JP2001345085A - Nonaqueous electrolytic solution secondary battery - Google Patents

Nonaqueous electrolytic solution secondary battery

Info

Publication number
JP2001345085A
JP2001345085A JP2000164088A JP2000164088A JP2001345085A JP 2001345085 A JP2001345085 A JP 2001345085A JP 2000164088 A JP2000164088 A JP 2000164088A JP 2000164088 A JP2000164088 A JP 2000164088A JP 2001345085 A JP2001345085 A JP 2001345085A
Authority
JP
Japan
Prior art keywords
separator
battery
lithium
aqueous electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000164088A
Other languages
Japanese (ja)
Inventor
Katsunori Suzuki
克典 鈴木
Koji Higashimoto
晃二 東本
Yuichi Takatsuka
祐一 高塚
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000164088A priority Critical patent/JP2001345085A/en
Publication of JP2001345085A publication Critical patent/JP2001345085A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution secondary battery having a high reliability. SOLUTION: Via a separator S having a thickness of 50 μm wherein polypropylene(PP) of a thickness of 10 μm and polyethylene(PE) of a thickness of 30 mm are laminated in the order of PP/PE/PP to form a 3-layered structure, a positive electrode plate P and a negative electrode plate N are wound to form a wound group 6 in a cross-sectionally spiral state, and a cylindrical lithium-ion battery 20 is prepared. The separator S is made to have the 3-layered structure consisting of PE which has a superior shutdown property at the time of abnormality of the battery and PP which is superior in the mechanical strength, and the shutdown property and the mechanical strength are made to be equipped.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、特に、充放電によりリチウムイオンを吸蔵・放
出可能なリチウム遷移金属複酸化物を活物質に用いた正
極と、充放電によりリチウムイオンを放出・吸蔵可能な
負極と、をセパレータを介して捲回した電極群を、リチ
ウム塩をエチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート及びエチルメチルカーボネー
トのうち少なくとも二種以上の有機溶媒に溶解した非水
電解液に浸潤させた非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a positive electrode using a lithium transition metal complex oxide capable of occluding and releasing lithium ions by charge and discharge as an active material, A negative electrode capable of releasing and occluding lithium ions, and an electrode group obtained by winding a negative electrode through a separator, dissolve a lithium salt in at least two or more kinds of organic solvents of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate The present invention relates to a non-aqueous electrolyte secondary battery infiltrated with a non-aqueous electrolyte.

【0002】[0002]

【従来の技術】非水電解液二次電池、とりわけ、リチウ
ムイオン電池は高エネルギー密度であるメリットを活か
して、主にVTRカメラやノート型パソコン、携帯電話
などのポータブル機器に使用されている。また、近年は
電気自動車用や電力貯蔵用を目的とする、大型の非水電
解液二次電池の研究開発も活発に行われている。特に、
自動車産業界においては環境問題に対応すべく、動力源
としてモータを用いる方式の電気自動車や、動力源とし
て内燃機関とモータとの両方を用いるハイブリッド方式
の電気自動車の開発が進められており、その一部はすで
に実用化されている。
2. Description of the Related Art A non-aqueous electrolyte secondary battery, especially a lithium ion battery, is mainly used for portable equipment such as a VTR camera, a notebook computer, and a mobile phone, taking advantage of its high energy density. In recent years, research and development of large non-aqueous electrolyte secondary batteries for electric vehicles and for power storage have been actively conducted. In particular,
In order to respond to environmental issues, the automobile industry is developing electric vehicles that use a motor as a power source and hybrid electric vehicles that use both an internal combustion engine and a motor as a power source. Some are already in practical use.

【0003】これら電気自動車等に使用される大型非水
電解液二次電池には、高容量、高出力という特性と同時
に、安全性が強く要求されている。このため、従来、大
型非水電解液二次電池には、出力特性を向上させるため
に、非水電解液の電解質に6フッ化リン酸リチウム(L
iPF)が用いられ、安全性確保のために、微多孔性
のポリエチレン(PE)セパレータが用いられている。
ポリエチレンセパレータは、正極及び負極間の内部短絡
を防止し、過充電時等の異常時にはシャットダウン(微
多孔を閉じリチウムイオンの通過を遮断)することがで
きるので、電池内圧の極端な上昇等を未然に防ぐことが
できる。
[0003] Large non-aqueous electrolyte secondary batteries used in electric vehicles and the like are required to have high capacity and high output as well as high safety. For this reason, conventionally, large-sized non-aqueous electrolyte secondary batteries have been provided with lithium hexafluorophosphate (L
iPF 6 ) is used, and a microporous polyethylene (PE) separator is used to ensure safety.
The polyethylene separator prevents an internal short circuit between the positive electrode and the negative electrode, and can shut down (close microporous holes to block the passage of lithium ions) in the event of an abnormality such as overcharging. Can be prevented.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ポリエ
チレンは機械的強度が弱く、単層(1枚)で捲回電極群
のセパレータとして使用される場合には、捲回時のスト
レスに起因してセパレータの一部に亀裂が生じ易く、正
極及び負極間での内部短絡が起こることもあった。特
に、この内部短絡は振動が加わる車載用の非水電解液二
次電池の場合に発生が顕著である。
However, when polyethylene is used as a separator of a wound electrode group in a single layer (one sheet), the mechanical strength of polyethylene is low. Cracks were easily generated in some of them, and an internal short circuit between the positive electrode and the negative electrode sometimes occurred. In particular, this internal short circuit occurs remarkably in the case of a non-aqueous electrolyte secondary battery for a vehicle to which vibration is applied.

【0005】また、ポリエチレンセパレータは正負極間
の異物混入等によっても容易に損傷し短絡を起こしやす
い。すなわち、非水電解液二次電池の作製工程で、正極
とセパレータとの間又は負極とセパレータとの間に異物
が混入すると、その異物が突起物となり、正負極の捲回
時にセパレータを突き破り、正負極間で短絡を起こす場
合も認められた。
[0005] Further, the polyethylene separator is easily damaged by foreign substances mixed between the positive and negative electrodes, and is liable to cause a short circuit. That is, in the manufacturing process of the non-aqueous electrolyte secondary battery, when foreign matter is mixed between the positive electrode and the separator or between the negative electrode and the separator, the foreign matter becomes a protrusion, breaking through the separator when winding the positive and negative electrodes, In some cases, a short circuit occurred between the positive and negative electrodes.

【0006】更に、正極中の異種金属イオン(Fe、C
u等)が非水電解液中に溶出し、充放電により負極側で
デントライト成長して短絡を起こす場合も認められた。
また、負極側でデントライト成長したFe、Cuの成長
異物が正極側に達し短絡する場合には、セパレータはこ
れらを取りこんでシャットダウンすることになるので、
正負極間の導通を遮断することができない。
Further, different metal ions (Fe, C
u) was eluted in the non-aqueous electrolyte, and dendrites grew on the negative electrode side during charging and discharging to cause a short circuit.
Further, when the growing foreign matter of Fe or Cu grown by dendrites on the negative electrode side reaches the positive electrode side and short-circuits, the separator takes in them and shuts down.
The conduction between the positive and negative electrodes cannot be cut off.

【0007】本発明は上記事案に鑑み、高信頼性の非水
電解液二次電池を提供することを課題とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a highly reliable non-aqueous electrolyte secondary battery.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、充放電によりリチウムイオンを吸蔵・放
出可能なリチウム遷移金属複酸化物を活物質に用いた正
極と、充放電によりリチウムイオンを放出・吸蔵可能な
負極と、をセパレータを介して捲回した電極群を、リチ
ウム塩をエチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート及びエチルメチルカーボネー
トのうち少なくとも二種以上の有機溶媒に溶解した非水
電解液に浸潤させた非水電解液二次電池において、前記
セパレータをポリプロピレン及びポリエチレンの複数層
構造としたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a positive electrode using a lithium transition metal complex oxide capable of inserting and extracting lithium ions by charge and discharge as an active material; A negative electrode capable of releasing and occluding lithium ions, and an electrode group obtained by winding a separator through a separator, the lithium salt was dissolved in at least two or more kinds of organic solvents among ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate In a non-aqueous electrolyte secondary battery impregnated with a non-aqueous electrolyte, the separator has a multi-layer structure of polypropylene and polyethylene.

【0009】本発明では、セパレータを電池異常時のシ
ャットダウン特性の優れるポリエチレンと機械的強度に
優れるポリプロピレンとの複数層構造としたので、セパ
レータはシャットダウン特性と機械的強度との双方を有
する。このため、充放電によりリチウムイオンを吸蔵・
放出可能なリチウム遷移金属複酸化物を活物質に用いた
正極と、充放電によりリチウムイオンを放出・吸蔵可能
な負極と、をセパレータを介して捲回した電極群を、リ
チウム塩をエチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート及びエチルメチルカーボネー
トのうち少なくとも二種以上の有機溶媒に溶解した非水
電解液に浸潤させた高出力の非水電解液二次電池の信頼
性を高めることができる。
In the present invention, the separator has a multi-layer structure of polyethylene having excellent shutdown characteristics when the battery is abnormal and polypropylene having excellent mechanical strength, so that the separator has both shutdown characteristics and mechanical strength. For this reason, lithium ions are stored and stored by charging and discharging.
A positive electrode using a releasable lithium transition metal complex oxide as an active material, and a negative electrode capable of releasing and occluding lithium ions by charge and discharge, and an electrode group obtained by winding a separator through a separator, using lithium salt as ethylene carbonate, The reliability of a high-output non-aqueous electrolyte secondary battery infiltrated with a non-aqueous electrolyte dissolved in at least two or more organic solvents of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate can be improved.

【0010】この場合において、リチウム遷移金属複酸
化物をマンガン酸リチウムとし、リチウム塩に6フッ化
リン酸リチウムを用いるようにすれば、大型非水電解液
二次電池に要求される高出力特性を比較的低コストで確
保することができると共に、セパレータをポリプロピレ
ン/ポリエチレン/ポリプロピレンの3層構造とすれ
ば、機械的強度の大きいポリプロピレンを薄くすること
ができ、ポリプロピレンに覆われたポリエチレンを単層
で使用する場合のように機械的強度を考慮しないでシャ
ットダウン特性を発揮できる厚さとすればよいことか
ら、セパレータ全体を適正な厚さとすることができる。
In this case, if the lithium transition metal double oxide is lithium manganate and lithium hexafluorophosphate is used as the lithium salt, high output characteristics required for a large non-aqueous electrolyte secondary battery can be obtained. If the separator has a three-layer structure of polypropylene / polyethylene / polypropylene, polypropylene having high mechanical strength can be made thinner, and polyethylene covered with polypropylene can be made a single layer. As described above, the thickness of the separator may be sufficient to exhibit the shutdown characteristics without considering the mechanical strength, so that the entire separator can have an appropriate thickness.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明をハ
イブリッド電気自動車に搭載される円筒形リチウムイオ
ン電池に適用した実施の形態について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a cylindrical lithium-ion battery mounted on a hybrid electric vehicle will be described below with reference to the drawings.

【0012】<正極板の作製>正極活物質であるマンガ
ン酸リチウム(LiMn)粉末と、導電剤として
鱗片状黒鉛(平均粒径:20μm)と、結着剤としてポ
リフッ化ビニリデン(PVDF)と、を質量比で90:
4.5:5.5の割合で混合し、この混合物に分散溶媒
としてN−メチル−2−ピロリドン(NMP)を添加し
た後、混練してスラリを作製した。このスラリを、厚さ
20μmのアルミニウム箔(正極集電体)の両面に塗布
して正極合剤層とした。スラリの塗布の際に、アルミニ
ウム箔の長寸方向に対して、側縁の一方に幅50mmの
未塗布部を残した。
<Preparation of Positive Electrode> Lithium manganate (LiMn 2 O 4 ) powder as a positive electrode active material, flaky graphite (average particle size: 20 μm) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder ) And 90:
The mixture was mixed at a ratio of 4.5: 5.5, N-methyl-2-pyrrolidone (NMP) was added as a dispersion solvent to the mixture, and the mixture was kneaded to prepare a slurry. This slurry was applied to both surfaces of a 20 μm-thick aluminum foil (positive electrode current collector) to form a positive electrode mixture layer. During the application of the slurry, an uncoated portion having a width of 50 mm was left on one of the side edges in the longitudinal direction of the aluminum foil.

【0013】その後乾燥、プレス、裁断して、幅300
mm、所定長さの正極板P(図1参照)を得た。正極合
剤層の厚さ(ただし、アルミニウム箔の厚さは含まな
い)を260μm、アルミニウム箔片面あたりの正極活
物質塗布量を344g/mとした。正極板に形成した
幅50mmのスラリ未塗布部の一部に切り欠きを入れそ
の一部を除去し、切り欠き残部を集電用のリード片とし
た。また、隣り合うリード片を20mm間隔とし、リー
ド片の幅を10mmとした。
After that, it is dried, pressed, cut, and has a width of 300.
A positive electrode plate P having a predetermined length of 1 mm (see FIG. 1) was obtained. The thickness of the positive electrode mixture layer (excluding the thickness of the aluminum foil) was 260 μm, and the coating amount of the positive electrode active material per one side of the aluminum foil was 344 g / m 2 . A part of the 50 mm-wide slurry-uncoated portion formed on the positive electrode plate was notched, and a part thereof was removed. The remaining part of the notch was used as a lead piece for current collection. Adjacent lead pieces were set at intervals of 20 mm, and the width of the lead pieces was set at 10 mm.

【0014】<負極板の作製>負極活物質として、非晶
質炭素であるカーボトロンP(商品名:呉羽化学工業株
式会社製)90質量部に、結着剤として10質量部のポ
リフッ化ビニリデンを添加し、これに分散溶媒のN−メ
チル−2−ピロリドンを添加後、混練してスラリを作製
した。このスラリを、厚さ10μmの圧延銅箔(負極集
電体)の両面に塗布した。スラリの塗布の際に、銅箔の
長寸方向に対して、側縁の一方に幅50mmの未塗布部
を残した。
<Preparation of Negative Electrode Plate> As a negative electrode active material, 90 parts by mass of Carbotron P (trade name: manufactured by Kureha Chemical Industry Co., Ltd.), which is amorphous carbon, and 10 parts by mass of polyvinylidene fluoride as a binder were added. After adding N-methyl-2-pyrrolidone as a dispersion solvent, the mixture was kneaded to prepare a slurry. This slurry was applied to both sides of a rolled copper foil (negative electrode current collector) having a thickness of 10 μm. During the application of the slurry, an uncoated portion having a width of 50 mm was left on one of the side edges in the longitudinal direction of the copper foil.

【0015】その後乾燥、プレス、裁断して幅305m
m、所定長さの負極板N(図1参照)を得た。負極合剤
層のかさ密度は約1.0g/cmとした。負極板に形
成した幅50mmのスラリ未塗布部に切り欠きを入れそ
の一部を除去し、切り欠き残部を集電用のリード片とし
た。なお、隣り合うリード片を20mm間隔とし、リー
ド片の幅を10mmとした。また、正極板と負極板の幅
方向においても、正極活物質の塗布部と負極活物質の塗
布部と対向に位置ズレが起きないように、負極活物質の
塗布部の幅は、正極活物質の塗布部の幅よりも約5mm
大きくした。
After drying, pressing and cutting, the width is 305 m.
m, a negative electrode plate N (see FIG. 1) having a predetermined length was obtained. The bulk density of the negative electrode mixture layer was about 1.0 g / cm 3 . A notch was formed in a 50 mm-wide slurry-uncoated portion formed on the negative electrode plate, a part of the cut was removed, and the remaining notch was used as a current collecting lead piece. The adjacent lead pieces were set at intervals of 20 mm, and the width of the lead pieces was set at 10 mm. Also, in the width direction of the positive electrode plate and the negative electrode plate, the width of the negative electrode active material applied portion is set to be equal to the width of the positive electrode active material so as to prevent a positional shift from occurring between the positive electrode active material applied portion and the negative electrode active material applied portion. About 5mm more than the width of the coating part
I made it bigger.

【0016】<捲回群の作製>上記作製した帯状の正極
板と負極板とを、機械的強度に優れるポリプロピレン
(PP)と、熱によりシャットダウン効果のあるポリエ
チレン(PE)とを積層して、後述するように所定厚の
PP/PE/PPの3層構造としたセパレータS(図1
参照)を介して、断面渦巻き状に捲回し捲回群を作製し
た。このとき、正極板及び負極板のリード片(図1の符
号9参照)が、それぞれ捲回群の反対側に位置するよう
に捲回した。捲回時に正極板、負極板及びセパレータを
適当な長さで切断することにより、捲回群の直径を65
±0.1mmとした。
<Preparation of Wound Group> The above-prepared strip-shaped positive electrode plate and negative electrode plate were laminated with polypropylene (PP) having excellent mechanical strength and polyethylene (PE) having a heat-shutdown effect, As described below, a separator S having a three-layer structure of PP / PE / PP having a predetermined thickness (FIG. 1)
) To form a spirally wound group. At this time, the lead pieces (see reference numeral 9 in FIG. 1) of the positive electrode plate and the negative electrode plate were wound so as to be located on the opposite sides of the wound group. By cutting the positive electrode plate, the negative electrode plate and the separator at an appropriate length during winding, the diameter of the wound group can be reduced to 65 mm.
± 0.1 mm.

【0017】捲回群の最外周において、正極板が負極板
によって常に覆われている構造とするため、負極板の長
さを正極板の長さよりも18cm長くなるようにした。
そして、捲回群の最外周で正極板と負極板とに片側2.
5mm以上のズレがあったものは、不良として排除し
た。
In order to form a structure in which the positive electrode plate is always covered by the negative electrode plate at the outermost periphery of the winding group, the length of the negative electrode plate was set to be 18 cm longer than the length of the positive electrode plate.
Then, on the outermost periphery of the wound group, a positive electrode plate and a negative electrode plate are provided on one side.
Those with a deviation of 5 mm or more were excluded as defective.

【0018】<電池の作製>図1に示すように、正極板
から導出されているリード片9を集めて束にした状態で
折り曲げて変形させ、その全てを、軸芯11のほぼ延長
線上にある極柱(正極外部端子1)周囲から一体に張り
出している鍔部7周面付近に集合、接触させた後、リー
ド片9と鍔部7周面とを超音波溶接してリード片9を鍔
部7周面に接続固定した。また、負極外部端子1’と負
極板から導出されているリード片9との接続操作も、正
極外部端子1と正極板から導出されているリード片9と
の接続操作と同様に行った。
<Preparation of Battery> As shown in FIG. 1, lead pieces 9 led out from the positive electrode plate are collected and bundled to be bent and deformed. After gathering and contacting around the periphery of the flange 7 integrally projecting from the periphery of a certain pole (positive electrode external terminal 1), the lead piece 9 and the periphery of the flange 7 are ultrasonically welded to each other to attach the lead 9 It was connected and fixed to the peripheral surface of the flange 7. The connection operation between the negative external terminal 1 'and the lead piece 9 derived from the negative electrode plate was performed in the same manner as the connection operation between the positive external terminal 1 and the lead piece 9 derived from the positive electrode plate.

【0019】その後、正極外部端子1及び負極外部端子
1’の鍔部7及び捲回群6の外周全体を絶縁被覆8で覆
った。この絶縁被覆8として、片面にヘキサメタアクリ
レートからなる粘着剤を塗布したポリイミド製の粘着テ
ープを用いた。捲回群6の外周部分が絶縁被覆8で覆わ
れ、ステンレス製の電池容器5の内径より僅かに小さく
なるように粘着テープの巻き数を調整した後、捲回群6
を電池容器5内に挿入した。電池容器5には、外径67
mm、内径66mmの円筒形状をしたものを用いた。
Thereafter, the entire outer periphery of the flange portion 7 of the positive electrode external terminal 1 and the negative electrode external terminal 1 ′ and the winding group 6 was covered with an insulating coating 8. As this insulating coating 8, a polyimide adhesive tape having an adhesive made of hexamethacrylate applied on one side was used. After adjusting the number of windings of the adhesive tape so that the outer peripheral portion of the winding group 6 is covered with the insulating coating 8 and slightly smaller than the inner diameter of the battery container 5 made of stainless steel, the winding group 6
Was inserted into the battery container 5. The battery container 5 has an outer diameter 67.
mm and a cylindrical shape having an inner diameter of 66 mm were used.

【0020】そして、アルミナ製で円盤状電池蓋4裏面
と当接する部分の厚さ2mm、内径16mm、外径25
mmの第2のセラミックワッシャ3’を、先端が正極外
部端子1を構成する極柱、先端が負極外部端子1’を構
成する極柱にそれぞれ嵌め込んだ。また、アルミナ製で
厚さ2mm、内径16mm、外径28mmの平板状の第
1のセラミックワッシャ3を電池蓋4に載置し、正極外
部端子1、負極外部端子1’をそれぞれ第1のセラミッ
クワッシャ3に通した。その後、電池蓋4周端面を電池
容器5開口部に嵌合し、双方の接触部全域をレーザ溶接
した。このとき、正極外部端子1、負極外部端子1’
は、電池蓋4の中心に形成された穴を貫通して電池蓋4
外部に突出している。そして、図1に示すように、第1
のセラミックワッシャ3、金属製ナット2底面よりも平
滑な金属ワッシャ14を、この順に正極外部端子1、負
極外部端子1’にそれぞれ嵌め込んだ。なお、電池蓋4
には電池の内圧上昇に応じて開裂する開裂弁10が設け
られている。開裂弁10の開裂圧は、1.3〜1.8×
10Paとした。
A portion made of alumina, which is in contact with the back surface of the disc-shaped battery lid 4, has a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 25 mm.
The second ceramic washer 3 'having a diameter of 2 mm was fitted into a pole having a positive electrode external terminal 1 at the tip and a pole having a negative external terminal 1' at the tip. A first ceramic washer 3 made of alumina and having a thickness of 2 mm, an inner diameter of 16 mm, and an outer diameter of 28 mm is placed on the battery cover 4, and the positive external terminal 1 and the negative external terminal 1 ′ are respectively connected to the first ceramic. Passed through washer 3. Thereafter, the peripheral end face of the battery lid 4 was fitted into the opening of the battery container 5, and the entire area of both contact portions was laser-welded. At this time, the positive external terminal 1 and the negative external terminal 1 ′
Penetrates a hole formed in the center of the battery cover 4 and
It protrudes outside. Then, as shown in FIG.
The ceramic washer 3 and the metal washer 14 smoother than the bottom surface of the metal nut 2 were fitted into the positive external terminal 1 and the negative external terminal 1 'in this order. The battery cover 4
Is provided with a cleavage valve 10 that is cleaved in response to an increase in the internal pressure of the battery. The cleavage pressure of the cleavage valve 10 is 1.3 to 1.8 ×
It was 10 6 Pa.

【0021】次いで、ナット2を正極外部端子1、負極
外部端子1’にそれぞれ螺着し、第2のセラミックワッ
シャ3’、第1のセラミックワッシャ3、金属ワッシャ
14を介して電池蓋4を鍔部7とナット2の間で締め付
けにより固定した。このときの締め付けトルク値は6.
86N・mとした。なお、締め付け作業が終了するまで
金属ワッシャ14は回転しなかった。この状態で、電池
蓋4裏面と鍔部7の間に介在させたゴム(EPDM)製
Oリング16の圧縮により電池容器5内部の発電要素は
外気から遮断される。
Next, the nut 2 is screwed to the positive external terminal 1 and the negative external terminal 1 ', respectively, and the battery cover 4 is closed via the second ceramic washer 3', the first ceramic washer 3, and the metal washer 14. It was fixed between the part 7 and the nut 2 by tightening. The tightening torque value at this time is 6.
86 N · m. The metal washer 14 did not rotate until the fastening operation was completed. In this state, the compression of the rubber (EPDM) O-ring 16 interposed between the back surface of the battery lid 4 and the flange portion 7 blocks the power generation element inside the battery container 5 from the outside air.

【0022】その後、電池蓋4に設けた注液口13から
非水電解液を所定量電池容器5内に注入し、その後注液
口13をリッド15で封止することにより円筒形リチウ
ムイオン電池20を完成させた。
Thereafter, a predetermined amount of a non-aqueous electrolyte is injected into the battery container 5 from a liquid inlet 13 provided in the battery cover 4, and then the liquid inlet 13 is sealed with a lid 15. 20 was completed.

【0023】非水電解液には、エチレンカーボネートと
ジメチルカーボネートとジエチルカーボネートの体積比
1:1:1の混合溶液中へ6フッ化リン酸リチウム(L
iPF)を1モル/リットル溶解したものを用いた。
なお、円筒形リチウムイオン電池20には、電池容器5
の内圧の上昇に応じて電流を遮断する電流遮断機構は設
けられていない。
The non-aqueous electrolyte contains lithium hexafluorophosphate (L) in a mixed solution of ethylene carbonate, dimethyl carbonate and diethyl carbonate in a volume ratio of 1: 1: 1.
iPF 6 ) dissolved at 1 mol / liter was used.
The cylindrical lithium ion battery 20 has a battery container 5
There is no current interrupting mechanism for interrupting the current in response to an increase in the internal pressure of the battery.

【0024】[0024]

【実施例】次に、本実施形態に従って作製した円筒形リ
チウムイオン電池20の実施例について説明する。な
お、比較のために作製した比較例の円筒形リチウムイオ
ン電池についても併記する。
Next, an example of the cylindrical lithium ion battery 20 manufactured according to this embodiment will be described. A cylindrical lithium ion battery of a comparative example produced for comparison is also described.

【0025】(実施例)本実施例では、下表1に示すよ
うに、厚さ10μmのポリプロピレン(PP)、厚さ3
0mmのポリエチレン(PE)及び厚さ10μmのポリ
プロピレン(PP)を、PEをPPで保護するようにP
P/PE/PPの順に積層して3層構造とした、厚さ5
0μmのセパレータS(以下、3層セパレータとい
う。)を介して正極板Pと負極板Nとを捲回して捲回群
6とし、円筒形リチウムイオン電池20を多数個作製し
た。
(Example) In this example, as shown in Table 1 below, polypropylene (PP) having a thickness of 10 μm and a thickness of 3
0 mm polyethylene (PE) and 10 μm thick polypropylene (PP) are combined with P to protect the PE with PP.
P / PE / PP laminated in order to form a three-layer structure, thickness 5
A positive electrode plate P and a negative electrode plate N were wound via a 0 μm separator S (hereinafter, referred to as a three-layer separator) to form a winding group 6, and a large number of cylindrical lithium ion batteries 20 were produced.

【0026】[0026]

【表1】 [Table 1]

【0027】(比較例)比較例では、表1に示すよう
に、単層で厚さ50μmのポリエチレン製セパレータ
(以下、単層セパレータという。)を介して正極板Pと
負極板Nとを捲回して捲回群6とし、円筒形リチウムイ
オン電池を多数個作製した。
Comparative Example In a comparative example, as shown in Table 1, a positive electrode plate P and a negative electrode plate N were wound via a single-layer, 50 μm-thick polyethylene separator (hereinafter, referred to as a single-layer separator). This was turned into a winding group 6, and a large number of cylindrical lithium ion batteries were produced.

【0028】<試験>以上のように作製した実施例及び
比較例の各電池について、4.2Vに充電した後、2.
5Vまで放電した後、再度4.2Vに充電し、1日経過
後の電池電圧が4.15Vを切るものを部分短絡が発生
した不良品として排除した。そして、実施例及び比較例
の良品電池各20個を、4.2Vの満充電状態から30
日間放置し、5日毎に電池電圧を測定した。また、充電
直後の電池電圧と30日放置後の電池電圧との差から1
日当たりの電圧低下を電圧低下率(mV/day)とし
て算出した。
<Test> Each battery of Examples and Comparative Examples produced as described above was charged to 4.2 V, and then
After discharging to 5 V, the battery was charged again to 4.2 V, and the battery whose voltage after one day fell below 4.15 V was excluded as a defective product having a partial short circuit. Then, each of the 20 non-defective batteries of the example and the comparative example was changed from a fully charged state of 4.2 V to 30.
The battery was left for 5 days, and the battery voltage was measured every 5 days. In addition, the difference between the battery voltage immediately after charging and the battery voltage after leaving for 30 days is 1
The voltage drop per day was calculated as a voltage drop rate (mV / day).

【0029】図2及び下表2に良品電池各20個の平均
の電圧推移を示す。
FIG. 2 and Table 2 below show the average voltage transition of each of the 20 good batteries.

【0030】[0030]

【表2】 [Table 2]

【0031】表2に示すように、3層セパレータを用い
た実施例の電池は電圧低下率が1.867(mV/da
y)と、単層セパレータを用いた比較例の電池の8.2
00(mV/day)に比べ極めて良好な電圧保持特性
を示している。これは、捲回群6内部での微少短絡が極
めて少ないことを示すものと思われる。
As shown in Table 2, the battery of the embodiment using the three-layer separator has a voltage drop rate of 1.867 (mV / da).
y) and 8.2 of the battery of the comparative example using the single-layer separator.
It shows a very good voltage holding characteristic as compared with 00 (mV / day). This seems to indicate that the number of micro short circuits inside the winding group 6 is extremely small.

【0032】以上のように、本実施形態の円筒形リチウ
ムイオン電池20は、セパレータSをシャットダウン特
性に優れるポリエチレンと機械的強度に優れるポリプロ
ピレンとを積層し、ポリプロピレン/ポリエチレン/ポ
リプロピレンの3層構造としたので、シャットダウン特
性を確保しつつ機械的強度を有している。このため、捲
回群6作製時の歩留まりを向上させることができると共
に、実施例でも示したように、経時によっても内部(微
少)短絡が発生しずらい信頼性の高い電池とすることが
できる。また、セパレータSは機械的強度に優れるポリ
プロピレンで覆われているので、捲回時に混入する異物
や負極側での異種金属のデントライト成長に対しても、
単層セパレータに比べ容易に損傷することを防止するこ
とができる。更に、上記実施例で示したように、機械的
強度の大きいポリプロピレンを薄くすることができ、ポ
リエチレンを単層で使用する場合のように機械的強度を
考慮しないでシャットダウン特性を発揮できる厚さとす
ることができることから、3層構造のセパレータとして
も、円筒形リチウムイオン電池20を高出力密度の状態
とすることができる。このような3層セパレータを用い
た高信頼性の円筒形リチウムイオン電池20は、特に、
振動が加わる電気自動車やハイブリッド電気自動車用の
電源に適している。
As described above, the cylindrical lithium ion battery 20 of the present embodiment has a three-layer structure of polypropylene / polyethylene / polypropylene in which the separator S is formed by laminating polyethylene having excellent shutdown characteristics and polypropylene having excellent mechanical strength. As a result, it has mechanical strength while ensuring shutdown characteristics. For this reason, the yield at the time of manufacturing the winding group 6 can be improved, and as shown in the examples, a highly reliable battery in which an internal (small) short circuit hardly occurs even with time can be obtained. . In addition, since the separator S is covered with polypropylene having excellent mechanical strength, foreign matter mixed during winding and dendritic growth of a dissimilar metal on the negative electrode side are also reduced.
Damage can be prevented more easily than in a single-layer separator. Furthermore, as shown in the above example, the polypropylene having a large mechanical strength can be thinned, and the thickness is such that the shutdown characteristics can be exhibited without considering the mechanical strength as in the case of using a single layer of polyethylene. Therefore, the cylindrical lithium ion battery 20 can be in a state of high output density even as a three-layer separator. The highly reliable cylindrical lithium-ion battery 20 using such a three-layer separator is, in particular,
It is suitable for power supplies for electric vehicles and hybrid electric vehicles that are subject to vibration.

【0033】なお、本実施形態では、大形の円筒形リチ
ウムイオン電池の例を示したが、有底筒状の電池容器を
用い、上蓋をかしめによって封口する比較的小形のリチ
ウムイオン電池でも同様の良好な結果を得ることができ
た。また、本発明は、実施形態に示した円筒形電池に限
らず、例えば捲回群を断面渦巻き状以外の断面三角形、
角形、多角形に捲回したリチウムイオン電池にも適用が
可能である。
In this embodiment, an example of a large cylindrical lithium ion battery is shown. However, a comparatively small lithium ion battery in which a bottomed cylindrical battery container is used and the upper lid is closed by caulking is also used. Good results were obtained. In addition, the present invention is not limited to the cylindrical battery shown in the embodiment, for example, the winding group is a cross-sectional triangle other than spiral shape,
The present invention is also applicable to lithium-ion batteries wound in a rectangular or polygonal shape.

【0034】また、本実施形態ではポリプロピレンの厚
さを10μm、ポリエチレンの厚さを30μmとした3
層セパレータを例示したが、ポロプロピレン及びポリエ
チレンの厚さやセパレータ全体の厚さには限定されず、
用途に応じて信頼性を確保できる厚さとすればよい。
In this embodiment, the thickness of the polypropylene is 10 μm and the thickness of the polyethylene is 30 μm.
Although the layer separator is exemplified, it is not limited to the thickness of the polypropylene or the polyethylene or the thickness of the entire separator,
The thickness may be such that reliability can be ensured according to the application.

【0035】また、本実施形態では、絶縁被覆8に、片
面にヘキサメタアクリレートからなる粘着剤を塗布した
ポリイミド製の粘着テープを絶縁被覆8に用いたが、こ
れに限定されるものではなく、例えば、ポリプロピレン
やポリエチレン等のポリオレフィンの片面又は両面にヘ
キサメタアクリレートやブチルアクリレート等のアクリ
ル系粘着剤を塗布した粘着テープや、粘着剤を塗布しな
いポリオレフィンやポリイミドからなるテープなども同
様に使用することができる。
In this embodiment, a polyimide adhesive tape in which an adhesive made of hexamethacrylate is applied to one surface of the insulating coating 8 is used for the insulating coating 8, but the present invention is not limited to this. For example, an adhesive tape in which an acrylic adhesive such as hexamethacrylate or butyl acrylate is applied to one or both surfaces of a polyolefin such as polypropylene or polyethylene, or a tape made of polyolefin or polyimide to which no adhesive is applied may be similarly used. Can be.

【0036】更に、本実施形態では、正極活物質として
マンガン酸リチウムを用いた例を示したが、リチウム・
コバルト複合酸化物やリチウム・ニッケル複合酸化物な
ども使用することができる。しかしながら、コバルト等
の資源量は稀少なことからコストの面ではマンガン酸リ
チウムを正極活物質として用いることが好ましい。ま
た、負極活物質には、非晶質炭素のほかに、天然黒鉛、
人造黒鉛、コークスなどの炭素材料等も使用でき、それ
らの粒子形状においても特に制限されるものではない。
Further, in this embodiment, an example is shown in which lithium manganate is used as the positive electrode active material.
A cobalt composite oxide, a lithium nickel composite oxide, or the like can also be used. However, since resources such as cobalt are scarce, it is preferable to use lithium manganate as the positive electrode active material in terms of cost. In addition, in addition to amorphous carbon, natural graphite,
Carbon materials such as artificial graphite and coke can also be used, and their particle shapes are not particularly limited.

【0037】また、本実施形態では、結着剤としてポリ
フッ化ビニリデンを使用した例を示したが、テフロン
(登録商標)、ポリエチレン、ポリスチレン、ポリブタ
ジエン、ブチルゴム、ニトリルゴム、スチレン・ブタジ
エンゴム、多硫化ゴム、ニトロセルロース、シアノエチ
ルセルロース、各種ラテックス、アクリロニトリル、フ
ッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フ
ッ化クロロプレン等の重合体やこれらの混合物も使用す
ることができる。
In this embodiment, an example in which polyvinylidene fluoride is used as the binder is shown. However, Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide Polymers such as rubber, nitrocellulose, cyanoethylcellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, and chloroprene fluoride, and mixtures thereof can also be used.

【0038】そして、電解質としては、6フッ化リン酸
リチウム以外でも、LiClO、LiAsF、Li
BF、LiB(C、CHSOLi、C
SOLi等やこれらの混合物を用いることができ
る。また、有機溶媒としては、エチレンカーボネイト、
ジメチルカーボネイト、ジエチルカーボネイト、エチル
メチルカーボネイトのうち、二種以上を用いていればよ
い。
As the electrolyte, other than lithium hexafluorophosphate, LiClO 4 , LiAsF 6 , Li
BF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, C
F 3 SO 3 Li or the like or a mixture thereof can be used. Also, as the organic solvent, ethylene carbonate,
At least two of dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate may be used.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
セパレータを電池異常時のシャットダウン特性の優れる
ポリエチレンと機械的強度に優れるポリプロピレンとの
複数層構造としたので、セパレータがシャットダウン特
性と機械的強度との双方を有することから、非水電解液
二次電池の信頼性を高めることができる、という効果を
得ることができる。
As described above, according to the present invention,
Non-aqueous electrolyte secondary battery because the separator has a multi-layer structure of polyethylene with excellent shutdown characteristics at the time of battery abnormality and polypropylene with excellent mechanical strength, so that the separator has both shutdown characteristics and mechanical strength Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される実施形態の円筒形リチウム
イオン電池の断面図である。
FIG. 1 is a sectional view of a cylindrical lithium ion battery according to an embodiment to which the present invention is applied.

【図2】実施例及び比較例の円筒形リチウムイオン電池
の平均の電圧推移を示すグラフである。
FIG. 2 is a graph showing an average voltage change of cylindrical lithium ion batteries of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

6 捲回群(電極群) 20 円筒形リチウムイオン電池(非水電解液二次電
池) P 正極板(正極) N 負極板(負極) S セパレータ
6 Winding group (electrode group) 20 Cylindrical lithium ion battery (non-aqueous electrolyte secondary battery) P Positive electrode plate (positive electrode) N Negative electrode plate (negative electrode) S Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高塚 祐一 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H021 AA01 BB17 CC04 EE04 5H029 AJ12 AK03 AL06 AL07 AL08 AM03 AM05 AM07 BJ02 BJ14 CJ13 DJ04 DJ09 DJ17 EJ12 5H050 AA15 BA17 CA07 CA08 CA09 CB07 CB08 CB09 DA13 DA19 FA05 FA18 GA13  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yuichi Takatsuka 2-87-7 Nihonbashi Honcho, Chuo-ku, Tokyo Inside Shin-Kobe Electric Machinery Co., Ltd. (72) Kensuke Hironaka 2-87 Nihonbashi Honcho, Chuo-ku, Tokyo F-term (reference) in Shin-Kobe Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 充放電によりリチウムイオンを吸蔵・放
出可能なリチウム遷移金属複酸化物を活物質に用いた正
極と、充放電によりリチウムイオンを放出・吸蔵可能な
負極と、をセパレータを介して捲回した電極群を、リチ
ウム塩をエチレンカーボネート、ジメチルカーボネー
ト、ジエチルカーボネート及びエチルメチルカーボネー
トのうち少なくとも二種以上の有機溶媒に溶解した非水
電解液に浸潤させた非水電解液二次電池において、前記
セパレータをポリプロピレン及びポリエチレンの複数層
構造としたことを特徴とする非水電解液二次電池。
A positive electrode using a lithium transition metal complex oxide capable of occluding and releasing lithium ions by charge and discharge as an active material, and a negative electrode capable of releasing and occluding lithium ions by charge and discharge via a separator In a non-aqueous electrolyte secondary battery in which the wound electrode group is infiltrated with a non-aqueous electrolyte in which a lithium salt is dissolved in at least two or more organic solvents of ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. A non-aqueous electrolyte secondary battery, wherein the separator has a multi-layer structure of polypropylene and polyethylene.
【請求項2】 前記リチウム遷移金属複酸化物はマンガ
ン酸リチウムであり、前記リチウム塩は6フッ化リン酸
リチウムであり、前記セパレータはポリプロピレン/ポ
リエチレン/ポリプロピレンの3層構造であることを特
徴とする請求項1に記載の非水電解液二次電池。
2. The lithium transition metal double oxide is lithium manganate, the lithium salt is lithium hexafluorophosphate, and the separator has a three-layer structure of polypropylene / polyethylene / polypropylene. The non-aqueous electrolyte secondary battery according to claim 1.
JP2000164088A 2000-06-01 2000-06-01 Nonaqueous electrolytic solution secondary battery Abandoned JP2001345085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164088A JP2001345085A (en) 2000-06-01 2000-06-01 Nonaqueous electrolytic solution secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164088A JP2001345085A (en) 2000-06-01 2000-06-01 Nonaqueous electrolytic solution secondary battery

Publications (1)

Publication Number Publication Date
JP2001345085A true JP2001345085A (en) 2001-12-14

Family

ID=18667752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164088A Abandoned JP2001345085A (en) 2000-06-01 2000-06-01 Nonaqueous electrolytic solution secondary battery

Country Status (1)

Country Link
JP (1) JP2001345085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246000A (en) * 2001-02-14 2002-08-30 Sony Corp Non-aqueous electrolyte secondary battery
KR100947072B1 (en) 2008-03-27 2010-04-01 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same
JP2019016436A (en) * 2017-07-03 2019-01-31 宇部マクセル株式会社 Laminated film roll and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246000A (en) * 2001-02-14 2002-08-30 Sony Corp Non-aqueous electrolyte secondary battery
KR100947072B1 (en) 2008-03-27 2010-04-01 삼성에스디아이 주식회사 Electrode Assembly and Secondary Battery having the Same
US8530097B2 (en) 2008-03-27 2013-09-10 Samsung Sdi Co., Ltd. Electrode assembly including film-like separator combined with ceramic separator and secondary battery having the same
JP2019016436A (en) * 2017-07-03 2019-01-31 宇部マクセル株式会社 Laminated film roll and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3368877B2 (en) Cylindrical lithium-ion battery
EP1542307B1 (en) Battery pack and electric vehicle
JP2000311676A (en) Cylindrical lithium ion battery
JP2003308842A (en) Nonaqueous electrolyte lithium secondary battery
JP4305035B2 (en) Winding cylindrical lithium-ion battery
JP2003059539A (en) Cylindrical lithium ion battery
JP4055307B2 (en) Cylindrical lithium-ion battery
JP5337418B2 (en) Non-aqueous electrolyte secondary battery
JP2001126769A (en) Cylindrical lithium ion battery
JP2018147574A (en) Square Lithium Ion Secondary Battery
JP2000311677A (en) Rolled type cylindrical lithium secondary battery
JP2003243038A (en) Positive electrode plate and lithium secondary battery using it
JP3511966B2 (en) Cylindrical lithium-ion battery
JP4352654B2 (en) Non-aqueous electrolyte secondary battery
JP2001345085A (en) Nonaqueous electrolytic solution secondary battery
JP2005100955A (en) Winding type lithium ion battery
JP2001185220A (en) Cylindrical lithium ion battery
JP5254910B2 (en) Lithium ion secondary battery
JP4839518B2 (en) Non-aqueous electrolyte secondary battery
JP4026587B2 (en) Lithium ion battery
JP4839517B2 (en) Nonaqueous electrolyte secondary battery
JP4389398B2 (en) Non-aqueous electrolyte secondary battery
JP3518484B2 (en) Lithium ion battery
JP2001229974A (en) Cylindrical lithium ion battery
JP3440870B2 (en) Cylindrical lithium-ion battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20060426