JP2001339865A - Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly - Google Patents

Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly

Info

Publication number
JP2001339865A
JP2001339865A JP2000161139A JP2000161139A JP2001339865A JP 2001339865 A JP2001339865 A JP 2001339865A JP 2000161139 A JP2000161139 A JP 2000161139A JP 2000161139 A JP2000161139 A JP 2000161139A JP 2001339865 A JP2001339865 A JP 2001339865A
Authority
JP
Japan
Prior art keywords
cells
coil
voltage
cell
battery pack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000161139A
Other languages
Japanese (ja)
Inventor
Masaru Noda
勝 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2000161139A priority Critical patent/JP2001339865A/en
Publication of JP2001339865A publication Critical patent/JP2001339865A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To equalize cell voltages or module voltages while energy for charging cells of a battery assembly is not wasted. SOLUTION: Circuits in which coils and switch parts are conected in series to each other and the respective coils are coupled electromagnetically with the other coils and connected in parallel to respective cells of a battery assembly, and a drive unit which drives the switches in the respective circuits, are provided. The cells are charged or discharged by electromotive forces induced in the respective coils by electromagnetic induction between the respective coils when the respective switch parts are driven.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は組電池に係り、特に
複数のセルの電圧を均等化するための技術に関する。
The present invention relates to a battery pack, and more particularly to a technique for equalizing voltages of a plurality of cells.

【0002】[0002]

【従来の技術】例えば、いわゆるハイブリッドカーで
は、主動力源または補助動力源として電動モータが用い
られ、その電力源には多数のセルを直列接続して成る二
次電池が用いられている。一例として、1セル当たりの
標準電圧が1.2Vのニッケル・水素二次電池を120
セル直列接続したものが知られている。このように多数
のセルを直列接続した二次電池を、充電と放電を繰り返
して継続的に使用すると、セルの電圧に高低のばらつき
が生じてくる。そのため、全セルの総電圧の監視に加
え、セル毎の電圧も監視して、いずれのセルも過充電状
態や過放電状態で継続使用されることのないようにする
管理方式が必要である。このような二次電池の管理方式
に関する従来技術の一例としては、特開平11−196
537号公報に記載されたものがある。本公報記載の技
術は、セル(単電池)を所定の個数直列接続したものを
モジュールとし、モジュールをさらに複数個直列に接続
した電池システムにおいて、各モジュールの電圧を測定
し、それが全モジュールの平均電圧よりも高いモジュー
ルにつきバイパス回路を導通制御することで、当該モジ
ュールを適量だけ放電させ全モジュールの電圧を均等化
するようにしたものである。
2. Description of the Related Art For example, in a so-called hybrid car, an electric motor is used as a main power source or an auxiliary power source, and a secondary battery having a number of cells connected in series is used as the power source. As an example, a nickel-hydrogen secondary battery with a standard voltage of 1.2 V per cell
One in which cells are connected in series is known. When a secondary battery in which a large number of cells are connected in series as described above is used repeatedly by repeating charging and discharging, variations in cell voltages occur. Therefore, a management method is required that monitors not only the total voltage of all cells but also the voltage of each cell so that any cell is not continuously used in an overcharged state or an overdischarged state. As an example of the prior art relating to such a secondary battery management method, see Japanese Patent Application Laid-Open No. 11-196.
No. 537 is disclosed. The technology described in this publication is to measure a voltage of each module in a battery system in which a predetermined number of cells (unit cells) are connected in series as a module, and a plurality of modules are further connected in series. By controlling the conduction of the bypass circuit for a module higher than the average voltage, the module is discharged by an appropriate amount and the voltages of all the modules are equalized.

【0003】しかし、本従来技術では、モジュール電圧
が平均電圧よりも高いモジュールについては該モジュー
ル電圧を調整できるが、平均電圧よりも低いモジュール
については該電圧を調整できないと考えられる。最低電
圧のモジュールに電圧を揃えるようにすれば全モジュー
ルの電圧を均等化できるが、この方法では電池の充電エ
ネルギーがむだになり、電力効率及び発熱の点で好まし
くない。このため、充電エネルギーをむだにすることな
く、セル(単電池)の電圧またはモジュールの電圧を均
等化できる技術が望まれる。本発明は、上記課題を解決
し、従来技術をさらに改善できる技術を提供することを
目的とする。なお、以下の記載では、上記セル(単電
池)と上記モジュールとの両方を総称して「セル」と呼
ぶこととする。
However, in the prior art, it is considered that the module voltage can be adjusted for a module having a module voltage higher than the average voltage, but the module voltage cannot be adjusted for a module having a module voltage lower than the average voltage. If the voltage is made equal to the module having the lowest voltage, the voltage of all modules can be equalized. However, this method wastes the charging energy of the battery, which is not preferable in terms of power efficiency and heat generation. For this reason, a technique capable of equalizing the voltage of a cell (unit cell) or the voltage of a module without wasting charging energy is desired. An object of the present invention is to solve the above-described problems and to provide a technology that can further improve the conventional technology. In the following description, both the above-mentioned cell (unit cell) and the above-mentioned module are collectively referred to as “cell”.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、 1)組電池のセル間の電圧を均等化するためのセル電圧
均等化装置を、コイルとスイッチ部とが直列接続され該
コイルが他のコイルと電磁結合された回路であって上記
セルそれぞれに並列接続される回路と、該それぞれの回
路内のスイッチ部を駆動する駆動部とを備え、上記各ス
イッチ部の駆動時に上記コイル相互間の電磁誘導で該各
コイルに生ずる起電力により、上記セルを充電または放
電させ、該セル間の電圧を均等化する構成とする。 2)複数のセルを有して成る組電池と、コイルとスイッ
チ部とが直列接続され該コイルが他のコイルと電磁結合
された回路であって上記複数のセルそれぞれに並列接続
される回路と、該複数のスイッチ部を駆動する駆動部と
を備え、上記各スイッチ部の駆動時に上記コイル相互間
の電磁誘導で該各コイルに生ずる起電力により、上記セ
ルを充電または放電させ、該セル間の電圧を均等化する
構成とする。 3)上記1)または2)において、上記スイッチ部と上
記コイルとの間の接続点と、AC基準電位点との間に共
振用コンデンサを設ける。 4)上記1)、2)または3)において、上記駆動部
を、上記セルの電圧に所定値以上の差があるときに上記
スイッチ部を開閉駆動する構成とする。
In order to achieve the above object, the present invention provides: 1) a cell voltage equalizing device for equalizing the voltage between cells of a battery pack; A circuit that is connected and the coil is electromagnetically coupled to another coil and is connected in parallel to each of the cells; and a driving unit that drives a switch unit in each of the circuits. The cell is charged or discharged by an electromotive force generated in each coil by electromagnetic induction between the coils during driving, and the voltage between the cells is equalized. 2) an assembled battery having a plurality of cells, a circuit in which a coil and a switch unit are connected in series and the coil is electromagnetically coupled to another coil, and a circuit is connected in parallel to each of the plurality of cells. A driving unit for driving the plurality of switch units, wherein the cells are charged or discharged by an electromotive force generated in each of the coils due to electromagnetic induction between the coils when each of the switch units is driven. Are equalized. 3) In 1) or 2), a resonance capacitor is provided between a connection point between the switch section and the coil and an AC reference potential point. 4) In the above 1), 2) or 3), the drive section is configured to open and close the switch section when the voltage of the cell has a difference equal to or more than a predetermined value.

【0005】5)セル電圧均等化方法として、コイルと
スイッチ部とが直列接続され該コイルが他のコイルと電
磁結合された複数の回路部を、組電池の複数のセルそれ
ぞれに並列接続するステップと、該複数のスイッチ部を
繰り返し開閉駆動させ、上記コイル相互間の電磁誘導で
該コイルに起電力を発生させるようにするステップと、
該起電力によりセルを充電または放電させてセル間の電
圧を均等化するステップと、該複数のセル間で電圧差が
許容範囲内になったかどうかを判別するステップと、上
記セル間で電圧の均等化が終了したことを表示または報
知するステップと、上記複数の回路部の、上記複数のセ
ルへの接続を切り離すステップとを備えた構成とする。
[0005] 5) As a cell voltage equalization method, a step of connecting a plurality of circuit sections in which a coil and a switch section are connected in series and the coil is electromagnetically coupled to another coil to each of a plurality of cells of an assembled battery in parallel. And repeatedly driving the plurality of switch units to open and close to generate an electromotive force in the coil by electromagnetic induction between the coils,
Charging or discharging the cells by the electromotive force to equalize the voltage between the cells; determining whether a voltage difference between the plurality of cells is within an allowable range; and It is configured to include a step of displaying or notifying that the equalization has been completed and a step of disconnecting the plurality of circuit units from the plurality of cells.

【0006】6)組電池を電源とするハイブリッドカー
を、コイルとスイッチ部とが直列接続され該コイルが他
のコイルと電磁結合された回路であって上記組電池の複
数のセルそれぞれに並列接続される回路と、該スイッチ
部を駆動する駆動回路部と、上記組電池により動力源と
して駆動されるモータ部と、少なくとも該組電池の充電
用電力を発生する発電部と、該モータ、該発電部と該組
電池との間に接続される電力調整用のインバータと、該
インバータを制御するシステム運転制御部とを備え、上
記インバータに対し上記システム運転制御部から第1の
指示があったときは、上記発電部を外力により駆動し、
発生した電力を該インバータを介し上記組電池に供給し
て該組電池を充電し、上記システム運転制御部から第2
の指示があったときは、該組電池からの電力を該インバ
ータを介して上記モータに供給して該モータを駆動し、
該組電池の充電時もしくは充電後に、または該第1の指
示も該第2の指示もないときに、上記スイッチ部を開閉
動作させ、上記コイル相互間の電磁誘導で該コイルに生
ずる起電力により、該組電池の上記セルを充電または放
電させ、該セルの電圧を均等化する構成とする。
6) A hybrid car powered by an assembled battery is a circuit in which a coil and a switch section are connected in series and the coil is electromagnetically coupled to another coil, and is connected in parallel to each of a plurality of cells of the assembled battery. Circuit, a drive circuit unit for driving the switch unit, a motor unit driven as a power source by the battery pack, a power generation unit for generating at least charging power for the battery pack, the motor, A power adjustment inverter connected between the unit and the battery pack, and a system operation control unit for controlling the inverter, wherein a first instruction is given to the inverter from the system operation control unit. Drives the power generation unit by external force,
The generated power is supplied to the battery pack through the inverter to charge the battery pack, and the system operation control unit supplies a second power to the battery pack.
When the instruction is given, the power from the battery pack is supplied to the motor via the inverter to drive the motor,
At the time of or after charging the battery pack, or when neither the first instruction nor the second instruction is performed, the switch unit is opened / closed, and an electromotive force generated in the coil by electromagnetic induction between the coils. The battery of the battery pack is charged or discharged to equalize the voltage of the cell.

【0007】7)セルを備える組電池の生産方法であっ
て、セルを製作するステップと、製作したセルを直列接
続するステップと、コイルとスイッチ部が直列接続され
該コイルが他のコイルと電磁結合された回路を、複数の
セルそれぞれに並列に接続するステップと、該それぞれ
の回路内のスイッチ部を駆動するステップとを経て、上
記各スイッチ部の駆動時に上記コイル相互間の電磁誘導
で該各コイルに生ずる起電力により、上記セルを充電ま
たは放電させ、該セル間の電圧を均等化するようにす
る。
[0007] 7) A method of producing an assembled battery including cells, wherein the steps of manufacturing the cells, connecting the manufactured cells in series, and connecting the coil and the switch unit in series with each other so that the coil is electrically connected to another coil Through a step of connecting the coupled circuit to each of the plurality of cells in parallel, and a step of driving a switch unit in each of the circuits, the electromagnetic induction between the coils when driving each of the switch units. The cells are charged or discharged by the electromotive force generated in each coil to equalize the voltage between the cells.

【0008】各コイル間は電磁結合されているため、ス
イッチ部を繰り返し開閉した場合には、該コイル相互間
に電磁誘導が生じ、各コイルにはそれぞれ、他のコイル
によって起電力が誘起する。該起電力がセル電圧よりも
高い場合には、該起電力によって該セルは充電される。
逆に、該起電力がセル電圧よりも低い場合には、該セル
はコイルの逆起電力を補うように該コイルに放電電流を
流す。そして、これによる電磁誘導によって他のコイル
に起電力を生じ、該起電力によってこれよりも低い他の
セルを充電する。以上のことは各セル相互間で起きるた
め、適当な時間にわたるスイッチ部の繰り返し開閉動作
によって、コイルの起電力とセル電圧が等しくなり、セ
ル間で電圧が均等化される。また、本発明では、電磁結
合されたコイル間の電磁誘導に基づき、セル電圧の高い
セルがセル電圧の低いセルを充電するようにしているた
め、基本的には充電エネルギーがむだにされない。この
ため、エネルギー効率を高められる。また余分な発熱も
抑えられる。
Since the coils are electromagnetically coupled, when the switch is repeatedly opened and closed, electromagnetic induction occurs between the coils, and an electromotive force is induced in each coil by the other coil. If the electromotive force is higher than the cell voltage, the cell is charged by the electromotive force.
Conversely, if the electromotive force is lower than the cell voltage, the cell will pass a discharge current through the coil to compensate for the coil's back electromotive force. Then, an electromotive force is generated in another coil by the electromagnetic induction thereby, and another cell lower than this is charged by the electromotive force. Since the above occurs between the cells, the electromotive force of the coil and the cell voltage are equalized by the repeated opening and closing operations of the switch section for an appropriate time, and the voltage is equalized between the cells. Further, in the present invention, a cell having a high cell voltage charges a cell having a low cell voltage based on electromagnetic induction between coils that are electromagnetically coupled, so that basically no charge energy is wasted. Therefore, energy efficiency can be improved. Also, excess heat generation can be suppressed.

【0009】[0009]

【発明の実施の形態】以下、図面を用いて本発明の実施
例につき説明する。図1は本発明の第1の実施形態を示
す図である。本実施形態は2個のセルを直列接続した組
電池の例である。同図において、1は組電池、101は
組電池の正極端子、102は組電池の負極端子、11は
セルA、12はセルB、11PはセルAの正極端子、1
1MはセルAの負極端子、12PはセルBの正極端子、
12MはセルBの負極端子である。21、22はスイッ
チ、31、32はコイル、30は磁心(コア)である。
スイッチ21とコイル31は直列接続され、セルAの正
極端子11Pと負極端子11Mに接続されている。同様
に、スイッチ22とコイル32はセルBに接続されてい
る。コイル31とコイル32はそれぞれ、磁心30に同
じ巻数で巻かれ、相互に電磁結合されている。スイッチ
21とスイッチ22は駆動時には略同時に繰り返し開閉
される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a first embodiment of the present invention. The present embodiment is an example of an assembled battery in which two cells are connected in series. In the figure, 1 is an assembled battery, 101 is a positive terminal of the assembled battery, 102 is a negative terminal of the assembled battery, 11 is a cell A, 12 is a cell B, 11P is a positive terminal of the cell A, 1
1M is the negative terminal of cell A, 12P is the positive terminal of cell B,
12M is a negative terminal of the cell B. Reference numerals 21 and 22 denote switches, reference numerals 31 and 32 denote coils, and reference numeral 30 denotes a magnetic core.
The switch 21 and the coil 31 are connected in series, and are connected to the positive terminal 11P and the negative terminal 11M of the cell A. Similarly, the switch 22 and the coil 32 are connected to the cell B. The coil 31 and the coil 32 are wound around the magnetic core 30 with the same number of turns, and are electromagnetically coupled to each other. The switches 21 and 22 are opened and closed substantially simultaneously at the time of driving.

【0010】まず、初期状態において、セルAの電圧が
セルBの電圧よりも低い場合を想定する。この場合にお
いて、スイッチ21とスイッチ22の繰り返し開閉動作
が開始されると、コイルの電磁結合によってセルAのセ
ル電圧がコイル32側に誘起され、同時にセルBのセル
電圧がコイル31側に誘起される。コイル31側ではセ
ルAのセル電圧よりも高い電圧が誘起されるので、該セ
ルAはコイル31の該起電力で充電される。逆に、コイ
ル32側ではセルBのセル電圧よりも低い電圧が誘起さ
れるので、該セルBは該コイル32に誘起した電圧(起
電力)を補うように放電電流を流す。スイッチ21とス
イッチ22の繰り返し開閉動作が継続すると、セルAの
充電とセルBの放電が進行し、やがてセルAとセルBの
電圧が平衡して、充電と放電の電流値がほぼゼロにな
る。この状態でスイッチ21とスイッチ22を開(オ
フ)の状態で停止させれば、セル電圧の均等化が完了す
る。以上のセル電圧均等化動作は、2個のセルの電圧差
に応じた充電と放電により行われたと解釈できる。ま
た、これによって、セル電圧の高いセルがセル電圧の低
いセルを充電するように作用するので、充電エネルギー
がむだにされることがない。
First, it is assumed that the voltage of the cell A is lower than the voltage of the cell B in the initial state. In this case, when the switching operation of the switch 21 and the switch 22 is started repeatedly, the cell voltage of the cell A is induced on the coil 32 side by the electromagnetic coupling of the coil, and at the same time, the cell voltage of the cell B is induced on the coil 31 side. You. Since a voltage higher than the cell voltage of the cell A is induced on the coil 31 side, the cell A is charged with the electromotive force of the coil 31. Conversely, since a voltage lower than the cell voltage of the cell B is induced on the coil 32 side, the cell B supplies a discharge current so as to compensate for the voltage (electromotive force) induced in the coil 32. When the switching operation of the switch 21 and the switch 22 continues, the charging of the cell A and the discharging of the cell B progress, and the voltages of the cells A and B eventually balance, and the current values of the charging and discharging become almost zero. . If the switches 21 and 22 are stopped in an open (off) state in this state, the cell voltages are equalized. The above cell voltage equalization operation can be interpreted as being performed by charging and discharging according to the voltage difference between the two cells. In addition, since a cell having a high cell voltage acts to charge a cell having a low cell voltage, charging energy is not wasted.

【0011】図2は、上記実施形態で使用されるコイル
の具体例を示す。例えばフェライトなどのトロイダルコ
アにコイル31とコイル32が同じ巻数で巻かれてい
る。トロイダルコアは漏洩磁束が少なく、密な電磁結合
が得られる。図3は、上記実施形態におけるセル電圧均
等化の推移状況のシミュレーション結果である。組電池
のセルを模擬的に0.01F(ファラッド)のコンデン
サで置き換え、セルAに相当するコンデンサの初期電圧
を10Vとし、セルBに相当するコンデンサの初期電圧
を14Vとしている。スイッチは50μsずつ開と閉を
繰り返す設定とした。本図3の結果から判断すると、そ
れぞれのセル電圧が時間の経過とともに互いに相手の値
に近づき、0.025sほど経過すると初期電圧10V
と14Vのほぼ平均の略12Vに落ち着き、セル電圧が
均等化される。実際の電池では、容量が0.01Fより
も大きいコンデンサに相当するため、この落ち着くまで
の時間はもっと長い。
FIG. 2 shows a specific example of a coil used in the above embodiment. For example, a coil 31 and a coil 32 are wound with the same number of turns around a toroidal core such as ferrite. The toroidal core has a small amount of leakage magnetic flux and can obtain a dense electromagnetic coupling. FIG. 3 is a simulation result of a transition state of the cell voltage equalization in the embodiment. The cells of the assembled battery are simulated and replaced with 0.01 F (farad) capacitors, and the initial voltage of the capacitor corresponding to the cell A is set to 10 V, and the initial voltage of the capacitor corresponding to the cell B is set to 14 V. The switch was set to repeat opening and closing every 50 μs. Judging from the results shown in FIG. 3, the cell voltages approach each other's values with the passage of time, and the initial voltage becomes 10 V
, And settles to approximately 12V, which is an average of 14V, and the cell voltage is equalized. In an actual battery, the time required to settle down is longer because the capacity corresponds to a capacitor having a capacity of more than 0.01 F.

【0012】図4は本発明の第2の実施形態を示す図で
ある。本実施形態は3個のセルを直列接続した組電池の
例である。同図において、13はセルC、13Pは該セ
ルCの正極端子、13MはセルCの負極端子、23はス
イッチ、33はコイルである。他は上記第1の実施形態
の場合と同じである。コイル31、コイル32、コイル
33は相互に電磁結合されており、スイッチ21、スイ
ッチ22、スイッチ23は略同時に繰り返し開閉され
る。上記第1の実施形態において、2個のセルが相互間
の電圧差に応じた充電と放電を行ったと同様、本第2の
実施形態でも3個のセルが相互に充電と放電を行う。該
充電と放電によってセル電圧は、3個のセルの初期電圧
のほぼ平均の電圧値に落ち着く。図5は、図4に示す実
施形態におけるセル電圧の均等化の推移状況のシミュレ
ーション結果である。本シミュレーションにおいても電
池セルを模擬的に0.01F(ファラッド)のコンデン
サに置き換え、セルAに相当するコンデンサの初期電圧
を10V、セルBに相当するコンデンサの初期電圧を1
2Vとし、セルCに相当するコンデンサの初期電圧は1
6Vとしている。スイッチは開状態と閉状態とを50μ
sずつ繰り返すとした。本結果から、各セル電圧は3個
のセルの初期電圧の平均値に向かって近づき、略0.0
25s経過後にほぼ該平均値に落ち着く。実際の電池で
は、この落ち着くまでの時間がもっと長くなることは、
上記第1の実施形態における場合と同じである。
FIG. 4 is a diagram showing a second embodiment of the present invention. The present embodiment is an example of an assembled battery in which three cells are connected in series. In the figure, 13 is a cell C, 13P is a positive terminal of the cell C, 13M is a negative terminal of the cell C, 23 is a switch, and 33 is a coil. Others are the same as those in the first embodiment. The coil 31, the coil 32, and the coil 33 are electromagnetically coupled to each other, and the switch 21, the switch 22, and the switch 23 are repeatedly opened and closed substantially simultaneously. In the same manner as in the first embodiment, two cells perform charging and discharging according to the voltage difference therebetween, and in the second embodiment, three cells perform charging and discharging each other. As a result of the charging and discharging, the cell voltage is settled to a voltage value approximately equal to the initial voltage of the three cells. FIG. 5 is a simulation result of a transition state of equalization of cell voltages in the embodiment shown in FIG. Also in this simulation, the battery cell was simulated and replaced with a 0.01 F (farad) capacitor, and the initial voltage of the capacitor corresponding to the cell A was 10 V, and the initial voltage of the capacitor corresponding to the cell B was 1
2V, and the initial voltage of the capacitor corresponding to the cell C is 1
6V. Switches open and close 50μ
Repeated every s. From this result, each cell voltage approaches the average of the initial voltages of the three cells, and is approximately 0.0
After 25 seconds, the average value is almost settled. With an actual battery, this longer time to settle down is
This is the same as in the first embodiment.

【0013】図6は、上記第2の実施形態で使うコイル
の具体例を示す図である。例えばフェライト等のトロイ
ダルコアに、コイル31とコイル32とコイル33を同
じ巻数で巻いてある。以上述べた第1、第2の実施形態
を拡張し、セル数に対応してコイルとスイッチを増加さ
せることで、さらに多数のセルをもった組電池に対応で
きる。
FIG. 6 is a diagram showing a specific example of a coil used in the second embodiment. For example, a coil 31, a coil 32, and a coil 33 are wound around a toroidal core such as ferrite with the same number of turns. By expanding the first and second embodiments described above and increasing the number of coils and switches in accordance with the number of cells, it is possible to cope with an assembled battery having a larger number of cells.

【0014】図7は、本発明の第3の実施形態を示す図
である。本実施形態は、スイッチとしてMOSFETを
用い、スイッチがオフ(これをターンオフと呼ぶ)に遷
移する間にコイルに発生する高電圧パルスを吸収するよ
うにした構成例である。同図において、21、22、2
3はそれぞれMOSFET、211、221、231は
それぞれ、該MOSFET21、22、23それぞれの
ゲートに駆動パルスを印加するための駆動パルス結合回
路、41、42、43は共振用コンデンサである。MO
SFETはPチャネル型で、ゲート端子にソース端子よ
りも数V低い電圧が印加されたときにオン状態となる。
本構成では、図示の5Vppの駆動パルスが上記駆動パ
ルス結合回路を介して各MOSFETのゲートに印加さ
れており、駆動パルスのロー期間(例えば50μs程
度)でオンし、ハイ期間(例えば50μs程度)でオフ
となる。全MOSFETがオンからオフに遷移(ターン
オフ)すると、各コイルはインダクタンスによって、直
前のオン期間に流していたそれぞれの電流を維持しよう
とするが、コイル相互の密な電磁結合に束縛されて、そ
れぞれのコイルに接続された共振用コンデンサ41、4
2、43との間で、全てのコイルがほぼ同じ共振電流を
流す。この時、各MOSFETのドレイン端子の電圧
は、ターンオフの瞬間から負のサインウエーブ状に遷移
するが、半周期後に元の電圧に戻ったところでちょうど
次のターンオンタイミングになるように共振用コンデン
サの容量値を決める。本実施形態では、各コイル単独の
インダクタンス値を1mH、共振用コンデンサの容量値
を50nFとしたときに上記の条件が満たされ、図8に
示すような電圧波形が得られる。このように共振用コン
デンサを設けることにより、ターンオフの瞬間に発生す
る高電圧を抑制でき、かつ、ターンオンの瞬間にスイッ
チにかかる電圧差を小さく留めることができ、MOSF
ETの耐電圧と電力の負担を軽減できる。なお、共振用
コンデンサの接続構成は、本構成例に限定されず、該コ
ンデンサの一方の端子がスイッチとコイルの接続点にあ
り、他方の端子が交流的に基準電位と見なせる点(AC
基準電位)にあれば、他の構成であってもよい。
FIG. 7 is a diagram showing a third embodiment of the present invention. This embodiment is an example of a configuration in which a MOSFET is used as a switch to absorb a high-voltage pulse generated in a coil while the switch is turned off (this is called turn-off). In the figure, 21, 22, 2
Reference numeral 3 denotes a MOSFET, 211, 221, and 231 drive pulse coupling circuits for applying a drive pulse to the gates of the MOSFETs 21, 22, and 23, respectively, and 41, 42, and 43 denote resonance capacitors. MO
The SFET is a P-channel type, and is turned on when a voltage several volts lower than the source terminal is applied to the gate terminal.
In this configuration, the illustrated drive pulse of 5 Vpp is applied to the gate of each MOSFET via the drive pulse coupling circuit, and is turned on during the low period (for example, about 50 μs) of the drive pulse and for the high period (for example, about 50 μs). Is turned off. When all MOSFETs transition from on to off (turn off), each coil tries to maintain the respective current flowing during the immediately preceding on period due to inductance, but is bound by the tight electromagnetic coupling between the coils, Resonance capacitors 41, 4 connected to the coils of
Between 2 and 43, all coils pass substantially the same resonance current. At this time, the voltage at the drain terminal of each MOSFET transitions in a negative sine wave form from the moment of turn-off, but when the voltage returns to the original voltage after half a cycle, the capacitance of the resonance capacitor is set so that the next turn-on timing is reached. Determine the value. In the present embodiment, the above condition is satisfied when the inductance value of each coil is 1 mH and the capacitance value of the resonance capacitor is 50 nF, and a voltage waveform as shown in FIG. 8 is obtained. By providing the resonance capacitor in this manner, a high voltage generated at the moment of turn-off can be suppressed, and a voltage difference applied to the switch at the moment of turn-on can be reduced.
The withstand voltage of ET and the burden of power can be reduced. Note that the connection configuration of the resonance capacitor is not limited to this configuration example, and one terminal of the capacitor is located at the connection point between the switch and the coil, and the other terminal is alternately regarded as a reference potential (AC
Other configurations may be used as long as they are at (reference potential).

【0015】図9は本発明の第4の実施形態を示す図で
ある。本実施形態では、スイッチにNチャネル型MOS
FETを用いる。上記第3の実施形態に対し、MOSF
ETの接続位置を各セルのローサイドにし、駆動パルス
の極性を反転させている。その他の構成は第3の実施形
態の場合とほぼ同じである。本第4の実施形態の構成で
は、スイッチオフの期間にMOSFETのドレイン端子
に発生する共振波形は、正側に伸びた半周期のサインカ
ーブとなる。図10は本発明の第5の実施形態を示す図
である。同図において、50はセル電圧均等化装置ユニ
ットであり、上記第4の実施形態の構成から組電池以外
の部分を切り離して装置ユニットとしたものである。各
セルを接続する端子として51Pと51Mの端子対、5
2Pと52Mの端子対、及び53Pと53Mの端子対を
備えている。例えばハイブリッドカーに用いられる組電
池においても、セル電圧がアンバランスになる頻度は極
めて低いと予想される。このため、セル電圧均等化のた
めの装置をハイブリッドカー等の1台毎に持たせず、サ
ービスステーションに本実施形態のような装置ユニット
を備えておき、必要なときにこれをハイブリッドカー等
の組電池に接続してセル電圧の均等化処理を行う方法も
ある。
FIG. 9 is a diagram showing a fourth embodiment of the present invention. In this embodiment, the switch is an N-channel type MOS.
FET is used. In contrast to the third embodiment, the MOSF
The connection position of the ET is set to the low side of each cell, and the polarity of the drive pulse is inverted. Other configurations are almost the same as those of the third embodiment. In the configuration of the fourth embodiment, the resonance waveform generated at the drain terminal of the MOSFET during the switch-off period is a half-period sine curve extending to the positive side. FIG. 10 is a diagram showing a fifth embodiment of the present invention. In the figure, reference numeral 50 denotes a cell voltage equalization device unit, which is a device unit by separating parts other than the assembled battery from the configuration of the fourth embodiment. A terminal pair of 51P and 51M is used as a terminal for connecting each cell.
A terminal pair of 2P and 52M and a terminal pair of 53P and 53M are provided. For example, in a battery pack used for a hybrid car, it is expected that the frequency at which the cell voltage becomes unbalanced is extremely low. For this reason, a device for cell voltage equalization is not provided for each hybrid car or the like, but a service station is provided with the device unit as in the present embodiment, and when necessary, this is used for a hybrid car or the like. There is also a method of performing cell voltage equalization processing by connecting to an assembled battery.

【0016】図11は本発明の第6の実施形態を示す図
である。本実施形態は、セル電圧均等化装置をハイブリ
ッドカー等に適用した例である。同図において、200
はスイッチ制御部、300はセル電圧監視部、400は
インバータ、500はモータ兼発電機、600はシステ
ム運転制御部である。その他は、上記第1の実施形態の
場合と同じである。組電池1の正極端子101と負極端
子102は、インバータ400を経由してモータ兼発電
機500に接続されている。モータ兼発電機500は、
モータとして働くときは、組電池1の電力がインバータ
400で調節されて該モータ兼発電機500に供給され
車両の動力源となる。一方、例えば車両に回生制動でブ
レーキをかけるとき等は該モータ兼発電機500は発電
機として働き、発生した電力をインバータで調節して組
電池の充電に利用する。また、組電池の充電エネルギー
が減少したときにも、発電機500は内燃機関等の動力
を受けて発電し、発電電力をインバータで調節して組電
池に供給し組電池を充電する。本構成ではモータと発電
機を兼用する構成としたが、モータと発電機は別個に設
けてもよい。システム運転制御部600は、運転状況に
応じてインバータ400を制御する。スイッチ制御部2
00は、セル電圧均等化装置のスイッチ21、22及び
23の繰り返し開閉を制御するもので、その制御アルゴ
リズムは複数あり、例えば、第1の方法としては、シス
テム運転制御部600がインバータ400に対して組電
池の充電指令を出し該組電池を充電している時、または
該充電を終えた後に、スイッチ制御部200を制御し、
スイッチに繰り返し開閉を継続的に行わせる方法があ
る。この方法では、充電の都度、セル電圧均等化装置が
作動するようにすれば、常にセル電圧を均等化された状
態に維持できる利点がある。また、例えば、第2の方法
としては、セル電圧監視部300でセル電圧に所定値以
上の不均等を検出したときに、スイッチ制御部を制御し
スイッチに繰り返し開閉を行わせる方法がある。この方
法では、セル電圧均等化装置の作動頻度が少なくなると
予想され、セル電圧均等化装置のスイッチの抵抗分やコ
イルの抵抗分及びその他の要因によって発生するエネル
ギー損失を抑制できる利点がある。またさらに、第3の
方法としては、上記システム運転制御部600がインバ
ータ400に対し、組電池の充電指令も、またモータの
駆動指令も出していないときに、上記スイッチ制御部を
制御しセル電圧の均等化動作を行うようにしてもよい。
FIG. 11 is a view showing a sixth embodiment of the present invention. This embodiment is an example in which the cell voltage equalization device is applied to a hybrid car or the like. In FIG.
Is a switch control unit, 300 is a cell voltage monitoring unit, 400 is an inverter, 500 is a motor / generator, and 600 is a system operation control unit. The other points are the same as those in the first embodiment. The positive terminal 101 and the negative terminal 102 of the battery pack 1 are connected to a motor / generator 500 via an inverter 400. Motor / generator 500
When working as a motor, the power of the battery pack 1 is adjusted by the inverter 400 and supplied to the motor / generator 500 to serve as a power source for the vehicle. On the other hand, for example, when the vehicle is braked by regenerative braking, the motor / generator 500 functions as a generator, and the generated power is adjusted by an inverter and used for charging the assembled battery. In addition, even when the charging energy of the battery pack decreases, the generator 500 receives the power of the internal combustion engine or the like to generate power, adjusts the generated power with an inverter, supplies the power to the battery pack, and charges the battery pack. In this configuration, the motor and the generator are used in combination, but the motor and the generator may be provided separately. The system operation control unit 600 controls the inverter 400 according to the operation status. Switch control unit 2
00 controls repetitive opening and closing of the switches 21, 22 and 23 of the cell voltage equalization device. There are a plurality of control algorithms. For example, as a first method, the system operation control unit 600 Control the switch control unit 200 when charging the assembled battery by issuing a charge command to the assembled battery or after the charging is completed,
There is a method in which a switch is repeatedly opened and closed continuously. This method has the advantage that the cell voltage equalizing device is operated every time charging, so that the cell voltage can always be maintained in an equalized state. Further, for example, as a second method, there is a method in which, when the cell voltage monitoring unit 300 detects the nonuniformity of the cell voltage equal to or more than a predetermined value, the switch control unit is controlled to cause the switch to repeatedly open and close. This method is expected to reduce the frequency of operation of the cell voltage equalization device, and has the advantage of suppressing the energy loss caused by the resistance of the switch of the cell voltage equalization device, the resistance of the coil, and other factors. Still further, as a third method, when the system operation control unit 600 does not issue a command to charge the assembled battery or a command to drive the motor to the inverter 400, the system control unit 600 controls the switch control unit to control the cell voltage. May be performed.

【0017】上記第1〜第6の実施形態の構成によれ
ば、スイッチの開閉とコイル相互間の電磁誘導を利用し
て、セル電圧を均等化できる。また、該均等化処理は、
セル電圧の高いセルがセル電圧の低いセルを充電するよ
うにして行われるので、基本的に充電エネルギーがむだ
にされない。また、余分な発熱も少なくすることができ
る。また、本発明は、組電池の生産過程において、例え
ばセル製作後の電池充電時または充電後に、コイルとス
イッチ部が直列接続された回路を、複数のセルそれぞれ
に並列に接続し、該それぞれの回路内のスイッチ部を駆
動して、上記コイル相互間の電磁誘導で該各コイルに起
電力を発生させ、該起電力により上記セルを充電または
放電させ該セル間の電圧を均等化するとした組電池の生
産方法もその範囲内に含む。なお、上記各説明におい
て、コイルとスイッチ部を直列接続した回路は、全部の
セルに接続してもよいし、または、一部の複数セルに接
続するようにしてもよい。
According to the configurations of the first to sixth embodiments, the cell voltage can be equalized using the opening and closing of the switch and the electromagnetic induction between the coils. In addition, the equalization processing includes:
Since charging is performed in such a manner that a cell having a high cell voltage charges a cell having a low cell voltage, basically no charge energy is wasted. Also, unnecessary heat generation can be reduced. Further, in the present invention, in the production process of an assembled battery, for example, when charging or after charging the battery after cell production, a circuit in which a coil and a switch unit are connected in series, are connected in parallel to each of the plurality of cells, and the respective cells are connected. A group in which a switch unit in a circuit is driven to generate an electromotive force in each of the coils by electromagnetic induction between the coils, and the cells are charged or discharged by the electromotive force to equalize the voltage between the cells. The battery production method is also included in the scope. In each of the above descriptions, the circuit in which the coil and the switch unit are connected in series may be connected to all cells, or may be connected to some cells.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
充電エネルギーをむだにすることなく、セル電圧を均等
化できる。また、余分な発熱も抑えられる。
As described above, according to the present invention,
Cell voltage can be equalized without wasting charging energy. Also, excess heat generation can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】第1の実施形態のコイルの具体例を示す図であ
る。
FIG. 2 is a diagram illustrating a specific example of a coil according to the first embodiment.

【図3】第1の実施形態におけるセル電圧均等化の推移
状況のシミュレーション結果を示す図である。
FIG. 3 is a diagram showing a simulation result of a transition state of cell voltage equalization in the first embodiment.

【図4】本発明の第2の実施形態を示す図である。FIG. 4 is a diagram showing a second embodiment of the present invention.

【図5】第2の実施形態におけるセル電圧均等化の推移
状況のシミュレーション結果を示す図である。
FIG. 5 is a diagram illustrating a simulation result of a transition state of cell voltage equalization in the second embodiment.

【図6】第2の実施形態で使用されるコイルの具体例を
示す図である。
FIG. 6 is a diagram showing a specific example of a coil used in the second embodiment.

【図7】本発明の第3の実施形態を示す図である。FIG. 7 is a diagram showing a third embodiment of the present invention.

【図8】MOSFETのドレイン端子の電圧波形を示す
図である。
FIG. 8 is a diagram showing a voltage waveform at the drain terminal of the MOSFET.

【図9】本発明の第4の実施形態を示す図である。FIG. 9 is a diagram showing a fourth embodiment of the present invention.

【図10】本発明の第5の実施形態を示す図である。FIG. 10 is a diagram showing a fifth embodiment of the present invention.

【図11】本発明の第6の実施形態を示す図である。FIG. 11 is a diagram showing a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…組電池、 101…組電池の正極端子、 102…
組電池の負極端子、11…セルA、 12…セルB、
13…セルC、11P、12P、13P…セルの正極端
子、11M、12M、13M…セルの負極端子、 2
1、22、23…スイッチ、211、221、231…
駆動パルス結合回路、 30…磁心、31、32、33
…コイル、 2、3…セル選択スイッチ群、41、4
2、43…共振用コンデンサ、50…セル電圧均等化装
置ユニット、 200…スイッチ制御部、300…セル
電圧監視部、 400…インバータ、500…モータ兼
発電機、 600…システム運転制御部。
DESCRIPTION OF SYMBOLS 1 ... Battery pack, 101 ... Positive electrode terminal of battery pack, 102 ...
Negative electrode terminal of the assembled battery, 11: cell A, 12: cell B,
13: cells C, 11P, 12P, 13P: positive terminals of cells, 11M, 12M, 13M: negative terminals of cells, 2
1, 22, 23 ... switch, 211, 221, 231 ...
Drive pulse coupling circuit, 30 ... magnetic core, 31, 32, 33
... Coil, 2, 3 ... Cell selection switch group, 41, 4
2, 43: resonance capacitor, 50: cell voltage equalizing device unit, 200: switch control unit, 300: cell voltage monitoring unit, 400: inverter, 500: motor and generator, 600: system operation control unit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/44 ZHV H01M 10/48 P 10/48 H02J 7/02 H H02J 7/02 7/10 R 7/10 B60K 9/00 C Fターム(参考) 5G003 BA03 CA11 CC04 FA06 5H030 AA01 AS08 BB01 BB21 DD05 FF41 5H115 PG04 PI16 PI29 PO09 PO16 PU01 PU25 PU26 QI04 TR19 TU12 TU16 TU17 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/44 ZHV H01M 10/48 P 10/48 H02J 7/02 H H02J 7/02 7/10 R 7 / 10 B60K 9/00 CF term (reference) 5G003 BA03 CA11 CC04 FA06 5H030 AA01 AS08 BB01 BB21 DD05 FF41 5H115 PG04 PI16 PI29 PO09 PO16 PU01 PU25 PU26 QI04 TR19 TU12 TU16 TU17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】組電池のセル間の電圧を均等化するための
セル電圧均等化装置であって、 コイルとスイッチ部とが直列接続され該コイルが他のコ
イルと電磁結合され、複数のセルそれぞれに並列接続さ
れる回路と、 該それぞれの回路内のスイッチ部を駆動する駆動部と、 を備え、 上記各スイッチ部の駆動時に上記コイル相互間の電磁誘
導で該各コイルに生ずる起電力により、上記セルを充電
または放電させ、該セル間の電圧を均等化するようにし
たことを特徴とするセル電圧均等化装置。
1. A cell voltage equalizing device for equalizing a voltage between cells of a battery pack, comprising: a coil and a switch unit connected in series; the coil being electromagnetically coupled to another coil; A circuit connected in parallel with each other, and a drive unit for driving a switch unit in each of the circuits, wherein when each of the switch units is driven, an electromagnetic force generated in each of the coils by electromagnetic induction between the coils. A cell voltage equalizing device wherein the cells are charged or discharged to equalize the voltage between the cells.
【請求項2】セルを有して成る組電池と、 コイルとスイッチ部とが直列接続され該コイルが他のコ
イルと電磁結合され、複数のセルそれぞれに並列接続さ
れる回路と、 該複数のスイッチ部を駆動する駆動部と、 を備え、 上記各スイッチ部の駆動時に上記コイル相互間の電磁誘
導で該各コイルに生ずる起電力により、上記セルを充電
または放電させ、該セル間の電圧を均等化するようにし
たことを特徴とするセル電圧均等化装置。
2. A battery pack having cells, a circuit in which a coil and a switch section are connected in series, the coil is electromagnetically coupled to another coil, and a circuit is connected in parallel to each of the plurality of cells; And a driving unit for driving the switch unit. When the switch units are driven, the cells are charged or discharged by an electromotive force generated in each coil by electromagnetic induction between the coils, and a voltage between the cells is changed. A cell voltage equalization device characterized in that equalization is performed.
【請求項3】上記スイッチ部と上記コイルとの間の接続
点と、AC基準電位点との間に、共振用コンデンサを設
けた請求項1または請求項2に記載のセル電圧均等化装
置。
3. The cell voltage equalizing device according to claim 1, wherein a resonance capacitor is provided between a connection point between the switch section and the coil and an AC reference potential point.
【請求項4】上記駆動部は、上記セルの電圧に所定値以
上の差があるときに上記スイッチ部を駆動する構成であ
る請求項1、2または3に記載のセル電圧均等化装置。
4. The cell voltage equalizing apparatus according to claim 1, wherein said drive section drives said switch section when the voltage of said cell has a difference of not less than a predetermined value.
【請求項5】コイルとスイッチ部とが直列接続され該コ
イルが他のコイルと電磁結合された複数の回路部を、組
電池の複数のセルそれぞれに並列接続するステップと、 該複数のスイッチ部を繰り返し開閉駆動させ、上記コイ
ル相互間の電磁誘導で該コイルに起電力を発生させるス
テップと、 該起電力によりセルを充電または放電させてセル間の電
圧を均等化するステップと、 該複数のセル間で電圧差が許容範囲内になったかどうか
を判別するステップと、 上記セル間で電圧の均等化が終了したことを表示または
報知するステップと、 上記複数の回路部の、上記複数のセルへの接続を切り離
すステップと、 を、備えたことを特徴とするセル電圧均等化方法。
5. A step of connecting a plurality of circuit sections in which a coil and a switch section are connected in series and the coil is electromagnetically coupled to another coil to each of a plurality of cells of the battery pack, and the plurality of switch sections. Repeatedly opening and closing to generate an electromotive force in the coil by electromagnetic induction between the coils; charging or discharging the cells by the electromotive force to equalize the voltage between the cells; A step of determining whether a voltage difference between cells is within an allowable range; a step of displaying or notifying that the equalization of voltage between the cells has been completed; and a step of displaying the plurality of cells of the plurality of circuit units. Disconnecting the connection to the cell voltage equalization method.
【請求項6】上記各ステップは、組電池の充電時に行わ
れる請求項5に記載のセル電圧均等化方法。
6. The method according to claim 5, wherein each of the steps is performed when the battery pack is charged.
【請求項7】組電池を電源とするハイブリッドカーであ
って、 コイルとスイッチ部とが直列接続され該コイルが他のコ
イルと電磁結合され、上記組電池の複数のセルそれぞれ
に並列接続される回路と、 該スイッチ部を駆動する駆動回路部と、 上記組電池により動力源として駆動されるモータ部と、 少なくとも該組電池の充電用電力を発生する発電部と、 該モータ、該発電部と該組電池との間に接続される電力
調整用のインバータと、 該インバータを制御するシステム運転制御部と、 を備え、 上記インバータに対し上記システム運転制御部から第1
の指示があったときは、上記発電部を外力により駆動
し、発生した電力を該インバータを介し上記組電池に供
給して該組電池を充電し、上記システム運転制御部から
第2の指示があったときは、該組電池からの電力を該イ
ンバータを介して上記モータに供給して該モータを駆動
し、該組電池の充電時もしくは充電後に、または該第1
の指示も該第2の指示もないときに、上記スイッチ部を
開閉動作させ、上記コイル相互間の電磁誘導で該コイル
に生ずる起電力により、該組電池の上記セルを充電また
は放電させ、該セルの電圧を均等化するようにしたこと
を特徴とするハイブリッドカー。
7. A hybrid car using a battery pack as a power source, wherein a coil and a switch unit are connected in series, the coil is electromagnetically coupled to another coil, and connected in parallel to each of the plurality of cells of the battery pack. A circuit, a drive circuit for driving the switch, a motor driven as a power source by the battery pack, a power generator for generating at least charging power for the battery pack, the motor and the power generator. An inverter for power adjustment connected between the battery pack and a system operation control unit for controlling the inverter;
When the instruction is issued, the power generation unit is driven by an external force, the generated power is supplied to the battery pack via the inverter to charge the battery pack, and a second instruction is issued from the system operation control unit. When there is, the electric power from the battery pack is supplied to the motor via the inverter to drive the motor, and the battery is charged at the time of charging or after the charging, or the first battery.
When neither the instruction nor the second instruction is performed, the switch unit is opened and closed, and the cells of the battery pack are charged or discharged by an electromotive force generated in the coil due to electromagnetic induction between the coils. A hybrid car characterized by equalizing cell voltages.
【請求項8】セルを備える組電池の生産方法であって、 セルを製作するステップと、 製作したセルを直列接続するステップと、 コイルとスイッチ部が直列接続され該コイルが他のコイ
ルと電磁結合された回路を、複数のセルそれぞれに並列
に接続するステップと、 該それぞれの回路内のスイッチ部を駆動するステップ
と、 を経て、上記各スイッチ部の駆動時に上記コイル相互間
の電磁誘導で該各コイルに生ずる起電力により、上記セ
ルを充電または放電させて該セル間の電圧を均等化する
ようにしたことを特徴とする組電池の生産方法。
8. A method for producing a battery pack having cells, comprising the steps of: manufacturing a cell; connecting the manufactured cells in series; and connecting a coil and a switch unit in series, wherein the coil is electrically connected to another coil. Connecting the coupled circuit to each of the plurality of cells in parallel, and driving a switch unit in each of the circuits, by electromagnetic induction between the coils when driving each of the switch units. A method for producing an assembled battery, characterized in that the cells are charged or discharged by an electromotive force generated in each coil to equalize the voltage between the cells.
JP2000161139A 2000-05-26 2000-05-26 Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly Withdrawn JP2001339865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161139A JP2001339865A (en) 2000-05-26 2000-05-26 Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161139A JP2001339865A (en) 2000-05-26 2000-05-26 Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly

Publications (1)

Publication Number Publication Date
JP2001339865A true JP2001339865A (en) 2001-12-07

Family

ID=18665212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161139A Withdrawn JP2001339865A (en) 2000-05-26 2000-05-26 Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly

Country Status (1)

Country Link
JP (1) JP2001339865A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112222A1 (en) * 2004-05-13 2005-11-24 Ntt Data Ex Techno Corporation Discharge control circuit, charge control circuit and charge/discharge control circuit of battery
JP2007006568A (en) * 2005-06-22 2007-01-11 Fujitsu Access Ltd Power unit
JP2009525716A (en) * 2006-02-02 2009-07-09 ヴィーガー・マルティン Method and apparatus for changing the state of charge (SOC) and health state (SOH) of a rechargeable battery
JP2009153233A (en) * 2007-12-18 2009-07-09 Toshiba Corp Stored power amount equalizer for battery packs
JP2011507149A (en) * 2007-07-18 2011-03-03 マグナ ステアー ファールゾイヒテクニーク アーゲー ウント コ カーゲー Storage battery
JP2011083182A (en) * 2009-09-29 2011-04-21 O2 Micro Inc Battery management system with energy balance among multiple battery cells
US7936149B2 (en) 2006-10-04 2011-05-03 Honda Motor Co., Ltd. Charging device
KR101124803B1 (en) * 2006-06-15 2012-03-23 한국과학기술원 Charge Equalization Apparatus and Method
EP2506389A2 (en) 2011-03-31 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Auxiliary battery charging apparatus
EP2506388A2 (en) 2011-03-31 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Auxiliary battery charging apparatus
JP2012239300A (en) * 2011-05-11 2012-12-06 Shindengen Electric Mfg Co Ltd Cell balance circuit and cell balance device
EP2541728A2 (en) 2011-06-30 2013-01-02 Kabushiki Kaisha Toyota Jidoshokki Cell balancing device
WO2013005440A2 (en) 2011-07-05 2013-01-10 Kabushiki Kaisha Toyota Jidoshokki Cell equalization control system
EP2549619A1 (en) 2011-07-19 2013-01-23 Kabushiki Kaisha Toyota Jidoshokki Charge and discharge control apparatus
CN103036258A (en) * 2011-10-08 2013-04-10 上海锂曜能源科技有限公司 Battery pack balancing system and method
JP2013520151A (en) * 2010-02-17 2013-05-30 アンスティテュー ポリテクニーク ドゥ グルノーブル System for balancing the series coupling of elements that generate or store electrical energy by magnetic coupling
WO2013119070A1 (en) * 2012-02-07 2013-08-15 (주)이미지스테크놀로지 Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
JP2015061510A (en) * 2013-09-18 2015-03-30 高達能源科技股▲分▼有限公司 Charging station having battery cell balance system
KR101567423B1 (en) * 2014-06-24 2015-11-09 (주) 세스 Active balancing controller of baterry management system for electronic storage system utilizing small multi winding transformer
JP2016535571A (en) * 2013-06-27 2016-11-10 オブシェストヴォ ス オグラニチェンノイ オトヴェトストヴェンノスチユ “エンソル テクノロジー” Battery management system
CN110239396A (en) * 2019-06-26 2019-09-17 山东大学 Battery pack balancing module, system and control method based on two-way flyback converter

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112222A1 (en) * 2004-05-13 2005-11-24 Ntt Data Ex Techno Corporation Discharge control circuit, charge control circuit and charge/discharge control circuit of battery
JP2007006568A (en) * 2005-06-22 2007-01-11 Fujitsu Access Ltd Power unit
JP4684758B2 (en) * 2005-06-22 2011-05-18 富士通テレコムネットワークス株式会社 Power supply
JP2009525716A (en) * 2006-02-02 2009-07-09 ヴィーガー・マルティン Method and apparatus for changing the state of charge (SOC) and health state (SOH) of a rechargeable battery
KR101124803B1 (en) * 2006-06-15 2012-03-23 한국과학기술원 Charge Equalization Apparatus and Method
US7936149B2 (en) 2006-10-04 2011-05-03 Honda Motor Co., Ltd. Charging device
JP2011507149A (en) * 2007-07-18 2011-03-03 マグナ ステアー ファールゾイヒテクニーク アーゲー ウント コ カーゲー Storage battery
JP2009153233A (en) * 2007-12-18 2009-07-09 Toshiba Corp Stored power amount equalizer for battery packs
JP2011083182A (en) * 2009-09-29 2011-04-21 O2 Micro Inc Battery management system with energy balance among multiple battery cells
JP2013520151A (en) * 2010-02-17 2013-05-30 アンスティテュー ポリテクニーク ドゥ グルノーブル System for balancing the series coupling of elements that generate or store electrical energy by magnetic coupling
CN102738853A (en) * 2011-03-31 2012-10-17 株式会社丰田自动织机 Auxiliary battery charging apparatus
EP2506389A2 (en) 2011-03-31 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Auxiliary battery charging apparatus
EP2506388A2 (en) 2011-03-31 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Auxiliary battery charging apparatus
JP2012213291A (en) * 2011-03-31 2012-11-01 Toyota Industries Corp Auxiliary machinery battery charger
CN102738852A (en) * 2011-03-31 2012-10-17 株式会社丰田自动织机 Auxiliary battery charging apparatus
JP2012239300A (en) * 2011-05-11 2012-12-06 Shindengen Electric Mfg Co Ltd Cell balance circuit and cell balance device
EP2541728A2 (en) 2011-06-30 2013-01-02 Kabushiki Kaisha Toyota Jidoshokki Cell balancing device
WO2013005440A2 (en) 2011-07-05 2013-01-10 Kabushiki Kaisha Toyota Jidoshokki Cell equalization control system
EP2549619A1 (en) 2011-07-19 2013-01-23 Kabushiki Kaisha Toyota Jidoshokki Charge and discharge control apparatus
CN103036258A (en) * 2011-10-08 2013-04-10 上海锂曜能源科技有限公司 Battery pack balancing system and method
WO2013119070A1 (en) * 2012-02-07 2013-08-15 (주)이미지스테크놀로지 Cell balancing circuit apparatus of battery management system using two-way dc-dc converter
JP2016535571A (en) * 2013-06-27 2016-11-10 オブシェストヴォ ス オグラニチェンノイ オトヴェトストヴェンノスチユ “エンソル テクノロジー” Battery management system
US9948115B2 (en) 2013-06-27 2018-04-17 Obschestvo S Organichennoi Otvetstvennostyu “Ensol Tekhnologii” Accumulator battery management system
JP2015061510A (en) * 2013-09-18 2015-03-30 高達能源科技股▲分▼有限公司 Charging station having battery cell balance system
KR101567423B1 (en) * 2014-06-24 2015-11-09 (주) 세스 Active balancing controller of baterry management system for electronic storage system utilizing small multi winding transformer
CN110239396A (en) * 2019-06-26 2019-09-17 山东大学 Battery pack balancing module, system and control method based on two-way flyback converter

Similar Documents

Publication Publication Date Title
JP2001339865A (en) Cell voltage equalization apparatus, method therefor, hybrid car and manufacturing method of battery assembly
US20240072562A1 (en) Power battery charging method, motor control circuit, and vehicle
CN101517856B (en) Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing program for causing computer to execute the method
CN108691709B (en) Apparatus and method for controlling a start sequence of a vehicle engine
CN107264302A (en) Charging system for Vehicular battery
WO2018070496A1 (en) Power conversion system
JP2006296192A (en) Circuit device and related control method for electric vehicle having two dc power supplies or hybrid vehicle
JP7032249B2 (en) Power system
KR20210133374A (en) System and method for charging using motor driving system
EP4159533A1 (en) Battery energy processing device and method, and vehicle
JPS5961402A (en) Charger for battery driven vehicle
EP2693595B1 (en) Balance correction apparatus and electrical storage system
CN112550023B (en) Electric automobile electric integration device and method and electric automobile
CN114552959A (en) Auxiliary pre-charging device and method for power converter and power converter
KR20190118084A (en) Power converting system for vehicle
CN110461641A (en) Charging circuit device for vehicle and the method for charging circuit device
CN115733200A (en) Power supply system
CN105322637B (en) A kind of capacitor charging methods and device with invariable power input characteristics
KR20230004736A (en) Automotive Battery Chargers, Related Vehicles, and Implementation Methods
JP6953634B2 (en) Vehicle charger with DC / DC converter
Yang et al. An integrated multifunctional battery charger with three-phase charging for plug-in electric vehicles
JP7063745B2 (en) Power system
Nie et al. A High Efficiency Battery Equalizing Circuit Based on Half Bridge Topology with Multiport Transformer
CN116945918A (en) Integrated traction battery power system for electric vehicle applications
CN112912815A (en) Transformerless Partial Power Converter (PPC) of DC-DC class for fast charging stations for Electric Vehicles (EV)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807