作用し、不純金属元素含有量の少ない鋼を得ることが可能
となる。勿論、併用されるスクラップ中の不純金属元素含有量によっては、該還
元鉄の併用比率を上記範囲以外から選定することもできるし、あるいは該還元鉄
100%使用で鉄分純度の高い鋼の製造を行うことも有効であり、更には、EA
FやBOFを用いた製鋼工程の末期に他の金属元素を積極的に添加し、合金鋼を
製造することも可能である。
When these desulfurization and dephosphorization treatments are performed, [C]: 1.5 to 4.5%, [Si]: 0.
[Mn]: about 0.1% or less, [S]: about 0.05% or less,
[P]: At about 0.04% or less, the balance can be obtained as high-purity reduced iron substantially composed of Fe, and can be used very effectively as a steelmaking raw material. In particular, the molten iron obtained by this method has a high iron purity and a very low content of other impure metal components. Therefore, using this as a raw material for steelmaking, for example, about 20 to 50% of another iron source (scrap, pig iron, etc.) is used. When used in combination, it acts as a diluent for the impurity metal element mixed in from the scrap or the like, and it is possible to obtain steel with a low impurity metal element content. Of course, depending on the content of the impurity metal element in the scrap used in combination, the combined ratio of the reduced iron can be selected from a range other than the above range, or the production of steel having a high iron purity by using 100% of the reduced iron. It is also effective to perform
At the end of the steelmaking process using F or BOF, other metal elements can be positively added to produce an alloy steel.

【0054】 いずれにしても、本発明の方法によって得られる上記還元鉄は、不純金属元素
の含有量が非常に少ないという大きな特徴を有しているので、こうした特徴を生
かして鋼や各種合金鋼の製造に幅広く活用することができる。
In any case, the above-mentioned reduced iron obtained by the method of the present invention has a great feature that the content of an impurity metal element is very small. Can be widely used in the manufacture of

【0055】 次に、本発明で定める“固形還元鉄の金属化率:60%以上”、“該固形還元
鉄内の炭素分含有量:該固形還元鉄内に残存する酸化鉄を還元するのに必要な理
論当量(以下、FeO還元当量炭素量ということがある)の50%以上”、“該
固形還元鉄の比重:1.7以上”、“アーク加熱式溶解炉で製造される溶融鉄の
炭素含有量:1.5〜4.5”にそれぞれ定めた根拠について、更に詳しく説明
を加えておく。
Next, the “metallization rate of the solid reduced iron: 60% or more” defined in the present invention, “the carbon content in the solid reduced iron: reducing the iron oxide remaining in the solid reduced iron” 50% or more of the theoretical equivalent (hereinafter sometimes referred to as FeO equivalent carbon amount) necessary for the above, "specific gravity of the solid reduced iron: 1.7 or more", "molten iron produced in an arc heating type melting furnace" The basis determined for carbon content of 1.5 to 4.5 "will be described in more detail.

【0056】 “固形還元鉄の金属化率:60%以上”に定めた根拠 還元鉄製造設備で製造される固形還元鉄の金属化率曲線は、配合される酸化鉄
原料や炭素質還元剤の組成や配合率、更には還元条件によって変わる。該金属化
率曲線は例えば図3に示す様な傾向を示す。
The metallization rate curve of the solid reduced iron produced by the reduced iron production facility defined in the “metallization rate of solid reduced iron: 60% or more” indicates that the iron oxide raw material and the carbonaceous reducing agent to be blended are It varies depending on the composition and blending ratio, and furthermore, the reducing conditions. The metallization ratio curve shows, for example, a tendency as shown in FIG.

【0057】 即ち図3の曲線におけるA点は、金属化率76%、残留炭素量4.8%の点 を示し、B点は、金属化率85%、残留炭素量1.6%の点を示している。残留
炭素量は、FeO還元当量炭素量に対してA点では142%、B点では63.5
%となり、還元時間の経過につれて残留炭素量は減少していく。図3における曲
線は、原料配合等を変えて固形還元鉄の金属化率を低めに抑えた例である。い ずれにしても、金属化率は還元時間の進行につれて最初は急激に立ち上がり、時
間が経過して金属化率が高くなるにつれて上昇カーブは緩やかになってくる。
That is, the point A in the curve of FIG. 3 indicates a point where the metallization ratio is 76% and the residual carbon amount is 4.8%, and the point B is a point where the metallization ratio is 85% and the residual carbon amount is 1.6%. Is shown. The residual carbon content was 142% at the point A and 63.5 at the point B with respect to the FeO reduced equivalent carbon amount.
%, And the amount of residual carbon decreases as the reduction time elapses. The curve in FIG. 3 is an example in which the metallization rate of the solid reduced iron is suppressed to a low level by changing the raw material composition and the like. In any case, the metallization rate rises sharply at first as the reduction time progresses, and the rising curve becomes gentler as the metallization rate increases with time.

【0058】 ところで、本発明で採用される固形還元鉄の製造とその還元溶解の連続プロセ
スでは、還元鉄製造設備で製造される固形還元鉄の金属化率が、アーク加熱式溶
解炉(以下、アーク溶解炉という)の操業性に顕著な影響を及ぼす。例えば図4
は、固形還元鉄の金属化率と、アーク溶解炉における未還元酸化鉄の還元・溶解
に消費される電力原単位との関係を示したグラフである。還元鉄製造設備とアー
ク溶解炉の連続操業を行なう際には、アーク溶解炉の安定操業を確保することが
重要であり、該アーク溶解炉に供給される電力の増大に伴って必然的に電極によ
る熱供給負荷が増大し、溶解炉の内張り耐火物に与える熱衝撃が大きくなる。こ
のため、電極装置や炉壁への熱衝撃を減らすため炉体を大型とせざるを得なくな
り、経済的にも実用的にも劣るものとなる。
Meanwhile, in the continuous process of producing and reducing and dissolving solid reduced iron employed in the present invention, the metallization rate of the solid reduced iron produced in the reduced iron production facility is controlled by an arc-heating type melting furnace (hereinafter, referred to as a melting furnace). This has a significant effect on the operability of the arc melting furnace. For example, FIG.
Is a graph showing the relationship between the metallization ratio of solid reduced iron and the basic unit of electric power consumed for reduction and melting of unreduced iron oxide in an arc melting furnace. When performing continuous operation of the reduced iron production facility and the arc melting furnace, it is important to ensure stable operation of the arc melting furnace, and as the power supplied to the arc melting furnace increases, the And the heat shock applied to the refractory lining of the melting furnace increases. For this reason, in order to reduce the thermal shock to the electrode device and the furnace wall, the furnace body must be large, which is economically and practically inferior.

【0059】 通常のアーク溶解炉でこうした障害が顕著に現われるのは電力原単位が800
kWh/tmiを超えたときであり、従って上記の様な障害を未然に回避するに
は、アーク溶解炉へ供給される固形還元鉄の金属化率を60%以上、より好まし
くは70%以上に抑えるべきである。
[0059] In a normal arc melting furnace, such a problem is remarkably exhibited when the power consumption unit is 800
kWh / tmi is exceeded. Therefore, in order to obviate the above-mentioned obstacles beforehand, the metallization ratio of the solid reduced iron supplied to the arc melting furnace is set to 60% or more, more preferably 70% or more. Should be suppressed.

【0060】 また、還元鉄製造設備で製造される固形還元鉄の金属化率のバラツキは、金属
化率の絶対値によって大きく影響を受け、該金属化率が低くなる程そのバラツキ
は大きくなる。ちなみに図5は、金属化率の平均値が62.8%と80.2%の
固形還元鉄について、金属化率のバラツキを調べた結果を示したグラフであり、
金属化率が低くなるほどそのバラツキが著しくなることを確認できる。実操業に
おいては、該金属化率のバラツキが大きくなると目標金属化率そのものが不安定
になるので、安定した目標金属化率を確保するには該金属化率を高めに設定する
必要がある。種々実験の結果、金属化率のバラツキを実操業可能なレベルに抑え
るには、該金属化率の平均値を60%以上、より好ましくは70%以上にすべき
であることが確認された。
The variation in the metallization ratio of the solid reduced iron produced by the reduced iron production facility is greatly affected by the absolute value of the metallization ratio. The lower the metallization ratio, the greater the variation. FIG. 5 is a graph showing the results of examining the variation in the metallization rate for the solid reduced iron having an average metallization rate of 62.8% and 80.2%.
It can be confirmed that the lower the metallization ratio, the more the variation becomes significant. In actual operation, the target metallization ratio itself becomes unstable if the variation in the metallization ratio becomes large. Therefore, in order to secure a stable target metallization ratio, the metallization ratio needs to be set higher. As a result of various experiments, it was confirmed that the average value of the metallization ratio should be 60% or more, more preferably 70% or more, in order to suppress the variation of the metallization ratio to a level at which practical operation is possible.

【0061】 “該固形還元鉄内の炭素分含有量:FeO還元当量炭素量の50%以上 に定めた根拠 図6は、様々の条件で製造された固形還元鉄について、該固形還元鉄中のFe
O還元当量炭素量と溶融スラグ中の酸化鉄含有量の関係を調べた結果を示したグ
ラフである。この実験では、固形還元鉄の金属化率が78〜82%でFeO還元
当量炭素量の異なるものを使用し、20トンのEAFを用いて溶解した時の、溶
融スラグ中の酸化鉄含有量(T.Fe)を調べた。この図からも明らかである様
に、固形還元鉄内にFeO還元当量炭素量(未還元酸化鉄を還元するのに必要な
理論当量の炭素量)が含まれる場合は、溶融スラグ中の(T.Fe)は低レベル
に抑えられるが、該炭素量がFeO還元当量炭素量の50%(即ち、FeO還元
当量炭素量×0.5)を下回ると、溶融スラグ中の(T.Fe)が急増しており
、ひいては内張り耐火物の溶損が著しくなることを確認できる。従って、内張り
耐火物の溶損を最小限に抑えて安定操業を確保するには、固形還元鉄中の炭素分
含有量を、FeO還元当量炭素量の50%以上にすべきである。
[ The Carbon Content in the Solid Reduced Iron: The Basis of Setting the Carbon Content in the FeO Reduction Equivalent to 50% or More] FIG. 6 shows that the solid reduced iron produced under various conditions Fe
It is the graph which showed the result of having investigated the relationship between the O reduction equivalent carbon amount and the iron oxide content in molten slag. In this experiment, the iron oxide content in the molten slag obtained by dissolving with 20 tons of EAF using solid reduced iron having a metallization ratio of 78 to 82% and different FeO equivalent carbon amounts was used. T. Fe) was examined. As is clear from this figure, when the FeO reduced equivalent carbon amount (the theoretical equivalent carbon amount required to reduce unreduced iron oxide) is contained in the solid reduced iron, (T .Fe) is suppressed to a low level, but when the amount of carbon falls below 50% of the FeO reduced equivalent carbon amount (that is, FeO reduced equivalent carbon amount × 0.5), (T.Fe) in the molten slag is reduced. It can be confirmed that the refractory has increased sharply, and consequently the refractory of the lining has become remarkably molten. Therefore, in order to minimize the erosion of the refractory lining and ensure stable operation, the carbon content of the solid reduced iron should be 50% or more of the FeO equivalent carbon equivalent.

【0062】 尚この実験では、アーク溶解炉で製造される溶融鉄の炭素量が2.1〜2.4
の範囲となる様に、いずれの場合も不足炭材をアーク溶解炉で追加投入したが、
こうした追加炭材量には殆ど関わりなく、固形還元鉄自体の残存炭素量をFeO
還元当量炭素量の50%以上にしなければ、溶融スラグ中の(T.Fe)を十分
に低減することはできない。勿論、固形還元鉄中に残存する酸化鉄に対し還元当
量炭素量と溶融鉄の目標炭素含有量を確保するのに十分な量の炭材を追加投入す
れば、溶融スラグ中の(T.Fe)を低減することは可能と思われる。しかしな
がら現実には、溶融鉄中の炭素量を飽和炭素量以下の一定の値に維持することは
非常に難しく、処理時間の経過につれて溶融鉄中の炭素含有量は徐々に増大し、
目標炭素含有量の溶融鉄が得られ難くなるので好ましくない。
In this experiment, the carbon content of the molten iron produced in the arc melting furnace was 2.1 to 2.4.
In each case, the missing carbon material was additionally charged in the arc melting furnace so that
Regardless of the amount of the additional carbon material, the residual carbon amount of the solid reduced iron itself is expressed by FeO
Unless it is 50% or more of the reduced equivalent carbon amount, (T.Fe) in the molten slag cannot be sufficiently reduced. Needless to say, if a sufficient amount of carbon material is added to the iron oxide remaining in the solid reduced iron to ensure the reduced equivalent carbon amount and the target carbon content of the molten iron, (T.Fe. ) Seems to be possible. However, in reality, it is very difficult to maintain the carbon content in the molten iron at a constant value equal to or less than the saturated carbon content, and the carbon content in the molten iron gradually increases with the elapse of the treatment time,
It is not preferable because it becomes difficult to obtain molten iron having the target carbon content.

【0063】 “固形還元鉄の比重:1.7以上”に定めた根拠 炭材内装酸化鉄成形体を固形状態で予備還元して固形還元鉄を得る本発明の方
法を採用する場合、各成形体には炭材などを配合する分だけ予備還元の進行によ
って内部に空洞ができるので、例えばミドレックス法等により製造される予備還
元鉄に較べると固形還元鉄の比重はかなり小さくなる。
In the case where the method of the present invention for obtaining solid reduced iron by preliminarily reducing in a solid state the iron oxide formed body containing carbon material based on the basis specified in “specific gravity of solid reduced iron: 1.7 or more” is adopted, Since the body is hollowed by the progress of the preliminary reduction by the amount of the carbon material and the like, the specific gravity of the solid reduced iron is considerably smaller than that of the preliminary reduced iron manufactured by, for example, the Midrex method.

【0064】 一方、前記図2で説明した様に、該固形還元鉄をアーク溶解炉で還元溶解する
際に、該固形還元鉄の還元溶解効率を高めるには、アーク溶解炉内へ装入された
固形還元鉄が溶融鉄上の溶融スラグ内へ速やかに沈み込んで全面からアーク熱を
効率よく受け得る様にすべきである。そのためには、固形還元鉄の比重が大きな
影響を及ぼす。ちなみに図7は、比重が1.65−1.75(平均比重:1.6
5)と1.8−2.3(平均比重:2.1)の固形還元鉄を用いてアーク溶解炉
で還元溶解を行なう際に、固形還元鉄の比重が還元溶解速度に及ぼす影響を調べ
た結果を示したグラフであり、横軸は、各固形還元鉄を単体で溶融スラグ上に装
入したときの溶解速度、縦軸は、各固形還元鉄を連続的に装入して還元溶解を行
なうことのできる限界溶解速度をそれぞれ示している。
On the other hand, as described in FIG. 2, when reducing and melting the solid reduced iron in the arc melting furnace, in order to increase the reduction and melting efficiency of the solid reduced iron, the solid reduced iron is charged into the arc melting furnace. The solid reduced iron should quickly sink into the molten slag on the molten iron so that the entire surface can efficiently receive arc heat. For that purpose, the specific gravity of the solid reduced iron has a great effect. FIG. 7 shows that the specific gravity is 1.65-1.75 (average specific gravity: 1.6).
The effect of the specific gravity of the solid reduced iron on the reduction melting rate when performing the reduction melting in an arc melting furnace using the solid reduced iron of 5) and 1.8-2.3 (average specific gravity: 2.1) was investigated. The horizontal axis is the dissolution rate when each solid reduced iron is charged alone on the molten slag, and the vertical axis is the reduction melting when each solid reduced iron is continuously charged. , Respectively, indicate the critical dissolution rates at which the dissolution can be performed.

【0065】 この図からも明らかである様に、固形還元鉄の平均比重が1.65の場合、溶
融スラグ上に固形還元鉄を連続的に装入しても、該固形還元鉄が溶融スラグ内に
潜り込む現象は認められず、殆どの固形還元鉄は溶融スラグ表面で還元溶解が進
行する。そのため、固形還元鉄を連続装入した時の溶解速度は、単体で装入した
時の溶解速度の概略100倍程度となっている。この水準の溶解速度では、連続
装入による還元溶解を実用規模で実施することはできない。これに対し、平均比
重が2.1の固形還元鉄では、溶融スラグ上に装入された固形還元鉄は速やかに
該スラグ内へ潜り込んで還元溶解が効率よく進行する為、固形還元鉄を単体で装
入する場合に較べて連続装入した時の溶解速度は大幅に高まって、約300倍の
連続溶解速度が得られる。この程度の溶解速度であれば、連続還元溶解を工業規
模で十分に実用化できる。
As is apparent from this figure, when the average specific gravity of the solid reduced iron is 1.65, even if the solid reduced iron is continuously charged onto the molten slag, the solid reduced iron is not melted. No phenomenon of sinking into the inside is observed, and most of the solid reduced iron undergoes reduction dissolution on the surface of the molten slag. Therefore, the dissolution rate when the solid reduced iron is continuously charged is approximately 100 times the dissolution rate when the solid reduced iron is charged alone. At this level of dissolution rate, reductive dissolution by continuous charging cannot be performed on a practical scale. On the other hand, in the case of the solid reduced iron having an average specific gravity of 2.1, the solid reduced iron charged on the molten slag quickly enters into the slag and the reduction and dissolution proceeds efficiently. The dissolution rate at the time of continuous charging is greatly increased as compared with the case where charging is carried out at a rate of, and a continuous dissolution rate of about 300 times can be obtained. With such a dissolution rate, continuous reduction dissolution can be sufficiently practically used on an industrial scale.

【0066】 こうした固形還元鉄の比重の影響については、平均比重が1.7を境にして溶
解時の様相は大きく変化し、連続溶解速度は急変する。そして平均比重が1.7
未満では、工業規模での連続操業に耐える溶解速度が得られず、平均比重を1.
7以上、より好ましくは1.9以上にすると、連続操業を行なうのに十分な溶解
速度を確保することが可能となる。
Regarding the influence of the specific gravity of the solid reduced iron, the aspect at the time of dissolution greatly changes around an average specific gravity of 1.7, and the continuous dissolution rate rapidly changes. And the average specific gravity is 1.7
If it is less than 1, a dissolution rate that can withstand continuous operation on an industrial scale cannot be obtained, and the average specific gravity is 1.
When it is 7 or more, more preferably 1.9 or more, it is possible to secure a dissolution rate sufficient for performing continuous operation.

【0067】 “アーク加熱式溶解炉で製造される溶融鉄の炭素含有量: 1.5〜4.5“に定めた根拠 一般に溶融鉄中の炭素量と溶存酸素量の間には密接な関係があり、溶融鉄中の
炭素量が低下するにつれて該溶融鉄中の溶存酸素量が増大する。そして該溶存酸
素量が高いほど該溶融鉄の酸素ポテンリャルは高くなって脱硫には不利となる。
それに伴って溶融鉄と平衡する溶融スラグの酸素ポテンリャルも高くなり、ひい
ては溶融スラグ中のFeO濃度が高くなって耐火物との反応性が増大し、溶解炉
の内張り耐火物の溶損が激しくなる。その為、脱硫処理時の脱硫率を高めると共
に、溶解炉の内張り耐火物の溶損を抑えてその寿命を延長するには、溶融鉄中の
炭素含有量をある程度高めに設定することが必要となる。
The basis defined in “The carbon content of molten iron produced in an arc-heating type melting furnace: 1.5 to 4.5” Generally, there is a close relationship between the amount of carbon in molten iron and the amount of dissolved oxygen. The amount of dissolved oxygen in the molten iron increases as the amount of carbon in the molten iron decreases. The higher the dissolved oxygen content, the higher the oxygen potential of the molten iron, which is disadvantageous for desulfurization.
As a result, the oxygen potential of the molten slag, which is in equilibrium with the molten iron, also increases, and as a result, the FeO concentration in the molten slag increases, the reactivity with the refractory increases, and the erosion of the refractory lining the melting furnace becomes severe. . Therefore, in order to increase the desulfurization rate during the desulfurization process and to suppress the erosion of the refractory lining of the melting furnace and prolong its life, it is necessary to set the carbon content in the molten iron to a somewhat high level. Become.

【0068】 ちなみに図8は、多くの実験によって得られた溶融鉄中の炭素含有量と脱硫率
の関係をまとめて示したグラフである。この実験では、CaO系脱硫剤を取鍋内
溶融鉄にインジェクションする方法を採用し、脱硫剤原単位を一定としたときの
データを整理して示している。この図からも明らかである様に、溶融鉄中の炭素
含有量が1.5%未満になると脱硫率が著しく低下し、目標の脱硫率を確保する
には大量の脱硫剤をインジェクションしなければならなくなり、その結果として
大量に発生するスラグ中に多量の金属鉄が取り込まれて鉄ロスが大きくなる。即
ち本発明を実用規模で実施可能にするには、脱硫に伴って生じるスラグの処理な
ど付随的な問題も考慮する必要があり、取鍋脱硫を少ない脱硫剤原単位で効率よ
く行なうには、溶融鉄中の炭素含有量を1.5%以上、より好ましくは2.0%
以上にすべきである。
FIG. 8 is a graph summarizing the relationship between the carbon content in the molten iron and the desulfurization rate obtained by many experiments. In this experiment, a method in which a CaO-based desulfurizing agent is injected into molten iron in a ladle is adopted, and data when the desulfurizing agent basic unit is fixed is shown. As is clear from this figure, when the carbon content in the molten iron is less than 1.5%, the desulfurization rate is remarkably reduced, and in order to secure the target desulfurization rate, a large amount of desulfurizing agent must be injected. As a result, a large amount of metallic iron is taken into slag generated in a large amount, and iron loss increases. That is, in order to make the present invention practicable on a practical scale, it is necessary to consider additional problems such as the treatment of slag generated with desulfurization, and to efficiently perform ladle desulfurization with a small unit of desulfurizing agent, 1.5% or more, more preferably 2.0% of carbon content in molten iron
That's it.

【0069】 但し、溶融鉄中の炭素含有量は約4.5%で飽和状態に達し、飽和炭素含有量
の還元溶融鉄を安定して得るにはかなり過剰量の炭素質還元剤を使用しなければ
ならなくなるので不経済であり、しかもその後の製錬時の脱酸負荷も増大するの
で、該炭素含有量は4.5%以下、より好ましくは3.5以下に抑えるのがよい
However, the carbon content in the molten iron reaches a saturation state at about 4.5%, and in order to stably obtain a reduced molten iron having a saturated carbon content, a considerably excessive amount of a carbonaceous reducing agent is used. The carbon content is 4.5% or less, more preferably 3.5 or less.

【0070】 “溶融スラグの塩基度:1.0〜1.8”に定めた根拠 この塩基度(即ちCaO/SiO2比)は、本発明において必須の要件ではな いが、アーク溶解炉における固形還元鉄の還元溶解効率に少なからぬ影響を及ぼ
すばかりでなく、該溶解炉の内張り耐火物の溶損にも大きな影響を及ぼす。
The basis defined in “Molten slag basicity: 1.0 to 1.8” This basicity (that is, the ratio of CaO / SiO 2 ) is not an essential requirement in the present invention. Not only has a considerable effect on the reduction and dissolution efficiency of the solid reduced iron, but also has a great effect on the erosion of the refractory lining of the melting furnace.

【0071】 即ち溶融スラグの塩基度はその流動性に大きな影響を及ぼし、例えば図9に示
す如く塩基度が低くなるにつれてスラグの溶融温度は低くなって流動性は高まり
、固形還元鉄の還元溶解効率には好影響を及ぼす反面、耐火物との反応性は高く
なって内張り耐火物の溶損が激しくなる。一方、塩基度が高くなると、スラグの
溶融温度は上昇し、従ってスラグを溶解するには炉内温度を過度に高めなければ
ならなくなり、熱エネルギー的にマイナスになるばかりでなく、高温による炉体
への熱影響も大きくなってくる。こうした傾向は、図9にも現われる如く、スラ
グ塩基度が1.0未満あるいは1.8を超えると顕著になるので、アーク溶解炉
内の溶融スラグの塩基度は1.0〜1.8、より好ましくは1.3〜1.6の範
囲に調整することが望ましい。
That is, the basicity of the molten slag has a great influence on its fluidity. For example, as shown in FIG. 9, as the basicity decreases, the melting temperature of the slag decreases, the fluidity increases, and the reduction and dissolution of solid reduced iron Although this has a positive effect on the efficiency, the reactivity with the refractory increases, and the refractory of the lining refractory becomes severely damaged. On the other hand, when the basicity increases, the melting temperature of the slag rises, and thus the furnace temperature must be excessively increased to melt the slag. The effect of heat on the air also increases. As shown in FIG. 9, such a tendency becomes remarkable when the slag basicity is less than 1.0 or exceeds 1.8, so that the basicity of the molten slag in the arc melting furnace is 1.0 to 1.8, More preferably, it is desirable to adjust to a range of 1.3 to 1.6.

【0072】[0072]

【実施例】【Example】

次に本発明の実施例を示す。本発明は下記実施例によって制限を受けるもので
はなく、本発明の範囲を超えない限り適当に変更して実施することができ、それ
らは本発明の技術的範囲に含まれる。
Next, examples of the present invention will be described. The present invention is not limited by the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention, and they are included in the technical scope of the present invention.

【0073】 実施例 鉄鉱石と石炭の各粉砕物および少量のバインダ(ベントナイト)を使用し、こ
れらを、鉄鉱石中の酸化鉄に対し石炭中の炭素が理論当量となる様に配合する。
これらを造粒装置で直径約13〜20mmの略球形に成形し、この炭材を含む酸
化鉄含有成形体を原料成形体として使用した。用いた鉄鉱石と石炭の組成の一例
を下記に示す。
EXAMPLES [0091] Each of the crushed iron ore and coal and a small amount of a binder (bentonite) are used, and these are blended so that the carbon in the coal becomes the theoretical equivalent to the iron oxide in the iron ore.
These were formed into a substantially spherical shape having a diameter of about 13 to 20 mm by a granulator, and the iron oxide-containing formed body containing the carbon material was used as a raw material formed body. An example of the composition of the iron ore and the coal used is shown below.

【0074】 鉄鉱石の組成: T・Fe=65%,FeO=0.7%,SiO2=2.5% Al23=2.10%,CaO=0.04% 石炭の組成: 全炭素量=77.6%,固定炭素=71.2%, 揮発分=17.0%,灰分=11.8%Composition of iron ore: T.Fe = 65%, FeO = 0.7%, SiO 2 = 2.5% Al 2 O 3 = 2.10%, CaO = 0.04% Coal composition: Total Carbon content = 77.6%, fixed carbon = 71.2%, volatile content = 17.0%, ash content = 11.8%

【0075】 上記成形体(生ペレット)を回転炉床型の還元鉄製造設備へ供給し、温度12
50〜1350℃、回転炉内での平均滞留時間7〜9分間で加熱還元を行って固
形還元鉄を製造した。得られる固形還元鉄中の未還元酸化鉄量と残留炭素量は上
記加熱還元条件によって異なる。この実施例では、該固形還元鉄中の酸化鉄の金
属化率がいずれも60%以上となる様に加熱還元条件を調整した。得られた固形
還元鉄の金属化率と成分組成の一例を表1に示す。更に、同様の実験で得た固形
還元鉄の重量と比重は例えば図10に示す通りであり、1ピース当たりの重量に
は殆ど関係なく、平均比重はいずれも1.7〜2.5の範囲である。
The above molded product (raw pellet) is supplied to a rotary hearth type reduced iron production facility,
Heat reduction was performed at 50 to 1350 ° C. for an average residence time of 7 to 9 minutes in a rotary furnace to produce solid reduced iron. The amount of unreduced iron oxide and the amount of residual carbon in the obtained solid reduced iron differ depending on the heating and reducing conditions. In this example, the heat reduction conditions were adjusted so that the metallization ratio of iron oxide in the solid reduced iron was 60% or more. Table 1 shows an example of the metallization ratio and component composition of the obtained solid reduced iron. Further, the weight and specific gravity of the solid reduced iron obtained in the same experiment are, for example, as shown in FIG. 10 and are almost irrelevant to the weight per piece, and the average specific gravity is in the range of 1.7 to 2.5. It is.

【0076】[0076]

【表1】 [Table 1]

【0077】 上記還元鉄製造設備で得られる固形還元鉄は、可能な限り大気と接触しない様
に、且つ高温を保った状態(本実験では1000℃)で、還元鉄製造設備に近接
して設けられたアーク加熱式溶解炉に連続的に投入し、更なる還元と溶融を行う
。このとき、溶解炉内には一定量の溶融鉄を保持させておくと共に、溶融鉄上に
浮上する溶融スラグの塩基度を1.0〜1.8の範囲に調整し、アーク加熱のた
めの電極は該溶融スラグ内に突っ込んだ状態で通電し、サブマージアーク加熱方
式を採用した。そして固形還元鉄は該アーク加熱部近傍に向けて投入すると共に
、該固形還元鉄投入位置に向けて石炭を追加投入し、アーク加熱による還元と溶
融を進めた。
The solid reduced iron obtained by the above reduced iron production facility is provided as close to the reduced iron production facility as possible so as not to come into contact with the atmosphere and at a high temperature (1000 ° C. in this experiment). It is continuously charged into the obtained arc-heating type melting furnace, and further reduced and melted. At this time, a fixed amount of molten iron is held in the melting furnace, and the basicity of the molten slag floating on the molten iron is adjusted to a range of 1.0 to 1.8, so that the molten iron is heated for arc heating. The electrodes were energized while protruding into the molten slag, and a submerged arc heating method was employed. Then, the solid reduced iron was charged toward the vicinity of the arc heating section, and coal was additionally charged toward the solid reduced iron charging position, and reduction and melting by arc heating were advanced.

【0078】 この還元・溶融工程中の固形還元鉄は、スラグ形成成分としてのSiO2が他 の酸化物よりも多く含まれている。溶解炉内で還元鉄の溶解が進行するにつれて
塩基度が低下してくるので、塩基度調整剤として主に焼石灰、必要により焼成ド
ロマイト等を含むフラックスを添加し、溶融スラグの塩基度を1.0〜1.8の
範囲に調整した。この方法により、前述の如く溶融スラグの塩基度が1.8を超
えると、溶融スラグが粘稠になり固形還元鉄が該溶融スラグ内へ沈み込み難くな
って加熱還元効率が低下し、また1.0未満になると内張り耐火物の溶損が著し
くなることが確認された。
The reduced solidified iron in the reduction / melting step contains more SiO 2 as a slag forming component than other oxides. As the dissolution of reduced iron progresses in the melting furnace, the basicity decreases. Therefore, a flux containing mainly calcined lime and, if necessary, calcined dolomite is added as a basicity adjusting agent to reduce the basicity of the molten slag to 1 It adjusted to the range of 0.0-1.8. According to this method, when the basicity of the molten slag exceeds 1.8 as described above, the molten slag becomes viscous, the solid reduced iron does not easily sink into the molten slag, and the heat reduction efficiency decreases. It was confirmed that the melting of the refractory lining became remarkable when it was less than 0.0.

【0079】 この加熱還元・溶解工程で、溶融スラグ上に装入された固形還元鉄は、溶融ス
ラグに接してアーク熱を受け、内部に残存する炭素分によって未還元酸化鉄の還
元が進行し、固形還元鉄の表面にCOガスが放出されて該固形還元鉄は活発に動
き回ると共に、該COガスによって溶融スラグは激しく発泡する。そして、該発
泡に伴う比重の低下につれて固形還元鉄は溶融スラグ内へ沈み込んで更に加熱還
元を受け、その周辺に追加投入される炭素質還元剤の作用で未還元鉄はほぼ完全
に還元されると共に溶融し、下部の溶融鉄内に取り込まれていく。
In this heating reduction / melting step, the solid reduced iron charged on the molten slag contacts the molten slag and receives arc heat, and the unreduced iron oxide is reduced by the carbon remaining inside. Then, CO gas is released to the surface of the solid reduced iron, the solid reduced iron moves around actively, and the molten slag foams violently by the CO gas. Then, as the specific gravity decreases due to the foaming, the solid reduced iron sinks into the molten slag and undergoes further heat reduction, and the unreduced iron is almost completely reduced by the action of the carbonaceous reducing agent additionally charged in the vicinity thereof. As it melts, it is taken in the lower molten iron.

【0080】 このとき、装入される固形還元鉄の比重が1.7以上、より好ましくは1.8
以上、更に好ましくは1.9以上である場合は、溶融スラグ上から装入した後速
やかに溶融スラグ内に沈み込んで加熱還元が短時間で効率よく進行するが、比重
が1.7未満である時は、装入された固形還元鉄は溶融スラグ内部への沈み込み
が起り難いため溶融スラグからの熱伝達が不十分となって発泡も少なくなり、加
熱還元に要する時間が大幅に遅れ、それに伴って溶融スラグへの酸化鉄の溶解量
も増し、該溶解炉の内張り耐火物を溶損し易くなる。
At this time, the specific gravity of the charged solid reduced iron is 1.7 or more, more preferably 1.8.
As described above, more preferably, when it is 1.9 or more, it quickly sinks into the molten slag after being charged from the molten slag, and the heat reduction proceeds efficiently in a short time, but the specific gravity is less than 1.7. At one time, the charged solid reduced iron is unlikely to sink into the molten slag, so heat transfer from the molten slag is insufficient, foaming is reduced, and the time required for heat reduction is greatly delayed, Accordingly, the amount of iron oxide dissolved in the molten slag also increases, and the refractory lining of the melting furnace is easily melted.

【0081】 更に、該固形還元鉄中の炭素分含有量が、該固形還元鉄中の未還元酸化鉄を還
元するのに必要な理論炭素量に対して50%未満である場合は還元効率不足とな
り、該溶解炉内へ炭素質還元剤を追加装入したとしても還元速度が遅く、溶融ス
ラグ中の酸化鉄含有量も多くなって内張り耐火物の溶損が著しくなる。
Further, when the carbon content in the solid reduced iron is less than 50% of the theoretical carbon amount required for reducing the unreduced iron oxide in the solid reduced iron, the reduction efficiency is insufficient. Thus, even if the carbonaceous reducing agent is additionally charged into the melting furnace, the reduction rate is slow, the iron oxide content in the molten slag is increased, and the refractory lining material is significantly damaged.

【0082】 また上記加熱還元工程では、溶融鉄を定期的にサンプリングすることによって
炭素量を測定し、該炭素量が1.5〜4.5%の範囲に納まる様に炭素質還元剤
の追加投入量を調整した。
In the heating and reducing step, the amount of carbon is measured by periodically sampling molten iron, and the addition of a carbonaceous reducing agent is performed so that the amount of carbon falls within the range of 1.5 to 4.5%. The input amount was adjusted.

【0083】 こうした加熱還元・溶解工程を連続的に行い、該溶解炉内に所定量の溶融鉄が
溜った時点で、炉底部に設けた出湯孔から取鍋へ溶湯を抜き出すと共に、該溶解
炉の側壁に設けたスラグ排出孔から適量の溶融スラグを抜き出し、炉内に残留す
るスラグ量を調整する。
When such a heating reduction / melting process is continuously performed, and when a predetermined amount of molten iron has accumulated in the melting furnace, the molten metal is extracted from a tap hole provided at the bottom of the furnace into a ladle, and the melting furnace is melted. An appropriate amount of molten slag is extracted from the slag discharge hole provided in the side wall of the furnace, and the amount of slag remaining in the furnace is adjusted.

【0084】 こうした加熱還元・溶解を行う際の具体的な条件等および結果を例示すると次
の通りである。
The specific conditions and the results when performing such heat reduction / dissolution are exemplified as follows.

【0085】 (還元鉄の性状) 固形還元鉄の組成等:前記表1のNo.3(金属化率:80%) アーク加熱式溶解炉への装入温度:1000℃ 装入方法:連続装入 (アーク加熱式溶解炉の操業条件) アーク加熱電極への電力原単位:約565KWh/tmi(mi:製造 される溶融鉄) (副原料の種類と投入量) 消石灰:92.2kg/tmi,焼成ドロマイト:21.5kg/tmi 石炭追加装入量:約20kg/tmi 還元鉄の使用原単位:1227kg/tmi (得られる溶融鉄と生成スラグ組成) 溶融鉄: C:2.0%,Si:0.03%以下,Mn:0.05%以下, P:0.043%,S:0.137%,温度1550℃ 生成スラグ: CaO:36.5%,SiO2:26.1%,Al23:18.2%, MgO:10.0%,T・Fe:6.3%,塩基度:1.4(Properties of Reduced Iron) Composition and the like of solid reduced iron: 3 (metallization ratio: 80%) Charging temperature to the arc-heating type melting furnace: 1000 ° C Charging method: continuous charging (Operating conditions of the arc-heating type melting furnace) Basic unit of electric power to the arc-heating electrode: about 565 KWh / Tmi (mi: molten iron to be produced) (Type and amount of auxiliary raw material) Slaked lime: 92.2 kg / tmi, calcined dolomite: 21.5 kg / tmi Additional coal charge: about 20 kg / tmi Use of reduced iron Basic unit: 1227 kg / tmi (composition of obtained molten iron and formed slag) Molten iron: C: 2.0%, Si: 0.03% or less, Mn: 0.05% or less, P: 0.043%, S : 0.137%, temperature 1550 ° C Slag produced: CaO: 36.5%, SiO 2 : 26.1%, Al 2 O 3 : 18.2%, MgO: 10.0%, T.Fe: 6. 3%, basicity: 1.4

【0086】 上記からも明らかである様に、溶融鉄のSi含有量は、上記還元・溶解工程で
十分に低減しているが、製鋼原料としてはS含有量およびP含有量が多過ぎるの
で、取鍋により脱硫、脱燐処理を行ない、下記組成の溶湯を得た。
As is clear from the above, the Si content of the molten iron has been sufficiently reduced in the reduction / dissolution step, but the S content and the P content are too large for a steelmaking raw material, Desulfurization and dephosphorization were performed using a ladle to obtain a molten metal having the following composition.

【0087】 脱硫剤(石灰系フラックス) 組成:CaO:83〜90%、CaF2:6〜10%、C:4.0% 使用量:約12kg/tmi 脱燐剤(石灰系フラックス+Fe23) 組成:CaO:44〜45%、CaF2:7〜8%、Fe23:47〜48 % 使用量:約20kg/tmi 脱硫・脱燐後の溶融鉄組成: C:1.8〜2.0%,Si:痕跡,Mn:0.02%,P:0.032% S:0.038%.Desulfurizer (lime-based flux) Composition: CaO: 83 to 90%, CaF 2 : 6 to 10%, C: 4.0% Usage: about 12 kg / tmi Dephosphorizer (lime-based flux + Fe 2 O) 3) composition: CaO: 44~45%, CaF 2 : 7~8%, Fe 2 O 3: 47~48% consumption: about 20 kg / tmi molten iron composition after desulfurization and dephosphorization: C: 1.8 2.0%, Si: trace, Mn: 0.02%, P: 0.032% S: 0.038%.

【0088】 上記脱硫・脱燐処理を終えた溶融鉄(1450℃)を、鉄スクラップおよび銑
鉄と下記の配合でEAFへ装入し、これに下記の副原料を添加すると共に少量の
酸素を吹込みながら電気炉製鋼を行い、下記組成の溶鋼を製造した。 (電気炉装入原料) 脱硫・脱燐溶融鉄:40%部、 スクラップ:50%、銑鉄:10% (副原料) 焼石灰:50.2kg/tmi,焼成ドロマイト:10kg/tmi, 珪石:15.1kg/tmi 吹込み酸素量:約18Nm3/tmi (得られた溶鋼組成) C:0.10%,Mn:0.06%,Si:痕跡,S:0.022%, P:0.018%.
The molten iron (1450 ° C.) after the desulfurization and dephosphorization treatment is charged into an EAF with iron scrap and pig iron in the following composition, and the following auxiliary materials are added thereto and a small amount of oxygen is blown. Electric furnace steelmaking was performed while mixing, to produce molten steel having the following composition. (Electric furnace charging material) Desulfurized and dephosphorized molten iron: 40%, scrap: 50%, pig iron: 10% (auxiliary raw materials) calcined lime: 50.2 kg / tmi, calcined dolomite: 10 kg / tmi, silica stone: 15 0.1 kg / tmi Injection oxygen amount: about 18 Nm 3 / tmi (the obtained molten steel composition) C: 0.10%, Mn: 0.06%, Si: trace, S: 0.022%, P: 0. 018%.

【0089】 上記実験では、アーク加熱式溶解炉で製造し、脱硫・脱燐処理した溶融鉄を溶
融状態のまま、即ち高温を保った状態でEAFへ供給して製鉄原料として用いる
例を示したが、同様にBOFへ製鋼原料として供給することもできるし、更には
この溶融鉄を一旦鋳型に取り出して冷却凝固させ、製鋼用に中間原料として用い
ることも有効である。
In the above experiment, an example was shown in which molten iron produced in an arc heating type melting furnace and subjected to desulfurization and dephosphorization treatment was supplied to the EAF in a molten state, that is, at a high temperature, and used as an iron making raw material. However, it is also possible to supply the molten iron to the BOF as a raw material for steelmaking, and it is also effective to temporarily take out the molten iron into a mold, cool and solidify it, and use it as an intermediate raw material for steelmaking.

【0090】 最後に、本発明は上記記述に照らして様々変更して実施することも可能であり
、従って、それらは特許請求の範囲に含まれると理解すべきであり、本発明は上
記以外の態様でも実施し得るものと考えるべきである。
Finally, it is to be understood that the invention is capable of various modifications and implementations in light of the above description and, therefore, is to be understood as falling within the scope of the appended claims. It should be considered that the embodiment can also be implemented.

【0091】 この出願は、日本特許庁に1997年9月1日に出願された特願平9−236
214号に基づくもので、その内容は全てその中に含まれている。
This application is filed with the Japan Patent Office on Sep. 1, 1997 as Japanese Patent Application No. 9-236.
No. 214, the entire contents of which are included therein.

【0092】[0092]

【発明の効果】【The invention's effect】

本発明は以上の様に構成されており、安定して高い還元効率を確保し得ると共
に、処理炉の内張り耐火物の溶損も最小限に抑えられて炉寿命の延長を図ること
ができ、それらの効果に伴って、炭素質還元剤を内装した酸化鉄含有成形体を主
原料とする還元鉄の製造と、それによって得られる固形還元鉄の更なる還元と溶
融による高純度溶融還元鉄の製造を、少ないエネルギーロスの下で工業的規模で
極めて効率よく実現できる。また、この方法によって得られる還元鉄は不純金属
元素の含有量が少ないので、これを製鋼原料として利用することによって高純度
の鋼材の製造を可能にするばかりでなく、合金鋼を製造する際の成分調整も容易
となる。更に、アーク加熱式溶解炉に隣接して製鋼炉を設けておき、該溶解炉で
製造した溶融還元鉄、あるいはその脱硫・脱燐溶湯を、高い熱を保有した溶融状
態で製鋼原料として製鋼炉へ供給する様にすれば、溶融還元鉄の保有熱を製鋼の
ための熱源として有効に活用できるので、熱エネルギーを一段と低減することが
でき、還元鉄の製造から製鋼の一貫システムとして、実用上極めて効率の良い方
法を確立することができる。
The present invention is configured as described above, and can stably secure a high reduction efficiency, can minimize the erosion of the refractory lining of the processing furnace, can extend the life of the furnace, Along with those effects, the production of reduced iron using iron oxide-containing compacts containing a carbonaceous reducing agent as the main raw material, and the further reduction and melting of solid reduced iron obtained by the production of high-purity molten reduced iron The production can be realized very efficiently on an industrial scale with low energy losses. In addition, the reduced iron obtained by this method has a low content of an impure metal element, so not only by using it as a steelmaking raw material, it is possible to produce a high-purity steel material, but also when producing an alloy steel. Component adjustment is also easy. Further, a steelmaking furnace is provided adjacent to the arc-heating type melting furnace, and the molten reduced iron or the desulfurized / dephosphorized molten metal produced in the melting furnace is used as a steelmaking raw material in a molten state having high heat. If it is supplied to the steelmaking plant, the retained heat of the molten reduced iron can be used effectively as a heat source for steelmaking, so that the heat energy can be further reduced. An extremely efficient method can be established.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に従って炭材内装酸化鉄含有成形体の加熱還元、アーク加熱式溶解およ
び製鋼の連続工程の代表例を示す概略図である。
FIG. 1 is a schematic view showing a typical example of a continuous process of heat reduction, arc heating melting and steelmaking of a carbonaceous material-containing iron oxide-containing compact according to the present invention.

【図2】 アーク加熱式溶解炉の溶融スラグ上から装入された固形還元鉄の加熱還元状況
を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of heating and reducing solid reduced iron charged from above a molten slag of an arc-heating type melting furnace.

【図3】 実験で得た固形還元鉄の還元化率と還元時間の関係の一例を示すグラフである
FIG. 3 is a graph showing an example of a relationship between a reduction ratio of solid reduced iron and a reduction time obtained in an experiment.

【図4】 固形還元鉄の還元化率とアーク溶解炉での電力原単位の関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the reduction rate of solid reduced iron and the basic unit of electric power in an arc melting furnace.

【図5】 固形還元鉄の金属化率とそのバラツキの一例を示すグラフである。FIG. 5 is a graph showing an example of the metallization ratio of solid reduced iron and its variation.

【図6】 固形還元鉄中の炭素含有量と溶融スラグ中の酸化鉄(T.Fe)の関係を示す
グラフである。
FIG. 6 is a graph showing the relationship between the carbon content in solid reduced iron and iron oxide (T.Fe) in molten slag.

【図7】 固形還元鉄単体の溶解速度と連続装入する時の限界溶解速度の関係を示すグラ
フである。
FIG. 7 is a graph showing the relationship between the dissolution rate of solid reduced iron alone and the limit dissolution rate during continuous charging.

【図8】 溶融鉄中の炭素含有量と脱硫率の関係を示すグラフである。FIG. 8 is a graph showing the relationship between the carbon content in molten iron and the desulfurization rate.

【図9】 スラグの塩基度と溶融温度の関係を示すグラフである。FIG. 9 is a graph showing the relationship between slag basicity and melting temperature.

【図10】 固形還元鉄の1ピース当たりの重量と比重を示すグラフである。FIG. 10 is a graph showing the weight per piece and the specific gravity of the solid reduced iron.

【手続補正書】特許協力条約第34条補正の翻訳文提出書[Procedural Amendment] Submission of translation of Article 34 Amendment of the Patent Cooperation Treaty

【提出日】平成12年3月1日(2000.3.1)[Submission Date] March 1, 2000 (200.3.1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (81)指定国 EP(AT,BE,CH,CY, DE,DK,ES,FI,FR,GB,GR,IE,I T,LU,MC,NL,PT,SE),OA(BF,BJ ,CF,CG,CI,CM,GA,GN,GW,ML, MR,NE,SN,TD,TG),AP(GH,GM,K E,LS,MW,SD,SZ,UG,ZW),EA(AM ,AZ,BY,KG,KZ,MD,RU,TJ,TM) ,AL,AM,AT,AU,AZ,BA,BB,BG, BR,BY,CA,CH,CN,CU,CZ,DE,D K,EE,ES,FI,GB,GE,GH,GM,HU ,ID,IL,IS,JP,KE,KG,KR,KZ, LC,LK,LR,LS,LT,LU,LV,MD,M G,MK,MN,MW,MX,NO,NZ,PL,PT ,RO,RU,SD,SE,SG,SI,SK,SL, TJ,TM,TR,TT,UA,UG,UZ,VN,Y U,ZW──────────────────────────────────────────────────続 き Continuation of front page (81) Designated country EP (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE ), OA (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), AP (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), EA (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KR, KZ , LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 下記方法からなることを特徴とする炭素含有量1.5〜4.
5%の溶融鉄を製造する製鉄法。 (a)酸化鉄と炭素質還元剤を準備し、 (b)前記炭素質還元剤と酸化鉄から成形体を製造し、 (c)該成形体から、金属化率が少なくとも60%で、比重が少なくとも1.7 以上であり、且つ、残存する酸化鉄を還元するのに必要な理論当量に対し50%
以上の炭素を含む固形還元鉄を製造し、 (d)該固形還元鉄を実質的に冷却することなくアーク加熱式溶解炉で加熱し、 炭素含有量1.5〜4.5%の溶融鉄を得る。
1. A carbon content of from 1.5 to 4.
Iron making method to produce 5% molten iron. (a) preparing iron oxide and a carbonaceous reducing agent; (b) producing a molded article from the carbonaceous reducing agent and iron oxide; (c) producing a molded article having a metallization ratio of at least 60% and a specific gravity. Is at least 1.7 and 50% of the theoretical equivalent required to reduce the remaining iron oxide.
(D) heating the solid reduced iron in an arc-heating type melting furnace without substantially cooling the molten iron, the molten iron having a carbon content of 1.5 to 4.5%; Get.
【請求項2】 前記固形還元鉄を、前記アーク加熱式溶解炉内で700〜1
,300℃に加熱する請求項1に記載の製鉄法。
2. The solid reduced iron is placed in the arc-heating type melting furnace at a temperature of 700 to 1
The iron making method according to claim 1, wherein the iron is heated to 300 ° C.
【請求項3】 アーク加熱式溶解炉における固形還元鉄の供給位置に炭素質
還元剤を供給する請求項1に記載の製鉄法。
3. The iron making method according to claim 1, wherein a carbonaceous reducing agent is supplied to a supply position of the solid reduced iron in the arc heating type melting furnace.
【請求項4】 アーク加熱式溶解炉における溶融スラグ中に固形還元鉄を供
給する請求項1記載の製鉄法。
4. The iron making method according to claim 1, wherein the solid reduced iron is supplied into the molten slag in the arc heating type melting furnace.
【請求項5】 上記溶融スラグのpHが1.0〜1.8である請求項4に記
載の製鉄法。
5. The iron making method according to claim 4, wherein the pH of the molten slag is 1.0 to 1.8.
【請求項6】 前記溶融スラグの酸化鉄含量が9%以下である請求項4記載
の製鉄法。
6. The iron making method according to claim 4, wherein the iron oxide content of the molten slag is 9% or less.
【請求項7】 前記溶融スラグの酸化鉄含量が5%以下である請求項6に記
載の製鉄法。
7. The iron making method according to claim 6, wherein the molten slag has an iron oxide content of 5% or less.
【請求項8】 溶融鉄の炭素含有量を決定する請求項1に記載の製鉄法。8. The method of claim 1 wherein the carbon content of the molten iron is determined. 【請求項9】 前記アーク加熱式溶解炉からの排ガスの量と組成により決定
する請求項1に記載の製鉄法。
9. The iron-making method according to claim 1, wherein the iron-making method is determined by an amount and a composition of an exhaust gas from the arc-heating type melting furnace.
【請求項10】 前記排ガスの酸素当量により決定する請求項9に記載の製
鉄法。
10. The iron-making method according to claim 9, wherein the iron-making method is determined by an oxygen equivalent of the exhaust gas.
【請求項11】 前記アーク加熱式溶解炉内の溶融鉄を、別容器に移して脱
硫する請求項1に記載の製鉄法。
11. The iron making method according to claim 1, wherein the molten iron in the arc-heating type melting furnace is transferred to another container and desulfurized.
【請求項12】 前記アーク加熱式溶解炉内の溶融鉄を、別容器に移して脱
燐する請求項1に記載の製鉄法。
12. The iron making method according to claim 1, wherein the molten iron in the arc-heating type melting furnace is transferred to another container and dephosphorized.
【請求項13】 前記溶融鉄のSi含有量が0.05%以下である請求項1
に記載の製鉄法。
13. The molten iron according to claim 1, wherein the Si content is 0.05% or less.
The iron making method described in 1.
【請求項14】 前記溶融鉄のMn含有量が0.1%以下である請求項1に
記載の製鉄法。
14. The method according to claim 1, wherein the Mn content of the molten iron is 0.1% or less.
【請求項15】 前記溶融鉄のP含有量が0.1%以下である請求項1に記
載の製鉄法。
15. The iron making method according to claim 1, wherein the P content of the molten iron is 0.1% or less.
【請求項16】 前記溶融鉄のS含有量が0.2%以下である請求項1に記
載の製鉄法。
16. The iron making method according to claim 1, wherein the S content of the molten iron is 0.2% or less.
【請求項17】 前記請求項1によって得た溶融鉄を製鋼炉へ供給して鋼を
製造する製鋼法。
17. A steelmaking method in which molten iron obtained according to claim 1 is supplied to a steelmaking furnace to produce steel.
【請求項18】 製鋼炉が電気炉(EAF)または転炉(BOF)である請
求項17に記載の製鋼法。
18. The steelmaking method according to claim 17, wherein the steelmaking furnace is an electric furnace (EAF) or a converter (BOF).
【請求項19】 (a)請求項1によって得た溶融鉄を冷却して凝固鉄とし、(
b)該凝固鉄を製鋼炉へ供給して鋼を製造する製鋼法。
19. (a) cooling the molten iron obtained according to claim 1 to solidify iron,
b) A steelmaking method in which the solidified iron is supplied to a steelmaking furnace to produce steel.
【請求項20】 製鋼炉が、電気炉(EAF)または転炉(BOF)である
請求項19に記載の製鋼法。
20. The steelmaking method according to claim 19, wherein the steelmaking furnace is an electric furnace (EAF) or a converter (BOF).
JP2000508831A 1997-09-01 1998-08-28 Iron and steel making Expired - Fee Related JP3509072B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9-236214 1997-09-01
PCT/JP1998/003869 WO1999011826A1 (en) 1997-09-01 1998-08-28 Method of making iron and steel

Publications (2)

Publication Number Publication Date
JP2001515138A true JP2001515138A (en) 2001-09-18
JP3509072B2 JP3509072B2 (en) 2004-03-22

Family

ID=14208883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000508831A Expired - Fee Related JP3509072B2 (en) 1997-09-01 1998-08-28 Iron and steel making

Country Status (1)

Country Link
JP (1) JP3509072B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105452A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Method for producing reduced metal
WO2009131148A1 (en) 2008-04-23 2009-10-29 株式会社神戸製鋼所 Process for producing molten metal
WO2011043472A1 (en) 2009-10-08 2011-04-14 株式会社神戸製鋼所 Molten metal producing device
WO2011043473A1 (en) 2009-10-08 2011-04-14 株式会社神戸製鋼所 Molten metal producing device
KR20200130858A (en) 2018-04-17 2020-11-20 닛폰세이테츠 가부시키가이샤 Manufacturing method of molten steel
CN114829635A (en) * 2019-12-25 2022-07-29 株式会社神户制钢所 Method for producing molten steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105452A (en) * 2001-09-28 2003-04-09 Kobe Steel Ltd Method for producing reduced metal
WO2009131148A1 (en) 2008-04-23 2009-10-29 株式会社神戸製鋼所 Process for producing molten metal
US8425650B2 (en) 2008-04-23 2013-04-23 Kobe Steel, Ltd. Method for manufacturing molten metal
WO2011043472A1 (en) 2009-10-08 2011-04-14 株式会社神戸製鋼所 Molten metal producing device
WO2011043473A1 (en) 2009-10-08 2011-04-14 株式会社神戸製鋼所 Molten metal producing device
US9453678B2 (en) 2009-10-08 2016-09-27 Kobe Steel, Ltd. Apparatus for manufacturing molten metal
US9557109B2 (en) 2009-10-08 2017-01-31 Kobe Steel, Ltd. Apparatus for manufacturing molten metal
KR20200130858A (en) 2018-04-17 2020-11-20 닛폰세이테츠 가부시키가이샤 Manufacturing method of molten steel
CN114829635A (en) * 2019-12-25 2022-07-29 株式会社神户制钢所 Method for producing molten steel
CN114829635B (en) * 2019-12-25 2023-04-21 株式会社神户制钢所 Method for producing molten steel

Also Published As

Publication number Publication date
JP3509072B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
US6149709A (en) Method of making iron and steel
JP4691827B2 (en) Granular metal iron
KR101140056B1 (en) Method for utilizing slag
JP4330257B2 (en) Metal iron manufacturing method
US6503289B2 (en) Process for manufacturing molten metal iron
US6843828B2 (en) Method for treating slags or slag mixtures on an iron bath
JP4781813B2 (en) Manufacturing method of molten iron
JP4540172B2 (en) Production of granular metallic iron
JP3509072B2 (en) Iron and steel making
JP4060986B2 (en) How to use dust in converter steelmaking.
JP5000593B2 (en) Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron
JP2000204409A (en) Operation of vertical furnace
JP3750589B2 (en) Decarburization furnace slag manufacturing method and steel making method
JP2003049216A (en) Method for producing molten steel
JP4781812B2 (en) Converter steelmaking method
EP1524322A2 (en) Method of liquid steel production with slag recycling in a converter, equipment to employ the method
JPH0297611A (en) Method for melting cold iron source
JPH01147012A (en) Steelmaking method
MXPA00002121A (en) Method of making iron and steel
JPH032312A (en) Production of low-phosphorus pig iron
JPH08120318A (en) Method for reusing slag from refining furnace
JPH0437134B2 (en)
JP2004143544A (en) Desulfurization method for hot-metal
JPH09184007A (en) Method for refining stainless steel using chromium-containing slag
JPH10317070A (en) Method for producing sintered ore and its using method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees