JP4781813B2 - Manufacturing method of molten iron - Google Patents

Manufacturing method of molten iron Download PDF

Info

Publication number
JP4781813B2
JP4781813B2 JP2005377694A JP2005377694A JP4781813B2 JP 4781813 B2 JP4781813 B2 JP 4781813B2 JP 2005377694 A JP2005377694 A JP 2005377694A JP 2005377694 A JP2005377694 A JP 2005377694A JP 4781813 B2 JP4781813 B2 JP 4781813B2
Authority
JP
Japan
Prior art keywords
carbon
iron
slag
reduced iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005377694A
Other languages
Japanese (ja)
Other versions
JP2007177295A (en
Inventor
強 山崎
浩 平田
浩樹 御福
祐輝 桑内
渉 永井
明 延本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005377694A priority Critical patent/JP4781813B2/en
Publication of JP2007177295A publication Critical patent/JP2007177295A/en
Application granted granted Critical
Publication of JP4781813B2 publication Critical patent/JP4781813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸化鉄を含有する粉体を予備還元して還元鉄とし、この還元鉄を炭材、酸素とともに種湯の存在する溶解炉に供給して溶鉄を製造する方法に関するものである。   The present invention relates to a method for producing molten iron by preliminarily reducing powder containing iron oxide to reduced iron and supplying the reduced iron together with carbonaceous material and oxygen to a melting furnace in which seed water is present.

粒銑、型銑、製鉄所発生スクラップ等の固形含鉄冷材を原料とする転炉製鋼法として、従来、種湯の存在する溶解専用転炉に含鉄冷材、炭材、酸素を供給して、溶解専用転炉での所要種湯量と別の精錬専用転炉での所要精錬量の合計量の高炭素溶鉄を得、この高炭素溶鉄を原料として精錬専用転炉で酸素精錬することにより所要成分の溶鋼を得る転炉製鋼法が知られており、また、溶解専用転炉で使用する炭材の硫黄含有量が高くて、高炭素溶鉄の硫黄含有量が高い場合、精錬専用転炉で酸素精錬前に、取鍋で脱硫処理することも知られている(特許文献1)。   As a converter steelmaking method using solid iron-containing cold materials such as granule, mold and scrap generated from steelworks, conventionally iron-containing cold materials, carbonaceous materials, and oxygen are supplied to a melting-only converter where seed water is present. The required amount is obtained by obtaining the total amount of high-carbon molten iron of the required amount of seed water in the converter dedicated to melting and the required amount of refining in another converter dedicated to refining, and oxygen refining in the converter dedicated to refining using this high-carbon molten iron as a raw material The converter steelmaking method to obtain the molten steel of the component is known, and if the sulfur content of the carbon material used in the melting dedicated converter is high and the sulfur content of the high carbon molten iron is high, It is also known to desulfurize with a ladle before oxygen refining (Patent Document 1).

このような全量含鉄冷材を原料とする溶解専用転炉と精錬専用転炉からなる製鋼法において、溶解専用転炉と精錬専用転炉で鉄分を主成分するダストの発生を皆無にできない。従って、溶解専用転炉と精錬専用転炉で発生する鉄分を主成分するダストを効率的にリサイクルすることにより、ダストの処理問題を解決すると共に鉄歩留りを向上させる必要がある。   In such a steelmaking method consisting of a melting-only converter and a refining-only converter using the entire iron-containing cold material as a raw material, the generation of dust containing iron as a main component cannot be completely eliminated in the melting-only converter and the refining-only converter. Therefore, it is necessary to efficiently recycle dust mainly composed of iron generated in a melting-dedicated converter and a refining-dedicated converter to solve the dust processing problem and improve the iron yield.

特許文献2には、溶解専用転炉と精錬専用転炉で発生するダストと15%までの石灰分あるいは、35%までの炭材を複合させて皿型造粒法、圧縮成形法等で塊成化し、転炉上方より自然落下により装入、再使用するに際し、転炉内ガス発生による上昇ガス流のために転炉外に逸散を防止するため、溶解専用転炉では粒度10mm以上、精錬専用転炉では粒度5mm以上の塊成化ダストを再使用する方法が提案されている。この方法によれば、発生ダストの処理の問題を解決できると共に発生ダストを鉄分として効率的に回収可能であり、有益である。   In Patent Document 2, dust generated in a melting-dedicated converter and a refining-dedicated converter and lime content up to 15% or carbon material up to 35% are combined to form a lump by dish-type granulation method, compression molding method, etc. In order to prevent dissipation outside the converter due to the rising gas flow due to gas generation inside the converter when it is charged and reused by natural fall from the upper part of the converter, the particle size of 10 mm or more in the melting-only converter, In a refining converter, a method of reusing agglomerated dust having a particle size of 5 mm or more has been proposed. According to this method, the problem of processing the generated dust can be solved, and the generated dust can be efficiently recovered as iron, which is beneficial.

溶解専用転炉や精錬専用転炉で発生するダストは純酸素を供給、例えば上吹きを行っていることから、鉄分の大部分は酸化されている。酸化鉄、例えば酸化第一鉄を還元して溶融するには、純鉄の約4倍の熱量が理論的に必要となる。従って、酸化鉄を含む塊成化ダストを、例えば溶解専用転炉にリサイクルすると、溶鉄を製造するために必要な熱量は、塊成化ダストをリサイクルしない場合に比べて増加する。   Dust generated in a melting-only converter or a refining-only converter supplies pure oxygen, for example, by performing top blowing, so that most of iron is oxidized. In order to reduce and melt iron oxide, for example, ferrous oxide, a heat amount about four times that of pure iron is theoretically required. Therefore, when the agglomerated dust containing iron oxide is recycled to, for example, a melting-only converter, the amount of heat necessary for producing the molten iron is increased as compared with the case where the agglomerated dust is not recycled.

一方、酸素供給設備能力、炭材供給設備能力、集塵排ガス処理設備能力によって、溶解専用転炉の炉内熱供給速度(酸素供給速度、炭材供給速度)の上限は固定されているので、溶鉄を製造するために必要な熱量の増加により溶鉄の生産速度は低下してくる、という問題点がある。また、上述の還元に必要な熱源として純酸素と炭材、例えば石炭との燃焼熱を用いるために、その分だけ酸素、炭材原単位が増加し、炭材例えば石炭中のSによる製造溶鉄中〔S〕の増加が問題となる。   On the other hand, the upper limit of the furnace heat supply rate (oxygen supply rate, carbon material supply rate) of the melting-dedicated converter is fixed by the oxygen supply facility capability, the carbon material supply facility capability, and the dust collection exhaust gas treatment facility capability. There is a problem that the production rate of molten iron decreases due to an increase in the amount of heat necessary to produce molten iron. In addition, since the heat of combustion of pure oxygen and a carbonaceous material, such as coal, is used as a heat source necessary for the above-described reduction, oxygen and the carbonaceous basic unit increase by that amount, and the manufactured molten iron by S in the carbonaceous material, for example, coal. An increase in medium [S] is a problem.

特許文献3には、図7にフローを示すように、溶解専用転炉1及び精錬専用転炉3で発生するダストに炭材を内装させて塊成化し、予備還元炉8で高温加熱して内装炭材を還元材として予備還元後、高温状態で含鉄冷材の一部として種湯の存在する溶解専用転炉1に供給し再使用するダスト利用方法が開示されている。これにより、塊成化ダストを予備還元後、高温状態で溶解専用転炉に供給するため、溶解専用転炉1に還元熱源としての酸素と炭材の供給量が低減され、酸素、炭材原単位が低減されるので、溶鉄の生産性の低下を抑制でき、また製造溶鉄中〔S〕の増加を抑制できる。   In Patent Document 3, as shown in the flow in FIG. 7, carbonaceous materials are agglomerated and agglomerated in dust generated in the melting converter 1 and the refining converter 3, and heated at a high temperature in the preliminary reduction furnace 8. A dust utilization method is disclosed in which after the internal carbonaceous material is preliminarily reduced as a reducing material, it is supplied to the melting-only converter 1 where seed hot water is present as a part of the iron-containing cold material at a high temperature and reused. As a result, after the agglomerated dust is preliminarily reduced and supplied to the melting-dedicated converter in a high temperature state, the supply amount of oxygen and carbon as a reduction heat source to the melting-dedicated converter 1 is reduced. Since a unit is reduced, the fall of the productivity of molten iron can be suppressed and the increase in [S] in manufactured molten iron can be suppressed.

上記のような、炭材を供給しつつ炉内の炭素分を酸素で燃焼させてその燃焼熱により含鉄冷材を溶解する方法においては、できるだけ炭素分を完全燃焼に近いところまで燃焼させ、大きな燃焼熱を得て、かつその熱を効率よく含鉄冷材に伝えることが、少ない炭材・酸素原単位で効率よく含鉄冷材を溶解するための鍵となる。すなわち、下式で定義される二次燃焼率と着熱効率をできるだけ高い値とすることが重要である。
二次燃焼率=[(CO2)+(H2O)]/[(CO2)+(CO)+(H2O)+(H2)]×100 (3)
着熱効率=[1−(排ガススーパーヒート)/(二次燃焼発熱)]×100 (4)
ただし、(CO2)、(CO)、(H2O)、(H2)はいずれも排ガス中の各成分濃度(容量%)を表す。また、排ガススーパーヒートは排ガス顕熱のうちのメタル温度以上の分を表し、二次燃焼発熱はCO+1/2O2→CO2による発熱量を示す。
In the method of burning the carbon content in the furnace with oxygen while supplying the carbonaceous material as described above and melting the iron-containing cold material by the heat of combustion, the carbon content is burned as close to complete combustion as possible, Obtaining combustion heat and efficiently transferring the heat to the iron-containing cold material is the key to efficiently dissolving the iron-containing cold material with a small amount of carbon and oxygen consumption. That is, it is important to set the secondary combustion rate and the heat receiving efficiency defined by the following equations as high as possible.
Secondary combustion rate = [(CO 2 ) + (H 2 O)] / [(CO 2 ) + (CO) + (H 2 O) + (H 2 )] × 100 (3)
Heat receiving efficiency = [1- (exhaust gas super heat) / (secondary combustion heat generation)] × 100 (4)
However, (CO 2 ), (CO), (H 2 O), and (H 2 ) all represent the concentration (volume%) of each component in the exhaust gas. Further, the exhaust gas superheat represents a portion of the exhaust gas sensible heat that is equal to or higher than the metal temperature, and the secondary combustion heat generation represents the heat generation amount due to CO + 1 / 2O 2 → CO 2 .

特許文献4においては、上底吹き転炉型の容器を用い、炉内のスラグ量を炉内の溶融鉄1t当たり100〜1000kgとし、上吹き酸素ジェットによるスラグ凹み深さLSと酸素ジェットが当たっていない部分のスラグ厚みLS0との比LS/LS0が0.5〜1の範囲内になるように吹酸しつつ、さらにスラグ内の炭材量をスラグ量の5〜200%に保つことにより、二次燃焼率と着熱効率をいずれも高い値に保持することができるとしている。 In Patent Document 4, an upper bottom blown converter type vessel is used, the amount of slag in the furnace is 100 to 1000 kg per 1 ton of molten iron in the furnace, and the slag recess depth L S and the oxygen jet by the top blown oxygen jet are while吹酸as hit have a ratio L S / L S0 of the slag thickness L S0 parts not is within the range of 0.5 to 1, 5 to 200% more of carbonaceous material amount in the slag of the slag amount It is said that both the secondary combustion rate and the heat receiving efficiency can be maintained at a high value.

転炉の内張り耐火物としては塩基性耐火物が用いられ、最近は特にMgO−C系の煉瓦が用いられる。このようなMgO系耐火物の溶損速度を抑えて耐火物寿命を延長するため、スラグ中にドロマイト等を添加してスラグ中のMgO濃度を飽和濃度近くに保持する技術が知られている(例えば非特許文献1)。   Basic refractories are used as the lining refractories of converters, and recently MgO-C bricks are used in particular. In order to extend the refractory life by suppressing the melting rate of such MgO-based refractories, a technique is known in which dolomite or the like is added to the slag to keep the MgO concentration in the slag close to the saturation concentration ( For example, Non-Patent Document 1).

特公平4−11603号公報Japanese Examined Patent Publication No. 4-11603 特公平4−38813号公報Japanese Patent Publication No. 4-38813 特開2000−45012号公報JP 2000-45012 A 特開平8−325621号公報Japanese Patent Laid-Open No. 8-325621 第3版鉄鋼便覧II製銑・製鋼 第487〜488頁Third Edition Steel Handbook II Steelmaking and Steelmaking Pages 487-488

特許文献3に記載の方法において、予備還元したダストの金属化率は100%ではない。特許文献3には、還元温度を上げることで金属化率を上げられることが記載されているが、還元温度を上げることは予備還元炉の生産性低下や予備還元に要するエネルギー原単位の悪化を引き起こす。予備還元炉の生産性を確保するには、原料ダスト成分にもよるが、金属化率を80〜85%程度とすることが好ましい。そうすると、たとえ80〜85%まで金属化されているとはいっても、還元鉄をスクラップなどの含鉄冷材とともに溶解専用転炉に供給して溶解するに際し、金属化されていない残りの15〜20%分を金属化しかつ必要な熱を確保するために余剰の酸素と炭材を供給することが必要となり、溶鉄の生産速度を低下させる要因となる。   In the method described in Patent Document 3, the metallization rate of the prereduced dust is not 100%. Patent Document 3 describes that the metallization rate can be increased by raising the reduction temperature. However, raising the reduction temperature reduces the productivity of the prereduction furnace or the energy intensity required for the prereduction. cause. In order to ensure the productivity of the preliminary reduction furnace, the metallization rate is preferably about 80 to 85%, although it depends on the raw material dust component. Then, even if it is said that it is metalized to 80-85%, when supplying reduced iron with iron-containing cold materials, such as scrap, to a melting exclusive converter, the remaining 15-20 which is not metallized It is necessary to supply excess oxygen and carbonaceous material in order to metalize the% component and secure the necessary heat, which causes a reduction in the production rate of molten iron.

このように金属化率が80〜85%程度である還元鉄を溶解する上においては、スクラップなどの含鉄冷材を溶解する溶解炉とは別に、還元鉄を溶解する溶解炉を専用に設けた方が、全体として高い生産性を確保することができるので好ましい。未還元の酸化鉄分については、溶銑中に供給した炭材との反応によって還元し、還元時に必要な熱量は同じく供給した炭材と酸素との燃焼熱によって補うこととなる。   In this way, in melting reduced iron having a metallization rate of about 80 to 85%, a melting furnace for melting reduced iron is provided separately from a melting furnace for melting iron-containing cold materials such as scrap. This is preferable because high productivity can be secured as a whole. The unreduced iron oxide is reduced by a reaction with the carbonaceous material supplied in the hot metal, and the amount of heat required for the reduction is compensated by the combustion heat of the supplied carbonaceous material and oxygen.

そこで、含鉄冷材として予備還元した還元鉄を用い、種湯が存在する溶解炉に装入し、炭材と酸素を供給して溶解を行ったところ、含鉄冷材としてスクラップを用いて溶解する場合と比較し、前記(4)式で示す着熱効率が低下することが判明した。着熱効率が低いと、還元鉄を溶解するために必要とする酸素原単位・炭材原単位が増大し、生産性が悪化するとともに、着熱効率が低いということは排ガス温度が上昇するということを意味するため、耐火物負荷を増大させる。   Therefore, pre-reduced reduced iron was used as iron-containing cold material, charged into a melting furnace where seed hot water was present, and dissolved by supplying carbonaceous material and oxygen, and then melted using scrap as iron-containing cold material. As compared with the case, it was found that the heat receiving efficiency represented by the formula (4) is lowered. If the heat absorption efficiency is low, the oxygen intensity and carbon material intensity required to dissolve the reduced iron will increase, and the productivity will deteriorate, and the low heat efficiency will mean that the exhaust gas temperature will rise. It means increasing the refractory load.

本発明は、種湯の存在する溶解炉に還元鉄を炭材、酸素とともに供給して溶鉄を得る溶鉄の製造方法において、二次燃焼率を高位に維持しつつ着熱効率を向上する方法を提供することを第1の目的とする。   The present invention provides a method for improving the heat receiving efficiency while maintaining the secondary combustion rate at a high level in a molten iron production method for obtaining molten iron by supplying reduced iron together with carbonaceous material and oxygen to a melting furnace in which seed hot water exists. This is the first purpose.

溶解炉への炭材の供給方法として、転炉炉底からキャリアガスとともに微粉炭を底吹きする方法及び塊状の石炭を上方から添加する方法とが併用される。ところが、添加した炭材の一部は溶銑中に溶解せず、炉内空間中に飛散する。飛散した粉状の炭素分が存在すると炉内でソリューションロス反応(C+CO2 → 2CO)を起こし、二次燃焼率を十分に上げることができない。 As a method for supplying the carbonaceous material to the melting furnace, a method of blowing pulverized coal together with a carrier gas from the bottom of the converter furnace and a method of adding massive coal from above are used in combination. However, a part of the added carbonaceous material is not dissolved in the hot metal, but is scattered in the furnace space. If the scattered carbon powder is present, a solution loss reaction (C + CO 2 → 2CO) occurs in the furnace, and the secondary combustion rate cannot be sufficiently increased.

本発明は、炉内に添加した炭材を効率よく溶銑中に溶解させ、炉内空間に飛散してソリューションロスを起こさせず、高い二次燃焼率をあげる方法を提供することを第2の目的とする。   The second object of the present invention is to provide a method for increasing the high secondary combustion rate without causing the solution loss by causing the carbonaceous material added to the furnace to be efficiently dissolved in the hot metal and scattered in the furnace space. Objective.

第1の発明について説明する。   The first invention will be described.

溶解炉の内張り耐火物にはMgO−C系耐火物が用いられており、この耐火物の溶損を防止するため、溶解炉内のスラグ中に軽焼ドロマイトや軽焼マグネサイトを投入してスラグのMgO濃度を飽和濃度付近の値(12〜18質量%)まで高めることが行われる。   MgO-C refractory is used as the refractory lining for the melting furnace. In order to prevent melting of the refractory, light burned dolomite or light burned magnesite is introduced into the slag in the melting furnace. The MgO concentration of the slag is increased to a value near the saturation concentration (12 to 18% by mass).

含鉄冷材を原料とする溶解専用転炉と精錬専用転炉からから発生するダストを原料として予備還元を行い、還元鉄を生成すると、還元鉄中のAl23濃度が高い値となる。このようにして製造した還元鉄を含鉄冷材として用い、溶解炉で溶解すると、還元鉄中のAl23がスラグ中に溶解し、さらに炭材中に含まれるAl23もスラグに溶解するので、スラグのAl23成分が12〜18質量%と高い値となる。 When preliminary reduction is performed using dust generated from a melting-only converter and a refining-only converter using iron-containing cold material as a raw material to produce reduced iron, the concentration of Al 2 O 3 in the reduced iron becomes high. When the reduced iron produced in this way is used as an iron-containing cold material and melted in a melting furnace, the Al 2 O 3 in the reduced iron is dissolved in the slag, and the Al 2 O 3 contained in the carbon material is also converted into the slag. since dissolved, Al 2 O 3 component of the slag is 12 to 18 wt% and a high value.

このように、スラグ中のMgO濃度とAl23濃度がともに高い値を示すスラグにおいては、含鉄冷材を溶解する従来の溶解方法で採用されているスラグ組成制御ではスラグの滓化を十分に進行させることができず、スラグの流動性が十分には得られない。 As described above, in the slag in which both the MgO concentration and the Al 2 O 3 concentration in the slag show high values, the slag composition control adopted in the conventional melting method for melting the iron-containing cold material is sufficient for the slag to hatch. The slag fluidity cannot be sufficiently obtained.

炉内空間での二次燃焼率を高位に保持して発熱を得たとしても、スラグの流動性が悪い場合には、炉内空間からスラグを通しての溶銑への着熱が十分に行われず、着熱効率が低下することがわかった。含鉄冷材として還元鉄を用いた場合に着熱効率が低下するのは、上記スラグ成分に起因してスラグの流動性が悪化することがその原因であると判明した。そして、スラグ中のMgO濃度とAl23濃度がともに高い値を示すスラグにおいて、スラグの流動性を確保するためのスラグ成分と温度との関係について明らかにした。 Even if the secondary combustion rate in the furnace space is maintained at a high level and heat is obtained, if the slag fluidity is poor, the heat from the furnace space to the hot metal through the slag is not sufficiently performed, It was found that the heat receiving efficiency was lowered. It has been found that the reason why the heat receiving efficiency decreases when reduced iron is used as the iron-containing cold material is that the fluidity of the slag deteriorates due to the slag component. Then, the slag showing a both high value MgO concentration and the concentration of Al 2 O 3 in the slag, and to clarify the relationship between the slag component and temperature in order to ensure the fluidity of the slag.

本発明は上記知見に基づいてなされたものであり、酸化鉄を含有する粉体に炭材を内装させて塊成化し、予備還元炉で高温加熱して内装炭材を還元材とした予備還元を行い、生成した還元鉄を炭材、酸素とともに種湯の存在する溶解炉に供給し、溶鉄の上に生成するスラグ組成を質量%で、Al23:12〜18%、MgO:12〜18%とするとともに、生成するスラグの塩基度Bと溶解後溶鉄温度T(K)に関する下記(1)式のAを5未満とすることを特徴とする溶鉄の製造方法である。
A=7×10-7・exp(−6.2143・B)×exp((20663・B+7655.1)/T) (1)
B=CaO(質量%)/SiO2(質量%)
The present invention has been made on the basis of the above knowledge, and agglomerated by agglomerating a carbonaceous material in a powder containing iron oxide, preliminarily reduced by heating at a high temperature in a prereduction furnace and using the interior carbonaceous material as a reducing material. Then, the produced reduced iron is supplied to a melting furnace in which seed water is present together with carbonaceous material and oxygen, and the slag composition produced on the molten iron is in mass%, Al 2 O 3 : 12 to 18%, MgO: 12 The molten iron production method is characterized in that the A in the following formula (1) relating to the basicity B of the slag to be produced and the molten iron temperature T (K) after dissolution is less than 5:
A = 7 * 10 < -7 > * exp (-6.2143 * B) * exp ((20663 * B + 7655.1) / T) (1)
B = CaO (mass%) / SiO 2 (mass%)

上記(1)式のAを5未満とすることにより、スラグ中のAl23とMgO濃度が高いにもかかわらず十分に良好なスラグ流動性を確保することができ、その結果着熱効率を高い値として、溶解に必要とする炭材及び酸素原単位を低減させることができる。 By setting A in the above formula (1) to less than 5, sufficiently high slag fluidity can be ensured despite the high concentrations of Al 2 O 3 and MgO in the slag, and as a result, the heat receiving efficiency can be improved. As a high value, the carbonaceous material and oxygen intensity required for dissolution can be reduced.

次に第2の発明について説明する。   Next, the second invention will be described.

溶解炉に供給する炭材として、通常は石炭が用いられる。底吹きでは微粉炭、上方からの投入では塊状炭である。石炭はスラグとは濡れず、しかも比重がスラグよりも小さいため、炉内に供給した過剰の炭材は溶銑やスラグ中に留まらず、炉内空間に放散される。炉内空間に放散された炭素分は、ソリューションロス反応を起こす原因となり、二次燃焼率が低下することとなる。   Usually, coal is used as the carbon material supplied to the melting furnace. The bottom blowing is pulverized coal, and the charging from above is massive coal. Coal does not get wet with slag, and its specific gravity is smaller than that of slag. Therefore, the excess carbon material supplied into the furnace does not stay in the hot metal or slag, but is diffused into the furnace space. Carbon diffused in the furnace space causes a solution loss reaction, and the secondary combustion rate decreases.

一方、酸化鉄を含有する粉体に炭材を内装させて塊成化し、予備還元して還元鉄を製造するに際し、炭材を余剰に添加させると、還元鉄中に余剰の炭素が含有されることとなる。このように炭素を余剰に含有した還元鉄を用いて溶解を行うと、還元鉄の比重はスラグよりも大きいため、還元鉄中の炭素は炉内空間に飛散せずにスラグや溶銑に溶解することとなる。そのため、溶解炉に供給する炭材の供給源の一部を還元鉄中の炭素とすることにより、二次燃焼率の向上を図ることができ、また二次燃焼率を良好に保つことのできる炭素投入量範囲を拡大することができる。   On the other hand, when a carbonaceous material is agglomerated in powder containing iron oxide and agglomerated and pre-reduced to produce reduced iron, if excessively added carbonaceous material, excess carbon is contained in the reduced iron. The Rukoto. When melting is performed using reduced iron containing excess carbon in this way, the specific gravity of reduced iron is greater than that of slag, so the carbon in the reduced iron dissolves in slag and hot metal without being scattered in the furnace space. It will be. Therefore, the secondary combustion rate can be improved and the secondary combustion rate can be kept good by using carbon in the reduced iron as a part of the supply source of the carbon material supplied to the melting furnace. The carbon input range can be expanded.

本発明は上記知見に基づいてなされたものであり、上記第1の発明に加え、前記還元鉄は炭素含有量が2〜10質量%であり、溶解炉に供給する全炭素と全酸素の割合(全炭素(kg)/全酸素(Nm3))を0.9〜1.5とすることを特徴とする溶鉄の製造方法である。
全炭素(kg)=供給炭材中の炭素(kg)+供給還元鉄中の炭素(kg)
全酸素(Nm3)=上吹き酸素量(Nm3)+還元鉄中のFeO量(kg)×0.156+還元鉄中のFe23(kg)×0.210 (2)
This invention is made | formed based on the said knowledge, In addition to the said 1st invention, the said reduced iron has a carbon content of 2-10 mass%, The ratio of the total carbon and total oxygen supplied to a melting furnace A method for producing molten iron, wherein (total carbon (kg) / total oxygen (Nm 3 )) is set to 0.9 to 1.5.
Total carbon (kg) = Carbon in supplied carbon (kg) + Carbon in supplied reduced iron (kg)
Total oxygen (Nm 3 ) = top blown oxygen amount (Nm 3 ) + FeO amount in reduced iron (kg) × 0.156 + Fe 2 O 3 in reduced iron (kg) × 0.210 (2)

本発明の第1は、種湯の存在する溶解炉に還元鉄を炭材、酸素とともに供給して溶鉄を得る溶鉄の製造方法において、前記(1)式のAを5未満とすることにより、スラグ中のAl23とMgO濃度が高いにもかかわらず十分に良好なスラグ流動性を確保することができ、その結果着熱効率を高い値として、溶解に必要とする炭材及び酸素原単位を低減させることができる。 The first aspect of the present invention is a method for producing molten iron in which molten iron is obtained by supplying reduced iron together with carbonaceous material and oxygen to a melting furnace in which seed water is present. Even though the Al 2 O 3 and MgO concentrations in the slag are high, sufficiently good slag fluidity can be ensured, and as a result, the heat receiving efficiency is set to a high value, and the carbon materials and oxygen intensity required for melting Can be reduced.

本発明の第2は、上記第1の発明に加え、還元鉄中の炭素含有量を2%以上とすることにより、二次燃焼率の向上を図ることができ、また二次燃焼率を良好に保つことのできる炭素投入量範囲を拡大することができる。   In the second aspect of the present invention, in addition to the first aspect of the present invention, by making the carbon content in the reduced iron 2% or more, the secondary combustion rate can be improved and the secondary combustion rate is good. The range of carbon input that can be maintained at a high level can be expanded.

図1に本発明の実施の形態の一例を示すプロセスフローを示す。スクラップ溶解炉と精錬専用転炉の他に、予備還元炉と還元鉄溶解炉を有している。   FIG. 1 shows a process flow showing an example of an embodiment of the present invention. In addition to a scrap melting furnace and a refining converter, it has a preliminary reduction furnace and a reduced iron melting furnace.

種湯が存在しているスクラップ溶解炉1の炉内に、粒銑、型銑、製鉄所発生スクラップ等の固形含鉄冷材を供給し、例えば酸素上吹きランスから酸素が、底吹きノズルから非酸化性ガス、例えば窒素ガスをキャリアーガスとして石炭が吹き込まれ、これによって供給した固形含鉄冷材を溶解する。   Solid iron-containing cold material such as granule, mold, and steelworks generated scrap is supplied into the furnace of the scrap melting furnace 1 where the seed hot water is present. Coal is blown by using an oxidizing gas, for example, nitrogen gas as a carrier gas, thereby dissolving the supplied solid iron-containing cold material.

スクラップ溶解炉1から取鍋に出湯された高炭素溶鉄は、還元鉄溶解炉9で溶解した高炭素溶鉄とともに、KR、インジェクション等の脱硫設備2にて脱硫される。脱硫後の高炭素溶鉄は、精錬専用転炉3に装入されて酸素供給され脱炭処理する。この精錬専用転炉3は、例えば一般的な上底吹き転炉を用いている。   The high carbon molten iron discharged from the scrap melting furnace 1 into the ladle is desulfurized together with the high carbon molten iron melted in the reduced iron melting furnace 9 in the desulfurization equipment 2 such as KR and injection. The high-carbon molten iron after desulfurization is charged into the refining converter 3 and supplied with oxygen for decarburization. For example, a general top-bottom blowing converter is used as the refining converter 3.

このようなスクラップ溶解炉1、精錬専用転炉3(、さらに後述する還元鉄溶解炉9)でそれぞれ発生するダストは、図1のプロセスフローに示すように、OG方式の湿式集塵装置4にて回収され、ダストスラリーとなり、さらにフィルタープレス5による脱水後、塊成化装置6、例えばパンペレタイザーにバインダーとして石灰、還元材として石炭を追加混合して供給し、これによって、ペレット化される。この際、後述する還元鉄溶解炉に装入する際、炉内上昇ガス流で飛散してロスとならない粒径、例えば10mm以上にする。製造ペレットは、乾燥炉7に装入される。乾燥後、引き続き、例えば、予備還元炉8として回転炉床型予備還元炉を用い、空気−LNGバーナー加熱雰囲気で内装石炭を還元材として加熱還元され、還元鉄が製造される。   As shown in the process flow of FIG. 1, dust generated in the scrap melting furnace 1 and the refining converter 3 (and the reduced iron melting furnace 9 described later) is transferred to the OG type wet dust collector 4 as shown in the process flow of FIG. After being dehydrated by the filter press 5 and further dehydrated by the filter press 5, lime as a binder and coal as a reducing material are additionally mixed and supplied to an agglomeration device 6, for example, a pan pelletizer, thereby being pelletized. At this time, when charging into a reduced iron melting furnace described later, the particle diameter is set to be 10 mm or more, for example, so as not to be lost due to scattering in the furnace rising gas flow. The production pellets are charged into the drying furnace 7. After drying, for example, a rotary hearth type prereduction furnace is used as the prereduction furnace 8, and heat reduction is performed using the internal coal as a reducing material in an air-LNG burner heating atmosphere to produce reduced iron.

例えば、ダスト組成:T.Fe=62%、M.Fe=21%、FeO=34%,Fe23 =22%のダストを用い、石炭内装量を10%、バインダー(石灰)量:10%、粒径:10〜15mm、水分:1%以下のダストペレットとし、回転炉床型予備還元炉にて1200〜1300℃で予備還元すれば、金属化率80〜85%前後に予備還元された還元鉄を製造することができる。 For example, the dust composition: T.I. Fe = 62%, M.I. Using dust of Fe = 21%, FeO = 34%, Fe 2 O 3 = 22%, coal interior amount is 10%, binder (lime) amount: 10%, particle size: 10-15mm, moisture: 1% or less If reduced to 1200 to 1300 ° C. in a rotary hearth type prereduction furnace, reduced iron preliminarily reduced to a metalization rate of about 80 to 85% can be produced.

スクラップ溶解炉や精錬専用転炉で発生して回収されたダストには、Al23が2〜3%程度含まれている。また、炭材としての石炭中にはAl23が3%程度含まれている。そのため、以上のようにして製造した還元鉄中には、Al23が3〜4%程度含まれることとなる。 Dust generated and recovered in a scrap melting furnace or a refining converter contains about 2 to 3% of Al 2 O 3 . Moreover, about 3% of Al 2 O 3 is contained in the coal as the carbon material. Therefore, the reduced iron produced as described above contains about 3 to 4% of Al 2 O 3 .

本発明では、以上のようにして製造した還元鉄を、種湯の存在する還元鉄溶解炉9に炭材、酸素とともに供給し、高炭素溶鉄を製造する。この還元鉄溶解炉9について、以下単に溶解炉と呼ぶ。   In the present invention, the reduced iron produced as described above is supplied together with the carbonaceous material and oxygen to the reduced iron melting furnace 9 in which the seed hot water is present to produce high carbon molten iron. This reduced iron melting furnace 9 is hereinafter simply referred to as a melting furnace.

第1の発明について説明する。   The first invention will be described.

溶解炉では、供給する還元鉄1t当たり、スラグを200〜300kg程度生成する。スラグを生成する副材として、生石灰の他、軽焼ドロマイトや軽焼マグネサイトが用いられる。これらMgO源を投入してスラグ中のMgO濃度を12〜18%まで高めることにより、溶解炉の内張り耐火物であるMgO−C耐火物の寿命を延長している。また上述のとおり、還元鉄中にはAl23が3〜4%程度含まれるため、同時に供給する炭材中のAl23とあいまって、スラグ中のAl23濃度が12〜18%程度となる。 In the melting furnace, about 200 to 300 kg of slag is generated per 1 t of supplied reduced iron. Light calcined dolomite and light calcined magnesite are used as a secondary material for generating slag in addition to quick lime. By introducing these MgO sources and increasing the MgO concentration in the slag to 12 to 18%, the life of the MgO-C refractory, which is the refractory lining the melting furnace, is extended. As described above, since about 3 to 4% of Al 2 O 3 is contained in the reduced iron, the Al 2 O 3 concentration in the slag is 12 to 12 together with the Al 2 O 3 in the carbonaceous material supplied at the same time. About 18%.

スラグ中に上記のように高濃度のMgOとAl23を含有する場合において、溶解炉の溶解温度付近でスラグが十分に流動性を保持するためには、スラグ成分としてどのような条件を具備すればいいのか、という点については従来知られていなかった。そこで、スラグ成分と温度とスラグ粘性の関係について、実スラグの粘度を測定することによって評価を行った。 In the case where the slag contains high concentrations of MgO and Al 2 O 3 as described above, in order to keep the slag sufficiently fluid near the melting temperature of the melting furnace, what conditions should be used for the slag component? Conventionally, it has not been known whether it should be provided. Therefore, the relationship between the slag component, temperature, and slag viscosity was evaluated by measuring the viscosity of the actual slag.

スラグ中のMgOとAl23濃度をともに12〜18%に固定し、スラグ塩基度B(=CaO(質量%)/SiO2(質量%))を1.59、1.67、1.89と変化させ、スラグ温度を1380〜1520℃と変化させ、スラグの粘度を測定した。図2中のプロットが測定結果を示す。スラグの粘度は、温度と塩基度Bの関数で表されることがわかる。 The MgO and Al 2 O 3 concentrations in the slag are both fixed at 12 to 18%, and the slag basicity B (= CaO (mass%) / SiO 2 (mass%)) is 1.59, 1.67, 1. The slag temperature was changed to 1380-1520 ° C., and the viscosity of the slag was measured. The plot in FIG. 2 shows the measurement results. It can be seen that the slag viscosity is expressed as a function of temperature and basicity B.

粘度は、一般的にアレニウスの式η=C・exp(E/RT)で表される。ここでTは絶対温度(K)、Cは定数、Eは見かけの活性化エネルギーであり、C、Eはともにスラグ組成が決まれば一義的に定まる。ここでMgOとAl23濃度をともに12〜18%に固定すると、C、Eは塩基度Bの関数となる。 The viscosity is generally represented by the Arrhenius equation η = C · exp (E / RT). Here, T is an absolute temperature (K), C is a constant, E is an apparent activation energy, and both C and E are uniquely determined if the slag composition is determined. Here, if both MgO and Al 2 O 3 concentrations are fixed at 12 to 18%, C and E are functions of basicity B.

一般に、塩基度が大きくなるとスラグの固相率が増えるため、粘度は指数関数的に急激に大きくなる。そのため、定数C及びEのスラグ組成依存性は、塩基度Bの指数関数で表すこととすると実粘度と合致することが多い。このような考え方で、図2に示す実粘度と合うように定数C、Eを定めたところ、粘度(Pa・S)は以下の(1)式のAで表されることがわかった。
A=7×10-7・exp(−6.2143・B)×exp((20663・B+7655.1)/T) (1)
ただし、B=CaO(質量%)/SiO2(質量%)、T:絶対温度(K)である。
In general, as the basicity increases, the solid fraction of the slag increases, so the viscosity increases exponentially. Therefore, the slag composition dependence of the constants C and E often coincides with the actual viscosity when expressed by an exponential function of basicity B. Based on this concept, constants C and E were determined so as to match the actual viscosity shown in FIG. 2, and it was found that the viscosity (Pa · S) is represented by A in the following equation (1).
A = 7 * 10 < -7 > * exp (-6.2143 * B) * exp ((20663 * B + 7655.1) / T) (1)
However, B = CaO (mass%) / SiO 2 (mass%), T: absolute temperature (K).

上記(1)式から定まるAの値を図2に実線で示した。実測値のプロットとよく合致していることがわかる。   The value A determined from the above equation (1) is shown by a solid line in FIG. It can be seen that it is in good agreement with the actual value plot.

次に、100t規模の上底吹き転炉型の溶解炉を用いて、予備還元炉で還元した還元鉄の溶解を行った。炉内に存在する種湯量は50トン、装入する還元鉄量は40トン、生成スラグ量は10トン、上吹き酸素の送酸速度は7000Nm3/h、底吹き羽口からは窒素ガスをキャリアガスとして石炭粉を吹き込んだ。全炭素、全酸素を前記(2)式でさだめたときの(全炭素(kg)/全酸素(Nm3))を1.1とし、二次燃焼率が25%となるように吹錬を行った。 Next, the reduced iron reduced by the preliminary reduction furnace was melted using a 100 t scale top-bottom blowing converter type melting furnace. The amount of seed hot water existing in the furnace is 50 tons, the amount of reduced iron to be charged is 40 tons, the amount of generated slag is 10 tons, the oxygen feed rate of top blowing oxygen is 7000 Nm 3 / h, and nitrogen gas is blown from the bottom blowing tuyere Coal powder was blown as a carrier gas. Blowing is performed so that (total carbon (kg) / total oxygen (Nm 3 )) is 1.1 when total carbon and total oxygen are settled by the above formula (2), and the secondary combustion rate is 25%. went.

スラグ中の塩基度と溶解終了時の溶鉄温度を調整し、上記(1)式で計算するAの値を0.3から6.3まで変化させ、Aの値と着熱効率との関係を評価した。その結果、図3に示すように、Aの値が5以上になると、急速に着熱効率が低下することが判明した。即ち、スラグ中のMgOとAl23濃度がともに12〜18%の条件下では、(1)式で計算されるAの値が5未満となるようにスラグの塩基度を調整することにより、スラグの流動性を確保し、炉内空間から溶鉄への着熱効率を高い値に保持することが可能となる。 Adjust the basicity in the slag and the molten iron temperature at the end of melting, change the value of A calculated by the above equation (1) from 0.3 to 6.3, and evaluate the relationship between the value of A and the heat receiving efficiency did. As a result, as shown in FIG. 3, when the value of A is 5 or more, it has been found that the heat receiving efficiency rapidly decreases. That is, by adjusting the basicity of the slag so that the value of A calculated by the formula (1) is less than 5 under the condition that both MgO and Al 2 O 3 concentrations in the slag are 12 to 18%. In addition, it is possible to secure the fluidity of the slag and to maintain the heat receiving efficiency from the furnace space to the molten iron at a high value.

従って、Aを5未満としてスラグの流動性を良好に保ちつつ、上吹きランス先端と溶銑面との間の距離を適正に保って二次燃焼率を高位に保持すれば、着熱効率が高いので、安定した着熱が達成される。   Therefore, if A is less than 5 and the fluidity of the slag is kept good, the distance between the top lance tip and the hot metal surface is properly maintained and the secondary combustion rate is kept high, the heat receiving efficiency is high. , Stable heat receiving is achieved.

また、Aを5未満としてスラグの流動性を良好に保てば、スラグによる溶鉄面のカバーリング効果が発揮され、鉄ダスト発生量の低減による歩留り向上が期待できる。さらに底吹きによる炭材の飛散量低減による二次燃焼率の安定化が期待できる。流動性の悪いスラグでは溶鉄面がカバーされず、炭材が飛散しやすいが、流動性の良いスラグの場合、溶銑面がスラグでカバーされ、炭材の飛散が低減すると考えられるからである。   Moreover, if A is less than 5 and the fluidity of the slag is kept good, the covering effect of the molten iron surface by the slag is exhibited, and an improvement in yield due to a reduction in the amount of iron dust generated can be expected. Furthermore, stabilization of the secondary combustion rate can be expected by reducing the amount of carbon material scattered by bottom blowing. This is because the molten iron surface is not covered with slag with poor fluidity and the carbonaceous material is likely to be scattered, but in the case of slag with good fluidity, the molten iron surface is covered with slag, and it is considered that the scattering of the carbonaceous material is reduced.

なお、スラグ成分範囲(質量%)が、T.Fe:0.1〜3.0%、MnO:0.1〜4.0%、MgO:12〜18%、Al23:12〜18%、塩基度:1.2〜2.0の範囲内にあれば、上記(1)式が妥当性を有し、(1)式のAを5未満とすることでスラグの流動性を良好に確保することができる。 In addition, the slag component range (mass%) is T.W. Fe: 0.1~3.0%, MnO: 0.1~4.0 %, MgO: 12~18%, Al 2 O 3: 12~18%, basicity: 1.2-2.0 of If it exists in the range, the said (1) Formula has validity, By making A of Formula (1) less than 5, the fluidity | liquidity of slag can be ensured favorable.

第2の発明について説明する。   The second invention will be described.

種湯の存在する溶解炉には、含鉄冷材とともに炭素源としての炭材及び酸素が供給される。含鉄冷材は、溶銑からの浸炭によって溶解するので、含鉄冷材の溶解に伴って溶銑中の炭素分が不足する。そこで炭材の供給によって溶銑に不足分の炭素を補う。また、炭素と酸素との燃焼により、溶解に要する熱を供給する。さらに含鉄冷材が未還元の酸化鉄分を含む還元鉄である場合は、酸化鉄分を還元するために炭素が消費され、さらに還元時の熱ロスを補償するために炭素と酸素の燃焼熱が必要となるので必要炭素量が増大する。   Carbon steel and oxygen as a carbon source are supplied together with the iron-containing cold material to the melting furnace in which the seed hot water exists. Since the iron-containing cold material is dissolved by carburizing from the hot metal, the carbon content in the hot metal becomes insufficient as the iron-containing cold material is dissolved. Therefore, the supply of carbon materials supplements the deficient carbon in the hot metal. Moreover, the heat | fever required for melt | dissolution is supplied by combustion of carbon and oxygen. Furthermore, when the iron-containing cooling material is reduced iron containing unreduced iron oxide, carbon is consumed to reduce the iron oxide, and the heat of combustion of carbon and oxygen is required to compensate for heat loss during reduction. Therefore, the required carbon amount increases.

還元鉄中に含まれる炭素や酸素も溶解炉内に供給されるので、ここでは以下の(2)式によって全炭素、全酸素を定義する。
全炭素(kg)=供給炭材中の炭素(kg)+供給還元鉄中の炭素(kg)
全酸素(Nm3)=上吹き酸素量(Nm3)+還元鉄中のFeO量(kg)×0.156+還元鉄中のFe23(kg)×0.210 (2)
ここで、全酸素の右辺に登場する係数は、それぞれ
0.156=1/71.85/2×22.4
0.210=48/159.7/32×22.4
として求められた係数である。
Since carbon and oxygen contained in the reduced iron are also supplied into the melting furnace, total carbon and total oxygen are defined by the following equation (2).
Total carbon (kg) = Carbon in supplied carbon (kg) + Carbon in supplied reduced iron (kg)
Total oxygen (Nm 3 ) = top blown oxygen amount (Nm 3 ) + FeO amount in reduced iron (kg) × 0.156 + Fe 2 O 3 in reduced iron (kg) × 0.210 (2)
Here, the coefficients appearing on the right side of the total oxygen are 0.156 = 1 / 71.85 / 2 × 22.4, respectively.
0.210 = 48 / 159.7 / 32 × 22.4
Is a coefficient obtained as

前述のとおり、溶解炉に供給する炭材として、通常は石炭が用いられる。底吹きでは微粉炭、上方からの投入では塊状炭である。石炭はスラグとは濡れず、しかも比重がスラグよりも小さいため、炉内に供給した過剰の炭材は溶銑やスラグ中に留まらず、炉内空間に放散される。炉内空間に放散された炭素分は、ソリューションロス反応を起こす原因となり、二次燃焼率が低下することとなる。   As described above, coal is usually used as the carbon material supplied to the melting furnace. The bottom blowing is pulverized coal, and the charging from above is massive coal. Coal does not get wet with slag, and its specific gravity is smaller than that of slag. Therefore, the excess carbon material supplied into the furnace does not stay in the hot metal or slag, but is diffused into the furnace space. Carbon diffused in the furnace space causes a solution loss reaction, and the secondary combustion rate decreases.

溶解対象の含鉄冷材として未還元の酸化鉄分を含有する還元鉄を用いたときには、上述のとおり酸化鉄分の還元用及び還元時の熱ロスを補償する燃焼用として、必要炭素量が増大し、炉内空間に放散する炭素による二次燃焼率の低下はより顕著になる。   When reduced iron containing unreduced iron oxide is used as the iron-containing cold material to be dissolved, as described above, the required carbon amount increases for reducing the iron oxide and for combusting to compensate for heat loss during reduction, The decrease in the secondary combustion rate due to the carbon diffused into the furnace space becomes more remarkable.

ところで、酸化鉄を含有する粉体に炭材を内装させて塊成化し、予備還元して還元鉄を製造するに際し、炭材を余剰に添加させると、還元鉄中に余剰の炭素を含有させることができる。このように炭素を余剰に含有した還元鉄を用いて溶解を行うと、還元鉄中に含まれる炭素分も、溶銑中炭素濃度上昇及び燃焼用の炭素として機能することができる。さらに、還元鉄の比重はスラグよりも大きいため、還元鉄中の炭素は炉内空間に飛散せずにスラグや溶銑に留まるため、炭材として従来から用いられる石炭に比較してより効率よく溶解することとなる。そのため、溶解炉に供給する炭材の供給源の一部を還元鉄中の炭素とすることにより、二次燃焼率の向上を図ることができ、また二次燃焼率を良好に保つことのできる炭素投入量範囲を拡大することができる。   By the way, when carbonaceous materials are agglomerated in powder containing iron oxide and agglomerated and pre-reduced to produce reduced iron, if excessively added carbonaceous materials, excess carbon is contained in the reduced iron. be able to. Thus, if it melt | dissolves using the reduced iron which contained carbon excessively, the carbon content contained in reduced iron can also function as carbon for a carbon concentration raise and combustion in hot metal. Furthermore, since the specific gravity of reduced iron is greater than that of slag, the carbon in the reduced iron does not scatter in the furnace space, but remains in the slag or hot metal, so it can be dissolved more efficiently than coal that has been conventionally used as a carbon material. Will be. Therefore, the secondary combustion rate can be improved and the secondary combustion rate can be kept good by using carbon in the reduced iron as a part of the supply source of the carbon material supplied to the melting furnace. The carbon input range can be expanded.

また、予備還元炉で還元した還元鉄は、予備還元炉から抽出した直後には高温に保たれている。高温の還元鉄を冷却せずに溶解炉に装入すれば、溶解に要する熱量を低減することができる。さらに、還元鉄中に含有した炭素も高温で溶解炉に供給されるので、底吹きあるいは上方添加で供給される炭材(これらは常温で供給される)に比較して、溶解に要する熱量をさらに低減できるという効果をも有する。   Further, the reduced iron reduced in the preliminary reduction furnace is kept at a high temperature immediately after being extracted from the preliminary reduction furnace. If the high-temperature reduced iron is charged into the melting furnace without cooling, the amount of heat required for melting can be reduced. Furthermore, since the carbon contained in the reduced iron is also supplied to the melting furnace at a high temperature, the amount of heat required for melting is lower than that of carbonaceous materials supplied by bottom blowing or upward addition (these are supplied at room temperature). Furthermore, it has the effect that it can reduce.

図4には、還元鉄中の炭素含有量を1%から15%まで変化させた際の還元鉄の金属化率と、この還元鉄を含鉄冷材として用いて溶解を行った際の二次燃焼率を示している。還元鉄の金属化率は約60〜80%、(2)式に基づく全炭素(kg)/全酸素(Nm3)は1.2とした。底吹き炭材の量を調整することによって全炭素を一定に保持した。図4から明らかなように、還元鉄中の炭素含有量を2%以上とすることにより、二次燃焼率を良好に保つことができる。還元鉄中の炭素含有量を3%以上とするとより好ましい。 FIG. 4 shows the metallization rate of the reduced iron when the carbon content in the reduced iron is changed from 1% to 15%, and the secondary when the reduced iron is used as the iron-containing cold material. The burning rate is shown. The metallization rate of reduced iron was about 60 to 80%, and the total carbon (kg) / total oxygen (Nm 3 ) based on the formula (2) was 1.2. All carbon was kept constant by adjusting the amount of bottom blown carbonaceous material. As is apparent from FIG. 4, the secondary combustion rate can be kept good by setting the carbon content in the reduced iron to 2% or more. More preferably, the carbon content in the reduced iron is 3% or more.

なお、還元鉄中の炭素含有量が少なすぎる場合は、予備還元前に酸化鉄に内装させる炭材の量が少ないことを意味し、予備還元炉での還元が不十分で還元後の金属化率が十分に高くならないこととなる。還元鉄中の炭素含有量が2%以上であれば、金属化率70%以上を確保することができ、溶解原料としての含鉄冷材として問題なく用いることができる。   In addition, when the carbon content in the reduced iron is too small, it means that the amount of the carbon material incorporated in the iron oxide before the preliminary reduction is small, and the reduction in the preliminary reduction furnace is insufficient and the metallization after the reduction. The rate will not be high enough. If the carbon content in the reduced iron is 2% or more, a metalization rate of 70% or more can be ensured, and it can be used without any problem as an iron-containing cold material as a melting raw material.

また、還元鉄中の炭素含有量が多すぎると、還元鉄の強度が低下し、取り扱いあるいは溶解炉への装入時に粉化しやすくなる。還元鉄が粉化すると、還元鉄中の炭素分が炉内空間に拡散してソリューションロス反応を起こし、二次燃焼率が低下する。還元鉄中の炭素含有量が10%以下であれば、粉化の問題を起こすことなく、安定して使用することができる。   Moreover, when there is too much carbon content in reduced iron, the intensity | strength of reduced iron will fall and it will become easy to pulverize at the time of handling or charging to a melting furnace. When reduced iron is pulverized, the carbon content in the reduced iron diffuses into the furnace space, causing a solution loss reaction, and the secondary combustion rate decreases. If the carbon content in the reduced iron is 10% or less, it can be used stably without causing the problem of powdering.

次に、溶解炉に供給する全炭素と全酸素の割合(全炭素(kg)/全酸素(Nm3))の好ましい範囲について説明する。 Next, a preferable range of the ratio of total carbon and total oxygen supplied to the melting furnace (total carbon (kg) / total oxygen (Nm 3 )) will be described.

全酸素に比較して全炭素の供給量が多すぎると、過剰の炭材が炉内空間に舞うことになる。二次燃焼により生成したCO2は、炉内空間に浮遊する炭素と以下のソリューションロス反応を起こし、分解するので、結果として二次燃焼率が低下する。
C+CO2 → 2CO
If the amount of total carbon supplied is too much compared to total oxygen, excess carbon material will flow into the furnace space. The CO 2 produced by the secondary combustion causes the following solution loss reaction with carbon floating in the furnace space and decomposes, resulting in a decrease in the secondary combustion rate.
C + CO 2 → 2CO

また、過剰の炭素分はダストとして系外に排出されるので、顕熱ロスが増加し、生産性が悪化することとなる。   Moreover, since excess carbon is discharged out of the system as dust, sensible heat loss increases and productivity deteriorates.

100t規模の上底吹き転炉型容器を用いて、予備還元炉で還元した還元鉄を溶解した。還元鉄の金属化率は80%、還元鉄中の炭素含有量は4%である。上吹きランスからの送酸速度は7000Nm3/hで、底吹き羽口からは窒素ガスをキャリアーガスとして石炭粉を吹き込んだ。吹き込み石炭量を変化させることで全炭素/全酸素の値を0.8〜1.7kg/Nm3の範囲で変化させ、二次燃焼率の評価を行った。結果を図5に示す。図5から明らかなように、全炭素/全酸素の値が1.5kg/Nm3以下であれば、二次燃焼率25%を確保することができるが、全炭素/全酸素の値が1.5kg/Nm3を超えると、二次燃焼率が低下することがわかる。 The reduced iron reduced in the preliminary reduction furnace was dissolved using an upper bottom blown converter type vessel of 100 t scale. The metallization rate of reduced iron is 80%, and the carbon content in the reduced iron is 4%. The acid feed rate from the top blowing lance was 7000 Nm 3 / h, and coal powder was blown from the bottom blowing tuyere using nitrogen gas as a carrier gas. The value of total carbon / total oxygen was changed in the range of 0.8 to 1.7 kg / Nm 3 by changing the amount of blown coal, and the secondary combustion rate was evaluated. The results are shown in FIG. As can be seen from FIG. 5, if the total carbon / total oxygen value is 1.5 kg / Nm 3 or less, a secondary combustion rate of 25% can be secured, but the total carbon / total oxygen value is 1. It can be seen that the secondary combustion rate decreases when the amount exceeds 0.5 kg / Nm 3 .

なお、還元鉄中の炭素含有量が2%未満となると、二次燃焼率25%を確保できる全炭素/全酸素の上限は低下する。これは、還元鉄中の炭素含有量が低いと、その分、吹き込み石炭量の割合が多くなり、炉内空間に舞う炭材量が増し、二次燃焼率が低下しやすくなるためである。   When the carbon content in the reduced iron is less than 2%, the upper limit of total carbon / total oxygen that can secure a secondary combustion rate of 25% decreases. This is because if the carbon content in the reduced iron is low, the proportion of the amount of blown coal increases, the amount of carbon material flying in the furnace space increases, and the secondary combustion rate tends to decrease.

次に、図5の場合と同様の条件において、全炭素/全酸素の値を0.78〜1.03kg/Nm3の範囲で変化させ、製造した溶銑中の炭素濃度を評価した。溶解終了時の溶鉄温度についても1300〜1450℃の範囲で変化させた。結果を図6に示す。図6から明らかなように、同じ全炭素/全酸素の値でも溶鉄温度が低くなるほど溶銑中炭素濃度は低くなる。溶鉄温度が通常の操業下限である1300℃において溶銑中炭素濃度が4.0%を確保できる範囲を評価すると、全炭素/全酸素の値が0.9kg/Nm3以上であれば、4.0%以上の炭素濃度を確保できることがわかる。 Next, under the same conditions as in FIG. 5, the value of total carbon / total oxygen was changed in the range of 0.78 to 1.03 kg / Nm 3 , and the carbon concentration in the produced hot metal was evaluated. The molten iron temperature at the end of dissolution was also changed in the range of 1300 to 1450 ° C. The results are shown in FIG. As is apparent from FIG. 6, even with the same total carbon / total oxygen value, the lower the molten iron temperature, the lower the carbon concentration in the hot metal. If the range in which the molten iron temperature is 1300 ° C., which is the lower limit of normal operation, can ensure a carbon concentration in the molten iron of 4.0%, if the total carbon / total oxygen value is 0.9 kg / Nm 3 or more, then 4. It can be seen that a carbon concentration of 0% or more can be secured.

全炭素/全酸素の値が低すぎるため、溶鉄中炭素濃度が低下して4.0%未満となると、底吹き羽口閉塞、地金付き、スロッピングなどの操業トラブルが発生する原因となる。底吹き羽口が閉塞すると炭材の供給ができなくなるので、羽口交換が必要となり、操業停止に追い込まれる。炉口に地金付きが発生すると、出銑、排滓が困難となり、地金除去のために非稼動時間が増加することとなる。上吹きランスに地金付きが発生すると、ランスがランスコーンから抜けなくなるというトラブルの原因となる。溶鉄中炭素濃度が低下すると、還元鉄中の酸化鉄の還元速度が低下し、その結果スラグ中のT.Fe濃度が上昇し、スロッピングしやすくなる。   Since the total carbon / total oxygen value is too low, the carbon concentration in the molten iron decreases to less than 4.0%, which may cause operational troubles such as bottom blown tuyere clogging, bullion attachment, and slopping. . If the bottom-blown tuyere is blocked, it will not be possible to supply charcoal, so it will be necessary to replace the tuyere and the operation will be stopped. If a bullion is attached to the furnace port, it will be difficult to extract and discharge, and the non-operation time will increase due to the removal of the bullion. If the top blow lance is attached with a bullion, it may cause trouble that the lance cannot be removed from the lance cone. When the carbon concentration in the molten iron decreases, the reduction rate of the iron oxide in the reduced iron decreases, and as a result, the T.I. Fe concentration rises and it becomes easy to slopp.

以上の結果に基づき、炭素含有量が2%以上である還元鉄を溶解する本発明における全炭素/全酸素の値を0.9〜1.5の範囲と規定した。   Based on the above results, the value of total carbon / total oxygen in the present invention for dissolving reduced iron having a carbon content of 2% or more was defined as a range of 0.9 to 1.5.

本発明の図1に示す実施の形態においては、スクラップ溶解炉1とは別に還元鉄溶解炉9を用意し、還元鉄はこの還元鉄溶解炉9において溶解する。スクラップ溶解炉1では還元鉄を溶解しないため、還元鉄に含まれる酸化鉄起因の酸素原単位の増大及び石炭原単位の増大を防止することができるので、スクラップ溶解炉1での溶鉄生産性を向上することが可能となる。   In the embodiment shown in FIG. 1 of the present invention, a reduced iron melting furnace 9 is prepared separately from the scrap melting furnace 1, and the reduced iron is melted in the reduced iron melting furnace 9. Since the scrap melting furnace 1 does not melt reduced iron, it is possible to prevent an increase in oxygen intensity and coal intensity due to iron oxide contained in the reduced iron, so that the molten iron productivity in the scrap melting furnace 1 can be reduced. It becomes possible to improve.

さらに、溶鉄の生産をスクラップ溶解炉1と還元鉄溶解炉9の2つで分担し、還元鉄以外の含鉄冷材についてはスクラップ溶解炉1で溶解し、還元鉄はもっぱら還元鉄溶解炉9で溶解するので、スクラップ溶解炉1のみで還元鉄を含む含鉄冷材のすべてを溶解する特許文献3に記載の方法と比較し、溶鉄の生産能力を増大する結果を得ることができる。   Furthermore, the production of molten iron is shared by the scrap melting furnace 1 and the reduced iron melting furnace 9, and iron-containing cold materials other than reduced iron are melted in the scrap melting furnace 1, and the reduced iron is exclusively reduced in the reduced iron melting furnace 9. Since it melt | dissolves, the result of increasing the production capacity of molten iron can be obtained compared with the method of patent document 3 which melt | dissolves all the iron-containing cold materials containing reduced iron only by the scrap melting furnace 1. FIG.

スクラップ溶解炉1と精錬専用転炉3として、同じ炉容の転炉を用いる場合が一般的である。同一炉容の転炉を3基有する転炉工場において、そのうちの2基をスクラップ溶解炉1として用い、残りの1基を精錬専用転炉3として用いた場合、2基のスクラップ溶解炉1を用いての溶鉄の生産能力は、1基の精錬専用転炉3をフル生産した場合の溶鉄所要量を賄う能力に足りない。従って、特許文献3に記載の方法においては、精錬専用転炉3が生産余力を残した状態での製造を余儀なくされる。このような場合、本発明のように還元鉄溶解炉9を用意して還元鉄の溶解を還元鉄溶解炉9に任せることとすると、スクラップ溶解炉2基のみで溶鉄を生産した場合と比較して合計溶鉄生産量を増大することができ、それでも精錬専用転炉3については生産余力を用いることによってすべての生産溶鉄を原料として精錬を行うことが可能である。結果として、既存の3基転炉を保有する転炉工場において3基の転炉をより有効活用して溶鋼生産能力を増大することが可能となる。   As the scrap melting furnace 1 and the refining converter 3, a converter having the same furnace capacity is generally used. In a converter plant having three converters of the same furnace capacity, when two of them are used as scrap melting furnaces 1 and the remaining one is used as a refining converter 3, two scrap melting furnaces 1 are The production capacity of the molten iron used is insufficient to cover the required amount of molten iron when a single refining converter 3 is fully produced. Therefore, in the method described in Patent Document 3, the refining-only converter 3 is forced to be manufactured in a state where the production capacity remains. In such a case, if the reduced iron melting furnace 9 is prepared as in the present invention and the melting of the reduced iron is left to the reduced iron melting furnace 9, the molten iron is produced only with two scrap melting furnaces. Thus, the total amount of molten iron produced can be increased. However, the refining converter 3 can be refined using all the produced molten iron as a raw material by using the production capacity. As a result, it becomes possible to increase the molten steel production capacity by more effectively utilizing the three converters in the converter factory having the existing three converters.

溶解炉や精錬炉から回収したダストを予備還元炉で還元し、表1に示す成分組成の還元鉄を製造した。還元鉄中の炭素濃度は4.0%、金属化率は80%であった。この還元鉄を、100t規模の上底吹き転炉型容器を用いた溶解炉で溶解した。上吹きランスからの送酸速度は7000Nm3/hで、底吹き羽口からは窒素ガスをキャリアーガスとして石炭粉を吹き込んだ。また、スラグ組成コントロール用の生石灰、軽焼マグネシアを上部ホッパーから、還元鉄とともに炉内に添加した。副原料の組成を表1に、石炭の組成を表2に示す。溶解炉のライニングはMgO−Cレンガであるので、溶解炉耐火物保護のため、スラグ中MgO濃度を12〜18%の範囲とした。また、還元鉄中にAl23が含まれるため、スラグ中Al23濃度は12〜18%の範囲となった。 Dust recovered from the melting furnace and the refining furnace was reduced in a pre-reduction furnace to produce reduced iron having the component composition shown in Table 1. The carbon concentration in the reduced iron was 4.0% and the metallization rate was 80%. This reduced iron was melted in a melting furnace using a 100 t scale top-bottom blowing converter type vessel. The acid feed rate from the top blowing lance was 7000 Nm 3 / h, and coal powder was blown from the bottom blowing tuyere using nitrogen gas as a carrier gas. Further, quick lime for controlling the slag composition and light-burned magnesia were added into the furnace together with reduced iron from the upper hopper. Table 1 shows the composition of the auxiliary materials, and Table 2 shows the composition of the coal. Since the lining of the melting furnace is MgO-C brick, the MgO concentration in the slag was set to a range of 12 to 18% in order to protect the melting furnace refractory. Also, because it contains Al 2 O 3 in the reduced iron, slag concentration of Al 2 O 3 it became range 12 to 18%.

Figure 0004781813
Figure 0004781813

Figure 0004781813
Figure 0004781813

全炭素/全酸素の値を0.9〜1.5の適正範囲内とし、さらにランスと溶鉄面間距離を3.2mとすることにより、二次燃焼率を25〜26%に調整した。この条件で副材投入量を調整して塩基度Bを調整すると同時に溶鉄温度を調整し、(1)式で計算されるAの値を変化させた。   The secondary combustion rate was adjusted to 25 to 26% by setting the total carbon / total oxygen value within an appropriate range of 0.9 to 1.5 and further setting the distance between the lance and the molten iron surface to 3.2 m. Under these conditions, the amount of secondary material input was adjusted to adjust the basicity B, and at the same time, the molten iron temperature was adjusted to change the value of A calculated by equation (1).

二次燃焼率については、前述の(3)式で定義されるが、実際には煙道ガスの分析値に基づいて、炉口での浸入空気による燃焼の影響を差し引いた下記(5)式によって計算する。
二次燃焼率=[ (CO2%)i + (H2O%)i - { (O2%)a / (N2%)a ×2・((N2%)i - QN2 / Qi ×100) - 2・(O2%)i } / [ (CO2%)i +(CO%)i + (H2O%)i +(H2%)i ] ×100 (%) (5)
Qi : 煙道ガス風量 (Nm3/h)
QN2:炉内窒素ガス吹き込み量 (Nm3/h)
(X%):炉内ガス中X成分の濃度 (vol%)
(X)a:空気中X成分の濃度 (vol%)
(X%)i:煙道ガス中のX成分の濃度 (vol%)
The secondary combustion rate is defined by the above-mentioned equation (3), but actually, the following equation (5) subtracting the influence of combustion due to the intruded air at the furnace port based on the analysis value of the flue gas Calculate by
Secondary combustion rate = [(CO 2 %) i + (H 2 O%) i-{(O 2 %) a / (N 2 %) a × 2 ・ ((N 2 %) i-Q N2 / Qi × 100)-2 ・ (O 2 %) i} / [(CO 2 %) i + (CO%) i + (H 2 O%) i + (H 2 %) i] × 100 (%) (5 )
Qi: Flue gas flow rate (Nm 3 / h)
Q N2 : Amount of nitrogen gas blown into the furnace (Nm 3 / h)
(X%): Concentration of X component in furnace gas (vol%)
(X) a: Concentration of X component in air (vol%)
(X%) i: Concentration of X component in flue gas (vol%)

煙道ガスの分析は、CO、CO2、N2、H2、O2はガスクロマトグラフィーで、H2Oは吸収法(JIS Z8808)で行った。 The flue gas was analyzed by gas chromatography for CO, CO 2 , N 2 , H 2 and O 2 , and H 2 O by an absorption method (JIS Z8808).

鉄ダストの発生原単位については、集塵水中の鉄ダスト濃度を測定し、その積算値と生産量から算出した。   The iron dust generation intensity was calculated from the integrated value and production volume by measuring the iron dust concentration in the collected water.

着熱効率は前記(4)式により計算する。計算に際し、物質収支に基づく各種の反応熱および顕熱などを計算し、熱収支をとってアウトプット側の不明熱量を求めた。この不明熱量が、排ガスがスラグ温度以上に加熱される熱量(排ガススーパーヒート)に等しいとおいて、(4)式の計算を行った。なお、溶鉄温度とスラグ温度は等しいとする。   Heating efficiency is calculated by the above equation (4). In the calculation, various heats of reaction and sensible heat based on the mass balance were calculated, and the unknown heat quantity on the output side was obtained by taking the heat balance. Assuming that this unknown amount of heat is equal to the amount of heat (exhaust gas superheat) at which the exhaust gas is heated above the slag temperature, the calculation of equation (4) was performed. It is assumed that the molten iron temperature is equal to the slag temperature.

結果を表3に示す。なお、スラグ成分のうち表3に示した以外の成分については、質量%で、T.Fe:0.1〜3%、MnO:0.1〜4%の範囲であった。また、溶解後のスラグ量は12〜16トンであった。   The results are shown in Table 3. Of the slag components, the components other than those shown in Table 3 are expressed in mass% and T.I. The range was Fe: 0.1 to 3%, and MnO: 0.1 to 4%. Moreover, the amount of slag after melt | dissolution was 12-16 tons.

Figure 0004781813
Figure 0004781813

表3の本発明例No.1〜7が本発明例である。いずれもAの値が5未満であり、スラグの流動性を確保することができ、結果として着熱効率が90%以上の良好な結果を得ることができた。鉄ダスト発生原単位も少なく、良好であった。   Invention Example No. 1 in Table 3 1-7 are examples of the present invention. In all cases, the value of A was less than 5, and the fluidity of the slag could be ensured. As a result, a good result with a heat receiving efficiency of 90% or more could be obtained. The iron dust generation basic unit was small and good.

それに対し、比較例No.8〜11は、Aの値が5以上となり、スラグの流動性が悪化したため、着熱効率が90%未満となり、また鉄ダスト発生原単位が増大する結果となった。   On the other hand, Comparative Example No. In 8 to 11, the value of A was 5 or more and the fluidity of the slag was deteriorated, so that the heat receiving efficiency was less than 90%, and the iron dust generation unit was increased.

上記実施例1と同一の炉を用い、以下に特記する場合を除いて同一の条件で還元鉄の溶解を行った。   The same furnace as in Example 1 was used, and reduced iron was dissolved under the same conditions except as otherwise specified below.

送酸速度を一定に保つことにより、全酸素を5000Nm3と一定値とし、底吹き微粉炭の供給速度を変化させて全炭素を変動させ、これによって全炭素/全酸素の値を変動させた。目標二次燃焼率を25%とした。ランス先端と溶鉄面間距離については、一部を除いて3.2mとした。 By keeping the acid feed rate constant, the total oxygen was kept constant at 5000 Nm 3, and the feed rate of bottom-blown pulverized coal was changed to vary the total carbon, thereby varying the total carbon / total oxygen value. . The target secondary combustion rate was 25%. The distance between the tip of the lance and the molten iron surface was 3.2 m except for a part.

表4に示すNo.12〜30については、いずれも(1)式のAの値を5未満とし、スラグ流動性は良好に保持した。一方、「本発明1+2」と表示したNo.12〜21は第1の発明、第2の発明の範囲内にあるのに対し、「本発明1」と表示したNo.22〜30については、第1の発明範囲内にはあるものの第2の発明の範囲からは外れた条件である。   No. shown in Table 4 About 12-30, all set the value of A of Formula (1) to less than 5, and slag fluidity was kept favorable. On the other hand, the “No. 1 + 2” No. Nos. 12 to 21 are within the scope of the first and second inventions, whereas “No. 1” indicating “present invention 1”. About 22-30, although it exists in the 1st invention range, it is the conditions remove | deviated from the range of the 2nd invention.

Figure 0004781813
Figure 0004781813

No.12〜21については、還元鉄中の炭素含有量が4.0%であり、全炭素/全酸素の値も0.9〜1.5kg/Nm3の良好範囲にあるため、二次燃焼率、着熱効率ともに良好であり、溶解後の溶鉄中炭素濃度も4.0%以上の良好な値であった。 No. About 12-21, since the carbon content in reduced iron is 4.0% and the value of total carbon / total oxygen is also in the favorable range of 0.9-1.5 kg / Nm 3 , the secondary combustion rate The heat receiving efficiency was good, and the carbon concentration in the molten iron after melting was a good value of 4.0% or more.

No.22、23については、全炭素/全酸素の値が低すぎ、全炭素供給量が不足したため、溶解後の溶鉄中炭素濃度が4.0%未満となった。No.24〜26については、全炭素/全酸素の値が高すぎ、余剰の炭素分が炉内空間に浮遊したために二次燃焼率が低下する結果となった。No.27、28については、全炭素/全酸素の値が高いため、二次燃焼率を改善する目的でランス高さを適正値よりも高くした水準であり、二次燃焼率は向上したものの着熱効率が低下する結果となった。   No. Regarding Nos. 22 and 23, the total carbon / total oxygen value was too low and the total carbon supply amount was insufficient, so the carbon concentration in the molten iron after melting was less than 4.0%. No. For 24-26, the value of total carbon / total oxygen was too high, and the surplus carbon content floated in the furnace space, resulting in a decrease in the secondary combustion rate. No. For 27 and 28, the total carbon / total oxygen value is high, so the lance height is set higher than the appropriate value for the purpose of improving the secondary combustion rate. Results in a decline.

No.29については、還元鉄中の炭素濃度が高すぎ、還元鉄の粉化が発生し、粉化した還元鉄中の炭素が炉内空間に浮遊したため、二次燃焼率が低下する結果となった。No.30については、還元鉄中の炭素濃度が低いため、全炭素を確保するために微粉炭供給量が増大した水準である。微粉炭は炉内空間に浮遊しやすいため、二次燃焼率が低下する結果となった。   No. For No. 29, the carbon concentration in the reduced iron was too high, pulverization of the reduced iron occurred, and the pulverized carbon in the reduced iron floated in the furnace space, resulting in a decrease in the secondary combustion rate. . No. About 30, since the carbon concentration in reduced iron is low, it is the level which the supply amount of pulverized coal increased in order to ensure all carbon. Since pulverized coal tends to float in the furnace space, the secondary combustion rate decreased.

本発明のプロセスフローの一例を示す図である。It is a figure which shows an example of the process flow of this invention. スラグ温度、スラグ塩基度と粘度との関係を示す図である。It is a figure which shows the relationship between slag temperature, slag basicity, and a viscosity. (1)式のAの値と着熱効率の関係を示す図である。It is a figure which shows the relationship between the value of A of (1) Formula, and a heat receiving efficiency. 還元鉄中の炭素濃度と二次燃焼率の関係及び還元鉄中の炭素濃度と還元鉄の金属化率の関係を示す図である。It is a figure which shows the relationship between the carbon concentration in reduced iron and a secondary combustion rate, and the relationship between the carbon concentration in reduced iron and the metallization rate of reduced iron. 全炭素/全酸素の値と二次燃焼率の関係を示す図である。It is a figure which shows the relationship between the value of total carbon / total oxygen, and a secondary combustion rate. 全炭素/全酸素の値と溶鉄中炭素濃度の関係を示す図である。It is a figure which shows the relationship between the value of total carbon / total oxygen, and the carbon concentration in molten iron. 従来のプロセスフローの一例を示す図である。It is a figure which shows an example of the conventional process flow.

符号の説明Explanation of symbols

1 スクラップ溶解炉(溶解専用転炉)
2 脱硫設備
3 精錬専用転炉
4 湿式集塵装置
5 フィルタープレス
6 塊成化装置
7 乾燥炉
8 予備還元炉
9 還元鉄溶解炉
1 Scrap melting furnace (converter for melting only)
2 Desulfurization facility 3 Converter for refining 4 Wet dust collector 5 Filter press 6 Agglomeration device 7 Drying furnace 8 Prereduction furnace 9 Reduced iron melting furnace

Claims (1)

酸化鉄を含有する粉体に炭材を内装させて塊成化し、予備還元炉で高温加熱して内装炭材を還元材とした予備還元を行い、生成した還元鉄を炭材、酸素とともに種湯の存在する溶解炉に供給し、溶鉄の上に生成するスラグ組成を質量%で、Al23:12〜18%、MgO:12〜18%とするとともに、生成するスラグの塩基度Bと溶解後溶鉄温度T(K)に関する下記(1)式のAを5未満とし、前記還元鉄は炭素含有量が2〜10質量%であり、溶解炉に供給する全炭素と全酸素の割合(全炭素(kg)/全酸素(Nm 3 ))を0.9〜1.5とすることを特徴とする溶鉄の製造方法。
A=7×10-7・exp(−6.2143・B)×exp((20663・B+7655.1)/T) (1)
B=CaO(質量%)/SiO2(質量%)
全炭素(kg)=供給炭材中の炭素(kg)+供給還元鉄中の炭素(kg)
全酸素(Nm 3 )=上吹き酸素量(Nm 3 )+還元鉄中のFeO量(kg)×0.156+還元鉄中のFe 2 3 (kg)×0.210
A powder containing iron oxide is agglomerated with a carbonaceous material, agglomerated, preheated at a high temperature in a prereduction furnace and preliminarily reduced using the carbonaceous material as a reducing material, and the produced reduced iron is seeded together with the carbonaceous material and oxygen. is supplied to the melting furnace in the presence of water, by mass% slag composition to produce on the molten iron, Al 2 O 3: 12~18% , MgO: with a 12 to 18%, of the produced slag basicity B And A in the following formula (1) relating to the molten iron temperature T (K) after melting is less than 5 , the reduced iron has a carbon content of 2 to 10% by mass, and includes all the carbon and all oxygen supplied to the melting furnace. A method for producing molten iron, wherein the ratio (total carbon (kg) / total oxygen (Nm 3 )) is 0.9 to 1.5 .
A = 7 * 10 < -7 > * exp (-6.2143 * B) * exp ((20663 * B + 7655.1) / T) (1)
B = CaO (mass%) / SiO 2 (mass%)
Total carbon (kg) = Carbon in supplied carbon (kg) + Carbon in supplied reduced iron (kg)
Total oxygen (Nm 3 ) = top blown oxygen amount (Nm 3 ) + FeO amount in reduced iron (kg) × 0.156 + Fe 2 O 3 in reduced iron (kg) × 0.210
JP2005377694A 2005-12-28 2005-12-28 Manufacturing method of molten iron Active JP4781813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377694A JP4781813B2 (en) 2005-12-28 2005-12-28 Manufacturing method of molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377694A JP4781813B2 (en) 2005-12-28 2005-12-28 Manufacturing method of molten iron

Publications (2)

Publication Number Publication Date
JP2007177295A JP2007177295A (en) 2007-07-12
JP4781813B2 true JP4781813B2 (en) 2011-09-28

Family

ID=38302762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377694A Active JP4781813B2 (en) 2005-12-28 2005-12-28 Manufacturing method of molten iron

Country Status (1)

Country Link
JP (1) JP4781813B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023945B2 (en) 2010-05-18 2018-07-17 Tata Steel Limited Direct smelting process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196148A (en) * 2009-02-27 2010-09-09 Nippon Steel Corp Iron raw material and manufacturing method therefor
EP2616562B1 (en) * 2010-09-15 2020-11-25 Tata Steel Limited Direct smelting process
JP6398306B2 (en) * 2014-05-14 2018-10-03 新日鐵住金株式会社 Converter melting method of iron-containing raw materials
DE102017104351A1 (en) 2017-03-02 2018-09-06 Cl Schutzrechtsverwaltungs Gmbh Device for the additive production of three-dimensional objects
KR102032613B1 (en) * 2017-09-27 2019-10-15 현대제철 주식회사 Methods of operating electric furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195206A (en) * 1987-02-10 1988-08-12 Nippon Steel Corp Melting reduction method for chromium oxide
JPH09272910A (en) * 1996-04-05 1997-10-21 Nkk Corp Operation of smelting reduction furnace for iron
JP4060986B2 (en) * 1998-05-22 2008-03-12 新日本製鐵株式会社 How to use dust in converter steelmaking.
JP2000192161A (en) * 1998-12-22 2000-07-11 Daido Steel Co Ltd Method for melting metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10023945B2 (en) 2010-05-18 2018-07-17 Tata Steel Limited Direct smelting process
US10280489B2 (en) 2010-05-18 2019-05-07 Tata Steel Limited Direct smelting process

Also Published As

Publication number Publication date
JP2007177295A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
CA2302244C (en) Method of making iron and steel
JP5954551B2 (en) Converter steelmaking
JP5408369B2 (en) Hot metal pretreatment method
JP5418733B2 (en) Hot metal refining method
US6503289B2 (en) Process for manufacturing molten metal iron
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP4781813B2 (en) Manufacturing method of molten iron
CN107299182B (en) A kind of method that converter utilizes scrap smelting half steel
CN104774995A (en) Adding method of steelmaking slag charge of oxygen converter
JP5408379B2 (en) Hot metal pretreatment method
CN101831525A (en) Dephosphorization method for molten iron
US8475561B2 (en) Method for producing molten iron
JP3509072B2 (en) Iron and steel making
CN114317873A (en) Steelmaking slagging process
US5084093A (en) Method for manufacturing molten pig iron
JP4781812B2 (en) Converter steelmaking method
JP4639943B2 (en) Hot metal desulfurization method
JPH0471965B2 (en)
JP7416043B2 (en) Molten iron refining method
WO1997012066A1 (en) Chromium ore smelting reduction process
JP4772436B2 (en) How to use dust in converter steelmaking and how to operate a dust melting converter
JPH01195211A (en) Method for melting and reducing iron oxide
JP2004143544A (en) Desulfurization method for hot-metal
JPH0437134B2 (en)
JPH03111507A (en) Method and apparatus for producing molten ferrous alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4781813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350