JP2001351614A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001351614A
JP2001351614A JP2000165392A JP2000165392A JP2001351614A JP 2001351614 A JP2001351614 A JP 2001351614A JP 2000165392 A JP2000165392 A JP 2000165392A JP 2000165392 A JP2000165392 A JP 2000165392A JP 2001351614 A JP2001351614 A JP 2001351614A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
negative electrode
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000165392A
Other languages
Japanese (ja)
Inventor
Kiyoushirou Inoue
恭司郎 井上
Shinzo Fujii
信三 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000165392A priority Critical patent/JP2001351614A/en
Publication of JP2001351614A publication Critical patent/JP2001351614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high energy density, long life and improved safety in a lithium secondary battery. SOLUTION: The lithium secondary battery 10 comprises a positive electrode 4 having a positive electrode active material which is provided through a separator 6, a negative electrode 5 having a negative electrode active material and an electrolyte. In this, the negative electrode or the negative electrode current collector contains a substance which compensates the capacity deterioration of the negative electrode active material. This substance is a mixture of an amorphous substance which does not react with lithium and a substance which reacts with lithium. As an amorphous substance which does not react with lithium, silicon dioxide is preferable and as a substance which reacts with lithium, silver, aluminum, silicon or the like are preferable. With the above structure, a lithium secondary battery is realized which has an excellent charge and discharge cycle and high energy density as well as superior safety.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の電極活
物質に関し、特に、充放電エネルギーが大きく、サイク
ル寿命に優れ、且つ、高い安全性を有するリチウム二次
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode active material for a secondary battery, and more particularly to a lithium secondary battery having a large charge / discharge energy, an excellent cycle life, and a high safety.

【0002】[0002]

【従来の技術】従来、非水電解液二次電池の正極活物質
としては、TiS,MoS,NbSe等の金属カ
ルコゲン化物やMnO,MoO,V等の
単純酸化物、あるいはLiCoO ,LiNiO
LiMn等のリチウム含有金属酸化物等が提案
されている。また、負極材料としては、リチウム金属や
リチウムを吸蔵・放出できるAlを始めとした合金系、
あるいは層間にLiイオンを吸蔵する炭素系材料等の錫
酸化物を吸蔵物質とした材料等が提案されてきており、
それらの内の一部は既に実用化されている。
2. Description of the Related Art Conventionally, as a positive electrode active material of a non-aqueous electrolyte secondary battery, metal chalcogenides such as TiS 2 , MoS 2 and NbSe 3 and simple oxides such as MnO 2 , MoO 3 and V 2 O 5 have been used. Or LiCoO 2 , LiNiO 2 ,
Lithium-containing metal oxides such as LiMn 2 O 4 have been proposed. In addition, alloy materials such as Al, which can occlude and release lithium metal and lithium,
Alternatively, materials using tin oxide as an occlusion substance such as a carbon-based material that occludes Li ions between layers have been proposed,
Some of them are already in practical use.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記した負
極材料においては、リチウム金属以外の材料の内、特に
高容量化が期待できる合金系を使用した場合は、充放電
時におけるリチウムの利用効率が低く、かつ、充放電サ
イクル時に電極材料にクラックなどが生じ易いこと等の
問題を有しており、これが電池のサイクル寿命を著しく
短くする要因となっていた。
In the above-mentioned negative electrode material, among the materials other than lithium metal, in particular, when an alloy based on which a high capacity can be expected is used, the efficiency of use of lithium during charge and discharge is reduced. There is a problem that the electrode material is low and cracks and the like are apt to occur in the electrode material at the time of charge / discharge cycles. This has been a factor of significantly shortening the cycle life of the battery.

【0004】また、前記の内、炭素材を始めとするリチ
ウム層間化合物を用いた場合は、過充電や過放電の際に
結晶構造が崩壊されることや、リチウムの吸蔵・放出時
の不可逆物質の生成に伴って活物質が劣化すること等が
問題となっている。特に、リチウム金属負極の場合は、
負極表面にデンドライト結晶が生成し易く、電池の安全
性に問題が生じており、このため、上記負極材料におい
ては、高容量、長寿命、且つ、安全な材料は未だ実現に
至っていないのが実状である。
[0004] Among the above, when a lithium intercalation compound such as a carbon material is used, the crystal structure is destroyed at the time of overcharge or overdischarge, or an irreversible substance at the time of inserting and extracting lithium. There is a problem that the active material is degraded due to the generation of slag. In particular, in the case of a lithium metal anode,
Dendritic crystals are easily formed on the surface of the negative electrode, which poses a problem in the safety of the battery. For this reason, high-capacity, long-life, and safe materials have not yet been realized in the above-mentioned negative electrode materials. It is.

【0005】本発明は上記問題を解決するために成され
たもので、高いエネルギー密度を有し、充放電サイクル
に優れる安全性の高いリチウム二次電池を提供すること
を目的としている。
The present invention has been made to solve the above problems, and has as its object to provide a highly safe lithium secondary battery having a high energy density and excellent charge / discharge cycles.

【0006】[0006]

【課題を解決するための手段】通常、二次電池では、充
放電を繰り返し行うとサイクル劣化を生じ、電池容量が
徐々に減少していくといった現象が見られるが、負極材
料を以下のように工夫することによってこの問題を解決
できることを見出した。
Means for Solving the Problems Normally, in a secondary battery, repeated charging / discharging causes cycle deterioration, and a phenomenon in which the battery capacity gradually decreases is observed. We found that this problem can be solved by devising it.

【0007】すなわち、請求項1に記載のリチウム二次
電池は、セパレータを介して配設された正極活物質を備
えた正極と負極活物質を備えた負極と、電解質とを有す
るリチウム二次電池において、前記負極、または負極集
電体が負極活物質の容量劣化を補償する物質を含むこと
を特徴としている。
[0007] That is, a lithium secondary battery according to claim 1 has a positive electrode provided with a positive electrode active material, a negative electrode provided with a negative electrode active material, and an electrolyte provided through a separator. , Wherein the negative electrode or the negative electrode current collector contains a material for compensating for capacity deterioration of the negative electrode active material.

【0008】また、請求項2に記載のリチウム二次電池
は、前記容量劣化を補償する物質は、リチウムと反応し
ない非晶質物質とリチウムと反応する物質の混合物であ
ることを特徴としている。
Further, the lithium secondary battery according to the present invention is characterized in that the material for compensating for the capacity deterioration is a mixture of an amorphous material which does not react with lithium and a material which reacts with lithium.

【0009】また、請求項3に記載のリチウム二次電池
は、前記リチウムと反応しない非晶質物質が二酸化珪素
であり、また、前記リチウムと反応する物質が銀、アル
ミニウム、または、珪素であることを特徴としている。
Further, in the lithium secondary battery according to the present invention, the amorphous substance which does not react with lithium is silicon dioxide, and the substance which reacts with lithium is silver, aluminum, or silicon. It is characterized by:

【0010】また、請求項4に記載のリチウム二次電池
は、前記混合物はスパッタ法を用いて作製されることを
特徴としている。
[0010] The lithium secondary battery according to a fourth aspect is characterized in that the mixture is produced by a sputtering method.

【0011】上記構成のように、充放電サイクルが進む
に連れて可逆容量が増加する物質を加えることにより、
サイクル劣化を抑えて安定した電池容量を維持できる二
次電池を実現できる。例えば、ターゲットに非晶質の二
酸化珪素を用い、そのターゲット上に銀のチップを乗せ
た状態で銅集電体上にスパッタすると、生成したスパッ
タ膜は充放電サイクルが繰り返されるに従って電池容量
が増加することが分かった。その理由は明らかでない
が、おそらく充放電を繰り返すことにより、スパッタ膜
内部でリチウム伝導パスが増加し、充放電に利用される
銀の量が増加するためと考えられる。尚、スパッタ膜の
容量およびその増加比率等は、ターゲット上に乗せる銀
チップの数やスパッタ時の基板温度、スパッタ雰囲気お
よびスパッタ後の焼成温度、焼成雰囲気によって調整す
ることは可能である。
As described above, by adding a substance whose reversible capacity increases as the charge / discharge cycle progresses,
A secondary battery that can maintain stable battery capacity while suppressing cycle deterioration can be realized. For example, when amorphous silicon dioxide is used as a target and sputtering is performed on a copper current collector with a silver chip placed on the target, the resulting sputtered film increases in battery capacity as charge and discharge cycles are repeated. I found out. Although the reason is not clear, it is considered that, by repeating charge and discharge, the number of lithium conduction paths inside the sputtered film increases, and the amount of silver used for charge and discharge increases. The capacity of the sputtered film and its increase ratio can be adjusted by the number of silver chips to be put on the target, the substrate temperature during sputtering, the sputtering atmosphere, the firing temperature after sputtering, and the firing atmosphere.

【0012】また、本発明の負極材料を使用する場合、
正極活物質としてはリチウムイオンを可逆的に脱挿入で
きる遷移金属酸化物等が使用でき、一例として、LiC
oO ,LiNiO ,LiMn等が挙げら
れるが、必ずしも、これらに限定されるものではない。
また、電解質としては非水電解液や高分子電解質や無機
固体電解質等が好ましい。通常、非水電解液は溶媒とそ
の溶媒に溶解する塩とから構成されており、非水溶媒と
しては、鎖状エステル類や環状エーテル類を始めとする
各種溶媒の使用が可能であり、その一例として、エチレ
ンカーボネート、プロピレンカーボネート、ジメチカル
カーボネート、ジエチルカーボネート、1,2−ジメト
キシエタン等が挙げられるが、勿論これら以外のものを
用いても構わない。また、電解質としては、通常使用さ
れるものであれば良く、一例を挙げれば、LiBF
,LiPF ,LiClO ,CFSOLi
等である。また、その他、固体電解質や高分子電解質、
あるいは、ポリマー電解質等を用いても構わない。
When the negative electrode material of the present invention is used,
Lithium ion can be reversibly inserted and removed as a positive electrode active material.
Transition metal oxides and the like can be used.
oO 2 , LiNiO2 , LiMn2O4Etc.
However, the present invention is not necessarily limited to these.
In addition, non-aqueous electrolytes, polymer electrolytes, inorganic
Solid electrolytes and the like are preferred. Normally, non-aqueous electrolytes are
And a salt that dissolves in the solvent of the non-aqueous solvent and
Including chain esters and cyclic ethers
Various solvents can be used.
Carbonate, propylene carbonate, dimethical
Carbonate, diethyl carbonate, 1,2-dimethoate
Xyethane, etc., but of course other than these
You may use it. Also, as the electrolyte, usually used
Any one can be used, for example, LiBF
4 , LiPF6 , LiClO4 , CF3SO3Li
And so on. In addition, other, solid electrolyte and polymer electrolyte,
Alternatively, a polymer electrolyte or the like may be used.

【0013】[0013]

【発明の実施の形態】以下、図1〜図3により本発明に
係るリチウム二次電池を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lithium secondary battery according to the present invention will be described below with reference to FIGS.

【0014】図1は本発明が適用されたコイン型リチウ
ム二次電池の内部構造を示す図である。
FIG. 1 is a view showing the internal structure of a coin-type lithium secondary battery to which the present invention is applied.

【0015】図1に示すコイン型リチウム二次電池10
において、符号1は耐有機電解液性のステンレス鋼板を
円板状に加工した電池ケース、符号2はこの電池ケース
1と同材質で成る封口板、符号3は集電体、符号4は金
属リチウム、符号5は本発明の活物質を含む合剤、6は
ポリプロピレン製で微孔性のセパレータ、7はポリプロ
ピレンから成るガスケットである。因みに、このコイン
型リチウム二次電池10は、厚さ5mm、直径が24m
mといったサイズである。
A coin-type lithium secondary battery 10 shown in FIG.
, Reference numeral 1 denotes a battery case formed by processing a stainless steel plate having resistance to organic electrolyte into a disc shape, reference numeral 2 denotes a sealing plate made of the same material as the battery case 1, reference numeral 3 denotes a current collector, and reference numeral 4 denotes metallic lithium. Reference numeral 5 is a mixture containing the active material of the present invention, 6 is a microporous separator made of polypropylene, and 7 is a gasket made of polypropylene. Incidentally, the coin-type lithium secondary battery 10 has a thickness of 5 mm and a diameter of 24 m.
It is a size such as m.

【0016】[0016]

【実施例】本発明の活物質を評価するため、下記要領に
て評価用のコイン型リチウム二次電池を作製した。
EXAMPLES In order to evaluate the active material of the present invention, a coin-type lithium secondary battery for evaluation was prepared in the following manner.

【0017】(実施例1)上記活物質は次のように作製
した。先ず、アルカリアルミノ珪酸塩ガラス(組成、N
O:MgO:Al:SiO:KO:トレ
ース成分=12:6:12:65:3:2mol%)を
粉砕機を用いて粒径約20μm以下に粉砕し、この粉体
を高純度アルミナ坩堝にてAgNo約100gとガラ
ス粉体約10gと共に300℃の電気炉中で24時間撹
拌しながらイオン交換を行った。その後、固化したAg
NOを純水中で溶解・濾過してイオン交換された粉末
を分離し、純水で洗浄して複合酸化物ガラスを作製し
た。
Example 1 The above active material was produced as follows. First, alkali aluminosilicate glass (composition, N
a 2 O: MgO: Al 2 O 3 : SiO 2 : K 2 O: trace component = 12: 6: 12: 65: 3: 2 mol%) using a pulverizer to grind to a particle size of about 20 μm or less. The powder was ion-exchanged in a high-purity alumina crucible while stirring about 100 g of AgNo 3 and about 10 g of glass powder in an electric furnace at 300 ° C. for 24 hours. Then, the solidified Ag
NO 3 was dissolved and filtered in pure water to separate the ion-exchanged powder, and washed with pure water to produce a composite oxide glass.

【0018】このようにして得られた複合酸化物ガラス
46重量%に対し、導電材として黒鉛50重量%を、結
着材としてポリテトラフルオロエチレン4重量%を各々
混合し、活物質合剤を得た。この合剤の所定量を負極集
電体3の上に加圧成形し、真空乾燥機を用いて120℃
にて6時間減圧乾燥した。
To 46% by weight of the composite oxide glass thus obtained, 50% by weight of graphite as a conductive material and 4% by weight of polytetrafluoroethylene as a binder were mixed, and the active material mixture was mixed. Obtained. A predetermined amount of this mixture is pressure-formed on the negative electrode current collector 3 and is heated to 120 ° C. using a vacuum dryer.
And dried under reduced pressure for 6 hours.

【0019】更に、この活物質合剤に加え、非晶質の二
酸化珪素のターゲット上に5mm角の銀チップを12個
並べてRFパワー200W、アルゴンガス2.7Paの
条件で銅箔上に厚さ約8μmのスパッタ膜を形成し、こ
の銅箔上のスパッタ膜に前記合剤を打ち付けて図1に示
す本発明のコイン型リチウム二次電池を組み立てた。ま
た、電解液として、エチレンカーボネートとジエルチカ
ーボネートの等容積混合溶媒にLiPF を溶解させ
た1規定溶液を使用した。
Further, in addition to this active material mixture, 12 silver chips each having a size of 5 mm square are arranged on an amorphous silicon dioxide target, and the thickness thereof is formed on a copper foil under the conditions of RF power of 200 W and argon gas of 2.7 Pa. A sputtered film of about 8 μm was formed, and the mixture was hit on the sputtered film on the copper foil to assemble the coin-type lithium secondary battery of the present invention shown in FIG. In addition, a 1 N solution in which LiPF 6 was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate was used as the electrolytic solution.

【0020】(比較例1)スパッタ膜は使用せず、実施
例1と同じ活物質合剤のみを使用して同様の手順でセル
を作製し、比較用のコイン型リチウム二次電池を組み立
てた。
(Comparative Example 1) A cell was fabricated in the same procedure using only the same active material mixture as in Example 1 without using a sputtered film, and a coin type lithium secondary battery for comparison was assembled. .

【0021】(比較例2)実施例1の活物質合剤は使用
せず、前記スパッタ膜のみを使用して同様の手順でセル
を作製し、比較用のコイン型リチウム二次電池を組み立
てた。
(Comparative Example 2) A cell was manufactured in the same procedure using only the sputtered film without using the active material mixture of Example 1, and a coin type lithium secondary battery for comparison was assembled. .

【0022】(実施例2)実施例1で用いた前記アルカ
リアルミノ珪酸塩ガラスの代わりにアルカリアルミノボ
ロケイ酸塩ガラス(組成、NaO:Al:Si
:B=15:16:64:5mol%)を、
また、スパッタ用のチップとして珪素を用い、それ以外
は実施例1と同様の手順でセルを作製し、本発明のコイ
ン型リチウム二次電池を組み立てた。
(Example 2) Instead of the alkali aluminosilicate glass used in Example 1, an alkali aluminoborosilicate glass (composition, Na 2 O: Al 2 O 3 : Si) was used.
O 2 : B 2 O 3 = 15: 16: 64: 5 mol%)
A cell was manufactured in the same procedure as in Example 1 except that silicon was used as a chip for sputtering, and a coin-type lithium secondary battery of the present invention was assembled.

【0023】(比較例3)スパッタ膜は使用せず、実施
例2と同じ活物質合剤のみを使用して同様の手順でセル
を作製し、コイン型リチウム二次電池を組み立てた。
(Comparative Example 3) A cell was fabricated in the same procedure using the same active material mixture as in Example 2 without using a sputtered film, and a coin-type lithium secondary battery was assembled.

【0024】(比較例4)実施例2の活物質合剤は使用
せず、実施例2のスパッタ膜のみを使用して同様の手順
でセルを作製し、比較用のコイン型リチウム二次電池を
組み立てた。
Comparative Example 4 A coin-type lithium secondary battery for comparison was prepared by using the sputtered film of Example 2 but not using the active material mixture of Example 2 and forming cells in the same procedure. Was assembled.

【0025】以上、作製した実施例1,2および比較例
1〜4におけるコイン型リチウム二次電池を室温にて約
1週間エージングした後、充放電サイクル試験を行い、
各々電池の容量特性を調査し、その結果を図2、図3に
示した。充放電試験は、電流を0.2mA/cm、充
電終止電圧を2.0V、放電終止電圧を0.005Vと
して行った。尚、実施したサイクル数は何れの場合も2
0回とした。ここで、図2の特性Aは実施例1、特性B
は比較例1、特性Cは比較例2を示し、図3の特性Dは
実施例2、特性Eは比較例3、特性Fは比較例4を示し
ている。
After the coin-type lithium secondary batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were aged at room temperature for about one week, a charge / discharge cycle test was performed.
The capacity characteristics of each battery were investigated, and the results are shown in FIGS. The charge / discharge test was performed with a current of 0.2 mA / cm 2 , a charge end voltage of 2.0 V, and a discharge end voltage of 0.005 V. The number of cycles performed was 2 in each case.
It was set to 0 times. Here, the characteristic A in FIG.
3 indicates Comparative Example 1, characteristic C indicates Comparative Example 2, characteristic D in FIG. 3 indicates Example 2, characteristic E indicates Comparative Example 3, and characteristic F indicates Comparative Example 4.

【0026】これら、図2,3によれば、充放電サイク
ルの進行に伴い電池容量が劣化していく活物質(特性
B、特性Eがこれに相当)に、その劣化に対処する物質
(特性C、特性Fがこれに相当)を加えることにより、
サイクル劣化の無い安定した特性(特性A、特性Dがこ
れに相当)を有する電池を作製できることがわかる。
According to FIGS. 2 and 3, active materials whose battery capacity deteriorates as the charge / discharge cycle progresses (characteristics B and E correspond to these) are substances (characteristics corresponding to the deterioration). C, characteristic F is equivalent to this)
It can be seen that a battery having stable characteristics without cycle deterioration (characteristics A and D correspond thereto) can be manufactured.

【0027】[0027]

【発明の効果】以上説明したように、本発明のリチウム
二次電池によれば、充放電サイクルが進むに連れて可逆
容量が増加する物質を負極材料に加えることにより、充
放電サイクルに優れ、且つ、高エネルギー密度で安全性
に優れるリチウム二次電池を実現することができる。
As described above, according to the lithium secondary battery of the present invention, a substance whose reversible capacity increases as the charge / discharge cycle progresses is added to the negative electrode material, whereby the charge / discharge cycle is excellent. In addition, a lithium secondary battery having high energy density and excellent safety can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用されたコイン型リチウム二次電池
の内部構造を示す図である。
FIG. 1 is a diagram showing an internal structure of a coin-type lithium secondary battery to which the present invention is applied.

【図2】電池の充放電サイクル特性を示す図である。FIG. 2 is a diagram showing charge / discharge cycle characteristics of a battery.

【図3】図2とは別の電池の充放電サイクル特性を示す
図である。
FIG. 3 is a diagram showing charge / discharge cycle characteristics of a battery different from that of FIG. 2;

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 活物質合剤 6 セパレータ 7 ガスケット 10 コイン型リチウム二次電池 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Current collector 4 Metal lithium 5 Active material mixture 6 Separator 7 Gasket 10 Coin-type lithium secondary battery

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 AA04 AS02 BB11 DD05 EE01 EE05 EE06 5H029 AJ05 AJ12 AK03 AL06 AL12 AM03 AM04 AM06 AM11 AM16 BJ03 BJ12 CJ08 CJ24 DJ07 DJ08 DJ18 EJ01 EJ05 5H050 AA07 AA15 BA17 BA18 CA07 CA08 CA09 CB07 CB12 DA03 DA04 DA09 EA02 EA05 EA12 FA20 GA10 GA24  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) CB12 DA03 DA04 DA09 EA02 EA05 EA12 FA20 GA10 GA24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して配設された正極活物
質を備えた正極と負極活物質を備えた負極と、電解質と
を有するリチウム二次電池において、 前記負極、または負極集電体が負極活物質の容量劣化を
補償する物質を含むことを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising: a positive electrode provided with a positive electrode active material, a negative electrode provided with a negative electrode active material, and an electrolyte provided through a separator; wherein the negative electrode or the negative electrode current collector is a negative electrode A lithium secondary battery including a substance that compensates for capacity deterioration of an active material.
【請求項2】 前記容量劣化を補償する物質は、リチウ
ムと反応しない非晶質物質とリチウムと反応する物質の
混合物であることを特徴とする請求項1に記載のリチウ
ム二次電池。
2. The lithium secondary battery according to claim 1, wherein the material that compensates for the capacity deterioration is a mixture of an amorphous material that does not react with lithium and a material that reacts with lithium.
【請求項3】 前記リチウムと反応しない非晶質物質が
二酸化珪素であり、また、前記リチウムと反応する物質
が銀、アルミニウム、または、珪素であることを特徴と
する請求項2に記載のリチウム二次電池。
3. The lithium according to claim 2, wherein the amorphous material that does not react with lithium is silicon dioxide, and the material that reacts with lithium is silver, aluminum, or silicon. Rechargeable battery.
【請求項4】 前記混合物はスパッタ法を用いて作製さ
れることを特徴とする請求項2または請求項3に記載の
リチウム二次電池。
4. The lithium secondary battery according to claim 2, wherein the mixture is formed by using a sputtering method.
JP2000165392A 2000-06-02 2000-06-02 Lithium secondary battery Pending JP2001351614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165392A JP2001351614A (en) 2000-06-02 2000-06-02 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165392A JP2001351614A (en) 2000-06-02 2000-06-02 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001351614A true JP2001351614A (en) 2001-12-21

Family

ID=18668867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165392A Pending JP2001351614A (en) 2000-06-02 2000-06-02 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001351614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377591B2 (en) 2003-12-26 2013-02-19 Nec Corporation Anode material for secondary battery, anode for secondary battery and secondary battery therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377591B2 (en) 2003-12-26 2013-02-19 Nec Corporation Anode material for secondary battery, anode for secondary battery and secondary battery therewith

Similar Documents

Publication Publication Date Title
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
CA2196493C (en) Additives for improving cycle life of non-aqueous rechargeable lithium batteries
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
KR100559104B1 (en) Positive electrode for nonaqueous electrolyte battery and method of manufacturing the same, and nonaqueous electrolyte battery using the positive electrode and method of manufacturing the same
US20080193846A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, and production method thereof
JP2007200646A (en) Lithium secondary battery
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
JP2006190635A (en) Battery
JP2004063432A (en) Battery
JP2006286532A (en) Battery
JP2006134762A (en) Secondary battery
KR20060098137A (en) Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode
JP2005071678A (en) Battery
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
JPH11120993A (en) Nonaqueous electrolyte secondary battery
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP3921836B2 (en) Organic electrolyte secondary battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2001351614A (en) Lithium secondary battery
JP2014116297A (en) Negative electrode active material for lithium ion secondary battery
JP4356127B2 (en) Lithium secondary battery