JP2001332503A - Method of manufacturing fine crystal film by plasma discharge - Google Patents

Method of manufacturing fine crystal film by plasma discharge

Info

Publication number
JP2001332503A
JP2001332503A JP2000153003A JP2000153003A JP2001332503A JP 2001332503 A JP2001332503 A JP 2001332503A JP 2000153003 A JP2000153003 A JP 2000153003A JP 2000153003 A JP2000153003 A JP 2000153003A JP 2001332503 A JP2001332503 A JP 2001332503A
Authority
JP
Japan
Prior art keywords
film
microcrystalline
substrate
plasma discharge
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000153003A
Other languages
Japanese (ja)
Inventor
Toshiaki Sasaki
敏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000153003A priority Critical patent/JP2001332503A/en
Publication of JP2001332503A publication Critical patent/JP2001332503A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fine crystal film of excellent quality at a higher rate by the use of a plasma discharge. SOLUTION: A deposition chamber 1 is equipped with a ground electrode 3 disposed at one side of a fine crystal film forming substrate 5, a high-frequency electrode 2 disposed at the other side of the substrate 5, and a material gas supply inlet 6, film forming material gas is introduced into the deposition chamber 1, and a fine crystal film is formed on the primary surface of the substrate 5 by a plasma discharge through a film manufacturing method, where hydrogenated germanium or halogenated germanium and hydrogen are used as the above material gas, and the inner pressure of the deposition chamber 1 is set at 70 to 700 Pa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、薄膜トランジス
タや薄膜太陽電池などの、微結晶膜を用いた薄膜半導体
デバイスにおける微結晶膜の製造方法に関する。
The present invention relates to a method for manufacturing a microcrystalline film in a thin film semiconductor device using the microcrystalline film, such as a thin film transistor or a thin film solar cell.

【0002】[0002]

【従来の技術】非単結晶膜を用いた薄膜半導体デバイ
ス、特にシリコン系の非単結晶薄膜であるアモルファス
シリコン(a-Si)、およびアモルファスシリコンゲルマニ
ウム(a-SiGe)等の合金膜を、プラズマ放電によって形成
した薄膜半導体デバイスは、単結晶シリコンデバイスと
比較して、大面積に、低温で、安価に作成できることか
ら、ディスプレイ用の薄膜トランジスタ(TFT)や電力用
の大面積薄膜太陽電池等への適用において特に期待され
ている。
2. Description of the Related Art A thin film semiconductor device using a non-single-crystal film, in particular, an amorphous silicon (a-Si), which is a silicon-based non-single-crystal thin film, and an amorphous silicon germanium (a-SiGe) alloy film are formed by plasma. Thin-film semiconductor devices formed by electric discharge can be made in large areas, at low temperatures, and at low cost compared to single-crystal silicon devices, so they can be used for thin-film transistors (TFTs) for displays and large-area thin-film solar cells for power. It is particularly expected in applications.

【0003】上記プラズマ放電によって形成する薄膜
は、例えば下記のような装置により形成される。図8
は、a-Si 薄膜太陽電池をプラズマ放電によって形成す
る場合の成膜室の概略構造の一例を示し、特開平8−2
50431号公報に記載された構造の一例を示す。図8
(a)、(b)はそれぞれ、成膜室の開放時および封止
時の概略断面図を示す。
[0003] The thin film formed by the plasma discharge is formed by, for example, the following apparatus. FIG.
1 shows an example of a schematic structure of a film forming chamber when an a-Si thin film solar cell is formed by plasma discharge.
An example of the structure described in Japanese Patent No. 50431 is shown. FIG.
(A) and (b) are schematic cross-sectional views when the film forming chamber is opened and sealed, respectively.

【0004】図8(a)に示すように、断続的に搬送さ
れてくる可撓性基板10の上下に函状の下部成膜部室壁
体21と上部成膜部室壁体22とを対向配置し、成膜室
の封止時には、下部成膜部室と上部成膜部室からなる独
立した処理空間を構成するようになっている。この例に
おいては、下部成膜部室は電源40に接続された高周波
電極31を備え、上部成膜部室は、ヒータ33を内蔵し
た接地電極32を備える。
As shown in FIG. 8A, a box-shaped lower film-forming section chamber wall 21 and an upper film-forming section chamber wall 22 are arranged opposite to each other above and below a flexible substrate 10 conveyed intermittently. When the film forming chamber is sealed, an independent processing space including the lower film forming section chamber and the upper film forming section chamber is formed. In this example, the lower film forming unit chamber includes a high-frequency electrode 31 connected to a power supply 40, and the upper film forming unit room includes a ground electrode 32 having a built-in heater 33.

【0005】成膜時には、図8(b)に示すように、上
部成膜部室壁体22が下降し、接地電極32が基板10
を抑えて下部成膜部室壁体21の開口側端面に取付けら
れたシール部材50に接触させる。これにより、下部成
膜部室壁体21と基板10とから、排気管61に連通す
る気密に密閉された成膜空間60を形成する。上記のよ
うな成膜室において、高周波電極31へ高周波電圧を印
加することにより、プラズマを成膜空間60に発生さ
せ、図示しない導入管から導入された原料ガスを分解し
て基板10上に膜を形成することができる。
At the time of film formation, as shown in FIG. 8B, the upper film formation section chamber wall 22 is lowered, and the ground electrode 32 is connected to the substrate 10.
And is brought into contact with the sealing member 50 attached to the opening-side end face of the lower film-forming-portion-chamber wall 21. As a result, an airtightly sealed film-forming space 60 communicating with the exhaust pipe 61 is formed from the lower film-forming section chamber wall 21 and the substrate 10. In the film forming chamber as described above, a high-frequency voltage is applied to the high-frequency electrode 31 to generate plasma in the film forming space 60, decompose the raw material gas introduced from an introduction pipe (not shown), and form a film on the substrate 10. Can be formed.

【0006】ところで、上記のような装置によって形成
された薄膜太陽電池用のa-Siは、単結晶に比べて、電子
移動度が小さいため、上記TFTに適用した場合、ディス
プレイの開口率が小さく輝度やコントラストが悪くなる
問題がある。これを解決するために、微結晶シリコン
(μc-Si)のTFTへの適用が検討されている。ここで微結
晶とは、プラズマCVDや光CVD、熱CVD等で作成した薄膜
で、アモルファス成分に対して結晶体積分率が数%から
ほぼ100%、結晶粒径が数nmから数μmの物を指す。μc-S
iを用いることにより、a-Siに比べて電子移動度を数桁
向上することができる。
By the way, a-Si for a thin film solar cell formed by the above-described apparatus has a smaller electron mobility than a single crystal. Therefore, when applied to the above-mentioned TFT, the aperture ratio of the display is small. There is a problem that the brightness and contrast deteriorate. To solve this, microcrystalline silicon
Application of (μc-Si) to TFT is being studied. Here, microcrystals are thin films made by plasma CVD, optical CVD, thermal CVD, etc., with a crystal volume fraction of several percent to almost 100% and a crystal grain size of several nm to several μm with respect to the amorphous component. Point to. μc-S
By using i, electron mobility can be improved by several orders of magnitude as compared with a-Si.

【0007】さらに、単結晶シリコンに比べて単結晶ゲ
ルマニウムは、電子移動度で約2倍、ホール移動度で約
2.5倍大きい。微結晶膜においても同様に、微結晶シ
リコンゲルマニウム(μc-SiGe)あるいは微結晶ゲルマ
ニウム(μc-Ge)を用いることによって、μc-Siに比べて
電子移動度の向上が期待できる。
Further, single crystal germanium is about twice as large in electron mobility and about 2.5 times as large in hole mobility as compared with single crystal silicon. Similarly, by using microcrystalline silicon germanium (μc-SiGe) or microcrystalline germanium (μc-Ge) in a microcrystalline film, an improvement in electron mobility can be expected as compared with μc-Si.

【0008】また上記とは異なる問題として、a-Siまた
はアモルファスシリコンゲルマニウム(a-SiGe)を用いた
太陽電池では、長時間の光照射に対して太陽電池の効率
が低下するいわゆるSteabler Wronski効果によって、効
率が初期よりも低下する問題がある。
As another problem different from the above, in a solar cell using a-Si or amorphous silicon germanium (a-SiGe), the so-called Steabler Wronski effect, in which the efficiency of the solar cell is reduced due to long-time light irradiation, is obtained. However, there is a problem that the efficiency is lower than the initial one.

【0009】最近、p-i-n型非単結晶太陽電池として、
p、i、n層材料にμc-Siを適用することにより、光劣化
がない太陽電池が作成可能なことが報告されている
([報告1]J.Meier, P. Torres, R. Platz, S. Dubail,
U. Kroll, A.A. Anna Selvan, N. Pellaton Vaucher C
h. Hof, D. Fischer, H. Keppner, A. Shah, K.D. Ufer
t, P.Giannoules, J.Koehler; "On the way towards hi
gh efficiency thin film silicon solar cells by the
"micromorph" concept", Mat. Res. Soc. Symp. Pro
c. Vol.420, 1996, pp.3 参照)。
Recently, as a pin type non-single-crystal solar cell,
It has been reported that solar cells without photodegradation can be fabricated by applying μc-Si to p, i, and n layer materials ([Report 1] J. Meier, P. Torres, R. Platz, S. Dubail,
U. Kroll, AA Anna Selvan, N. Pellaton Vaucher C
h. Hof, D. Fischer, H. Keppner, A. Shah, KD Ufer
t, P.Giannoules, J.Koehler; "On the way towards hi
gh efficiency thin film silicon solar cells by the
"micromorph" concept ", Mat. Res. Soc. Symp. Pro
c. See Vol.420, 1996, pp.3).

【0010】しかしながら、μc-Siはa-Siに比べて長波
長の光感度がある反面、吸収係数の値が小さく、膜厚を
a-Siの約10倍にする必要がある。また、プラズマCVDで作
成した場合、a-Siに比べて、μc-Siの製膜速度は1/2〜1
/10程度と遅い問題がある。その結果、製膜時間はa-Si
に比べ、非常に長時間を要する問題がある。
However, μc-Si has a longer wavelength of light sensitivity than a-Si, but has a small absorption coefficient and
It must be about 10 times that of a-Si. Also, when formed by plasma CVD, the film formation rate of μc-Si is 1/2 to 1 compared to a-Si.
There is a slow problem of about / 10. As a result, the film formation time was a-Si
However, there is a problem that it takes a very long time as compared with the above.

【0011】μc-Siに代えて、薄膜太陽電池用のμc-Si
Geの研究が最近報告されている。μc-Siに比べて、μc-
SiGeは吸収係数を大きくできるので、太陽電池用の膜と
して膜厚を薄くできることが期待されている。ガングリ
ーらは、RF(13.56MHz)の容量結合型のプラズマCVDで、
シラン(SiH4)、ゲルマン(GeH4)、水素(H2)の混合ガスを
用いて作製したμc-SiGeについて報告している。([報
告2]G. Ganguly et al.; "Hydrogenated microcrystall
ine silicon germanium: A bottom cell material for
amorphous silicon-based tandem solar cells", Appl.
Phys. Lett., 69 (1996) pp.4224; [報告3]G. Ganguly
et al.; "Microcrystalline silicon germanium: An a
ttractive bottom-cell material for thin-film silic
on-basedtandem-solar-cells" , Mat. Res. Soc. Symp.
Proc. 467(1997) pp.681. 参照)。
Instead of μc-Si, μc-Si for thin film solar cells
A Ge study has recently been reported. μc-
Since SiGe can increase the absorption coefficient, it is expected that the thickness can be reduced as a film for a solar cell. Gangley et al. Use RF (13.56 MHz) capacitively coupled plasma CVD.
We report on μc-SiGe fabricated using a mixed gas of silane (SiH 4 ), germane (GeH 4 ), and hydrogen (H 2 ). ([Report 2] G. Ganguly et al .; "Hydrogenated microcrystall
ine silicon germanium: A bottom cell material for
amorphous silicon-based tandem solar cells ", Appl.
Phys. Lett., 69 (1996) pp.4224; [Report 3] G. Ganguly
et al .; "Microcrystalline silicon germanium: An a
ttractive bottom-cell material for thin-film silic
on-basedtandem-solar-cells ", Mat. Res. Soc. Symp.
Proc. 467 (1997) pp.681.).

【0012】上記報告において、製膜した圧力範囲は4
〜66.5Pa(0.03〜0.5torr)、水素希釈率はH2/(SiH4+Ge
H4)=50〜500倍、製膜速度は0.48〜2.16nm/minである。
In the above report, the pressure range in which the film was formed was 4
~66.5Pa (0.03~0.5torr), hydrogen dilution ratio H 2 / (SiH 4 + Ge
H 4 ) = 50 to 500 times, and the film formation rate is 0.48 to 2.16 nm / min.

【0013】通常、水素希釈率15〜20倍程度でμc-Siが
できるのに比べて、μc-SiGeの作製にはそれよりも高い
水素希釈率を用いている。ただし、Geの組成に対して、
水素希釈率を変化させているかどうかについては記述が
ない。低速製膜で光照射前の欠陥密度が1015cm-3台の高
品質なa-Siの製膜速度が2nm/min程度、高速製膜で光照
射前の欠陥密度が1016cm-3台の中程度の品質のa-Siの製
膜速度が10〜20nm/minであるのに比べて、遅くなってい
る。
Normally, μc-Si is produced at a hydrogen dilution ratio of about 15 to 20 times, but a higher hydrogen dilution ratio is used for the production of μc-SiGe. However, for the composition of Ge,
There is no description as to whether the hydrogen dilution rate is changed. Defect density before light irradiation in low-speed film formation is 10 15 cm -3 units.High -quality a-Si film formation speed is about 2 nm / min.Defect density before light irradiation in high-speed film formation is 10 16 cm -3. The film forming speed of medium quality a-Si is slower than 10 to 20 nm / min.

【0014】また、カリウスらは、VHF(95MHz)の容量結
合型のプラズマCVDで、SiH4もしくはジシラン(Si2H6)
と、GeH4、H2の混合ガスを用いて作製したμc-SiGeにつ
いて報告している。([報告4]R. Carius, et al.; "Micr
osrystalline silicon-germanium alloys for absorpti
on layers in thin film solar cells", Mat. Res. So
c. Symp. Proc. 507(1998) pp.813.; [報告5]M. Kraus
e, et al.; "Role of bandgap grading for the perfor
mance of microcrystalline silicon germaniumsolar c
ells", Mat. Res. Soc. Symp. Proc. 557(1999) pp.59
1. 参照)。
Also, Carius et al. Conducted a VHF (95 MHz) capacitively coupled plasma CVD using SiH 4 or disilane (Si 2 H 6 ).
And μc-SiGe fabricated using a mixed gas of GeH 4 and H 2 . ([Report 4] R. Carius, et al .; "Micr
osrystalline silicon-germanium alloys for absorpti
on layers in thin film solar cells ", Mat. Res. So
c. Symp. Proc. 507 (1998) pp.813 .; [Report 5] M. Kraus
e, et al .; "Role of bandgap grading for the perfor
mance of microcrystalline silicon germaniumsolar c
ells ", Mat. Res. Soc. Symp. Proc. 557 (1999) pp.59
1.)

【0015】カリウスらは、μc-Siに比べて、μc-SiGe
はGe量が増えるに従って、微結晶になりにくいと報告し
ている。SiH4を用いたμc-Siが水素希釈率20〜50倍で完
全に微結晶になるのに対して、μc-SiGeを作製するため
にはより大きな水素希釈率が必要であると報告してい
る。具体的にはSiH4とGeH4を用いた場合、H2/(SiH4+GeH
4)が40倍以上で一部微結晶になり、80倍以上で完全に微
結晶になると述べている。Si2H6とGeH4を用いた場合、
さらに微結晶になりにくく、167倍以上の水素希釈率が
必要で、膜中Ge密度が高いところではSi2H6を用いてμc
-SiGeは作製できないと述べている。前記[報告5]では、
水素希釈率120から320倍と非常に高い水素希釈率を用い
ている。このとき、製膜時の圧力について何ら記述はな
い。また、95MHzという非常に高い周波数を用いている
にもかかわらず、製膜速度は、前記[報告4]において3.2
〜10.2nm/min、[報告5]において2.4〜7.2nm/minと述べ
ている。
Carius et al. Compared μc-SiGe to μc-Si
Reported that as the amount of Ge increased,
ing. SiHFourΜc-Si using hydrogen is completed at a hydrogen dilution ratio of 20 to 50 times.
To make μc-SiGe, whereas it is all microcrystalline
Report that higher hydrogen dilution rates are needed
You. Specifically, SiHFourAnd GeHFourWhen usingTwo/ (SiHFour+ GeH
Four) Is partially crystallized at 40 times or more and completely fine at 80 times or more.
States that it will be a crystal. SiTwoH6And GeHFourIf you use
Furthermore, it is hard to be microcrystals, and hydrogen dilution rate of 167 times or more
Necessary, where the Ge density in the film is high,TwoH6Using μc
-States that SiGe cannot be made. In [Report 5] above,
Very high hydrogen dilution rate of 120 to 320 times
ing. At this time, there is no description about the pressure during film formation.
No. Also uses a very high frequency of 95MHz
Nevertheless, the film formation rate was 3.2 in [Report 4] above.
110.2 nm / min, 2.4 to 7.2 nm / min in [Report 5]
ing.

【0016】[0016]

【発明が解決しようとする課題】本願発明者も、13.56M
Hzの容量結合型プラズマCVDで、SiH4、GeH4、H2の混合
ガスを用いてμc-SiGeを作製したところ、膜中Ge密度の
増加に伴って、微結晶になりにくいことを確認した。膜
中Ge密度100%の場合は、特に、微結晶になりにくかっ
た。そのため非常に高い水素希釈率が必要になり、その
結果、製膜速度が低下した。
SUMMARY OF THE INVENTION The present inventor has also proposed 13.56M
When μc-SiGe was fabricated using a mixed gas of SiH 4 , GeH 4 , and H 2 by capacitively coupled plasma CVD of Hz, it was confirmed that microcrystals were unlikely to be formed as the Ge density in the film increased. . When the Ge density in the film was 100%, it was particularly difficult to form microcrystals. Therefore, a very high hydrogen dilution rate was required, and as a result, the film forming speed was reduced.

【0017】上記のように、膜中Ge密度の増加に伴っ
て、μc-SiGeやμc-Ge等の微結晶膜ができにくい問題が
ある。また、μc-SiGeやμc-Geを作製するために、非常
に高い水素希釈率が必要となり、製膜速度が低下する問
題がある。
As described above, there is a problem that it is difficult to form a microcrystalline film such as μc-SiGe or μc-Ge with an increase in Ge density in the film. Further, in order to produce μc-SiGe or μc-Ge, an extremely high hydrogen dilution ratio is required, and there is a problem that the film formation speed is reduced.

【0018】この発明は、上記の点に鑑みてなされたも
ので、本発明の課題は、良好な微結晶膜の形成と製膜速
度の向上を図ったプラズマ放電による微結晶膜の製造方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and an object of the present invention is to provide a method for producing a microcrystalline film by plasma discharge in which a good microcrystalline film is formed and the film forming speed is improved. To provide.

【0019】[0019]

【課題を解決するための手段】前述の課題を達成するた
め、この発明は、微結晶膜形成用基板の一側に配設した
接地電極と、他側に配設した高周波電極と、原料ガス供
給口とを備えた成膜室に、膜形成用の原料ガスを導入
し、プラズマ放電によって前記基板主面に微結晶膜を形
成する微結晶膜の製造方法において、前記原料ガスとし
て、少なくとも水素化ゲルマニウムもしくはハロゲン化
ゲルマニウムと水素とを用い、前記成膜室の圧力を70
〜700Paとすることとする(請求項1の発明)。
In order to achieve the above object, the present invention provides a ground electrode provided on one side of a substrate for forming a microcrystalline film, a high-frequency electrode provided on the other side, and a source gas. In a method for producing a microcrystalline film, in which a source gas for film formation is introduced into a film forming chamber having a supply port and a microcrystalline film is formed on the main surface of the substrate by plasma discharge, at least hydrogen is used as the source gas. Using germanium halide or germanium halide and hydrogen, the pressure of the
To 700 Pa (the invention of claim 1).

【0020】また、微結晶膜形成用基板の一側に配設し
た接地電極と、他側に配設した高周波電極と、原料ガス
供給口とを備えた成膜室に、膜形成用の原料ガスを導入
し、プラズマ放電によって前記基板主面に微結晶膜を形
成する微結晶膜の製造方法において、前記原料ガスとし
て、少なくとも水素化ゲルマニウムもしくはハロゲン化
ゲルマニウムと水素とを用い、前記成膜室の圧力を70
Pa以上とし、前記原料ガスを基板に向かって吹き出す
ように供給することとする(請求項2の発明)。
A film forming chamber having a ground electrode provided on one side of a substrate for forming a microcrystalline film, a high-frequency electrode provided on the other side, and a material gas supply port is provided with a material for forming a film. In a method for producing a microcrystalline film, wherein a gas is introduced and a microcrystalline film is formed on the main surface of the substrate by plasma discharge, at least germanium hydride or germanium halide and hydrogen are used as the raw material gas, and the film forming chamber is used. Pressure of 70
The pressure is set to Pa or more, and the source gas is supplied so as to be blown out toward the substrate (the invention of claim 2).

【0021】上記請求項1または2の発明の実施態様と
しては、下記が好適である。即ち、前記請求項2に記載
の微結晶膜の製造方法において、高周波電極は、原料ガ
スを基板に向かってシャワー状に吹き出すための複数の
ガス通流口を有するものとし、前記複数のガス通流口か
ら原料ガスを供給することとする(請求項3の発明)。
Preferred embodiments of the invention according to claim 1 or 2 are as follows. That is, in the method of manufacturing a microcrystalline film according to claim 2, the high-frequency electrode has a plurality of gas flow openings for blowing a raw material gas toward the substrate in a shower shape, and the plurality of gas flow holes are provided. The source gas is supplied from the outlet (the invention of claim 3).

【0022】また前記請求項1ないし3のいずれかに記
載の微結晶膜の製造方法において、基板に形成する微結
晶膜は、微結晶ゲルマニウム膜であることとする(請求
項4の発明)。さらに、請求項1ないし3のいずれかに
記載の微結晶膜の製造方法において、基板に形成する微
結晶膜は、微結晶シリコンゲルマニウム膜であることと
する(請求項5の発明)。
Further, in the method for manufacturing a microcrystalline film according to any one of claims 1 to 3, the microcrystalline film formed on the substrate is a microcrystalline germanium film (the invention of claim 4). Furthermore, in the method for manufacturing a microcrystalline film according to any one of claims 1 to 3, the microcrystalline film formed on the substrate is a microcrystalline silicon germanium film (the invention of claim 5).

【0023】さらにまた、前記請求項1ないし3のいず
れかに記載の微結晶膜の製造方法において、前記原料ガ
スとして、ゲルマン(GeH4)と水素とを用いる、あるい
はゲルマン(GeH4)とシラン(SiH4)と水素とを用いる
こととする(請求項6の発明)。
Further, in the method for producing a microcrystalline film according to any one of claims 1 to 3, germane (GeH 4 ) and hydrogen or germane (GeH 4 ) and silane are used as the source gases. (SiH 4) and will be used and hydrogen (the invention of claim 6).

【0024】この発明の作用は、下記のとおりである。
即ち、製膜時の圧力を70Pa以上とすることによっ
て、プラズマ中の気相反応が大きく変ると考えられる。
ゲルマニウム系のラジカルGeHxは非常に反応性が高いた
め重合反応を起こしやすく、低圧ではポリマーやクラス
ターになりやすく、その結果膜がアモルファスになり易
いと考えられる。圧力を上げることによって、GeHxと、
希釈ガスであるH2との気相中の衝突反応が増えて、効果
的にGe系のクラスターを分解していると考えられる。
The operation of the present invention is as follows.
In other words, it is considered that the gas phase reaction in the plasma is greatly changed by setting the pressure at the time of film formation to 70 Pa or more.
It is considered that the germanium-based radical GeHx has a very high reactivity and is liable to cause a polymerization reaction. At a low pressure, the germanium-based radical GeHx tends to be a polymer or a cluster, and as a result, the film tends to be amorphous. By increasing the pressure, GeHx
It is considered that the collision reaction in the gas phase with H 2 , which is a diluent gas, increases, and the Ge-based cluster is effectively decomposed.

【0025】また、圧力を上げることによって、基板近
傍のシースが薄くなって基板へ飛び込むイオンのエネル
ギーが減少して、イオン衝撃による膜へのダメージが抑
制されて、微結晶になりやすいと考えられる。
It is considered that, by increasing the pressure, the sheath near the substrate becomes thinner, the energy of ions jumping into the substrate is reduced, and damage to the film due to ion bombardment is suppressed, and microcrystals are likely to be formed. .

【0026】しかしながら、所定の圧力以上に圧力を上
げると、GeHxとGeH4あるいはSiH4との衝突も無視できな
くなり、粉が発生してしまう。このため、微結晶が作製
可能で、かつ、粉が発生しない、最適な圧力範囲が存在
する。
However, if the pressure is increased to a predetermined pressure or more, collision between GeHx and GeH 4 or SiH 4 cannot be ignored, and powder is generated. For this reason, there is an optimal pressure range in which microcrystals can be produced and no powder is generated.

【0027】圧力を上げすぎると粉が発生する。ガスの
供給は、通常反応室の壁面からガスを導入し、この場
合、700Pa以上で粉が発生した。この場合、電極間
のプラズマに外側から拡散によってガスが供給され、基
板上に粉が付いたと考えられる。従って、圧力の最適範
囲は、70〜700Paである。
If the pressure is too high, powder is generated. For gas supply, gas was usually introduced from the wall of the reaction chamber. In this case, powder was generated at 700 Pa or more. In this case, it is considered that gas was supplied to the plasma between the electrodes from the outside by diffusion, and powder was attached to the substrate. Therefore, the optimum range of the pressure is 70 to 700 Pa.

【0028】しかしながら、原料ガスを基板に向かって
シャワー状に吹き出すことによって、ガスが電極間のプ
ラズマから外側に向かって流れることによって、気相中
で発生した粉を強制的に外に押し流すことができる。こ
の結果、700Pa以上の圧力でも基板上に粉が発生せ
ず、良好な微結晶膜を作製することが可能となる。
However, by blowing the raw material gas toward the substrate in the form of a shower, the gas flows outward from the plasma between the electrodes, whereby the powder generated in the gas phase can be forced to flow out. it can. As a result, no powder is generated on the substrate even at a pressure of 700 Pa or more, and a favorable microcrystalline film can be manufactured.

【0029】[0029]

【発明の実施の形態】この発明の実施の形態について以
下に述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.

【0030】(実施例1:Ge密度100%の微結晶膜の製
膜について)図1に、図2に示す装置を用いて製膜した
膜中Ge密度(Ge/(Ge+Si))=100%の膜について、ラマン散
乱スペクトルを測定した結果を示す。図1の横軸はラマ
ンシフト、縦軸はスペクトル強度を任意目盛(a.u.)で
示す。まず、図2の製膜装置および製膜条件について説
明する。図2は、RF(13.56MHz)の容量結合型プラズマCV
D装置である。成膜室1は、図8に示す装置と同様に、
高周波電極2と接地電極3とを備える。接地電極3の上
に基板5を置き、ヒータ4により加熱することができ
る。原料ガスは、成膜室1の壁に取り付けられたガス供
給口6により、成膜室1に導入される。高周波電極2と
接地電極3との間にプラズマを発生させて原料ガスを分
解して、基板5に微結晶膜の製膜を行う。
Example 1 Formation of a Microcrystalline Film with 100% Ge Density FIG. 1 shows the Ge density (Ge / (Ge + Si)) = in a film formed using the apparatus shown in FIG. The result of measuring the Raman scattering spectrum for 100% of the film is shown. The horizontal axis in FIG. 1 shows the Raman shift, and the vertical axis shows the spectrum intensity on an arbitrary scale (au). First, the film forming apparatus and the film forming conditions in FIG. 2 will be described. Figure 2 shows an RF (13.56MHz) capacitively coupled plasma CV
D device. The film forming chamber 1 is, like the apparatus shown in FIG.
A high-frequency electrode 2 and a ground electrode 3 are provided. The substrate 5 can be placed on the ground electrode 3 and heated by the heater 4. The source gas is introduced into the film forming chamber 1 through a gas supply port 6 attached to the wall of the film forming chamber 1. Plasma is generated between the high-frequency electrode 2 and the ground electrode 3 to decompose the raw material gas, and a microcrystalline film is formed on the substrate 5.

【0031】膜の条件Ge/(Ge+Si)=100%は、最も微結晶
になりにくい条件といえる。膜の作製には、GeH4とH2
混合ガスを原料ガスに用いた。基板ヒータ温度は200
℃、放電パワーは50W、GeH4流量は5sccm、H2流量は500s
ccmとし、水素希釈率H2/GeH4は100倍とした。基板には
ガラスを用いた。なお、流量の単位sccmは、standard c
c/min(標準状態換算の流量cm3/min)を示す。
The condition of the film, Ge / (Ge + Si) = 100%, can be said to be the condition under which microcrystals are most difficult to be formed. For the production of the film, a mixed gas of GeH 4 and H 2 was used as a source gas. Substrate heater temperature is 200
° C, discharge power 50W, GeH 4 flow rate 5sccm, H 2 flow rate 500s
ccm, and the hydrogen dilution ratio H 2 / GeH 4 was 100 times. Glass was used for the substrate. The unit of flow rate sccm is standard c
c / min (standard condition converted flow rate cm 3 / min).

【0032】図1のラマン散乱スペクトルにおいて、30
0cm-1付近のシャープなピークと、280cm-1付近の幅の広
いピークが認められる。それぞれ、Ge-Ge結合の結晶TO
ピークと、アモルファスのTOピークに相当する。製膜時
の圧力Pr=67Pa(0.5torr)で結晶ピークが認めら
れ、それよりPrを増加するにしたがって、結晶ピークが
大きくなっている。最も微結晶になりにくいGe/(Ge+Si)
=100%の条件であるにもかかわらず、略Pr=70Pa以上
とすることによってμc-Geが作製できることが認められ
る。
In the Raman scattering spectrum of FIG.
A sharp peak near 0 cm -1 and a broad peak near 280 cm -1 are observed. Ge-Ge bonded crystal TO
The peak corresponds to the amorphous TO peak. A crystal peak is observed at a pressure Pr = 67 Pa (0.5 torr) during film formation, and the crystal peak increases as Pr increases. Ge / (Ge + Si) that is the least likely to become microcrystals
Despite the condition of = 100%, it is recognized that μc-Ge can be produced by setting Pr to approximately 70 Pa or more.

【0033】図3に、図1のGe-Ge結合の結晶ピーク(I
c)と、アモルファスのピーク(Ia)の比(Ic/Ia)と圧力
(Pr)との関係を示す。Ic/Iaが大きいほど、結晶体積分率
が高い良好な微結晶膜といえる。Prの増加とともに、Ic
/Iaが増加する。略Pr=70PaでIc/Ia〜1で微結晶膜に
なっていることが分かる。Prを増加すると、Ic/Iaが単
調に増加する。ただし、Prを700Paより大きくする
と、粉の発生が認められ、特に接地電極の端部付近にお
いた基板に粉の付着が認められた。
FIG. 3 shows the crystal peak (I
c), amorphous peak (Ia) ratio (Ic / Ia) and pressure
(Pr). It can be said that the larger Ic / Ia is, the better the microcrystalline film has a higher crystal volume fraction. As Pr increases, Ic
/ Ia increases. It can be seen that a microcrystalline film is formed at approximately Pr = 70 Pa and Ic / Ia〜1. As Pr increases, Ic / Ia increases monotonically. However, when Pr was larger than 700 Pa, generation of powder was observed, and in particular, adhesion of powder was observed on the substrate near the end of the ground electrode.

【0034】(実施例2:Ge密度100%の微結晶膜の製
膜速度について)図4に、前記実施例1の膜に関わる製
膜速度(DR)と圧力(Pr)との関係を示す。Prの増加に伴っ
て、DRが増加している。すなわち、Prを略70Pa以上
に上げることによって、結晶性の向上と同時に製膜速度
の増加を図ることができる。
Example 2 Regarding the Film-Forming Speed of a Microcrystalline Film with 100% Ge Density FIG. 4 shows the relationship between the film-forming speed (DR) and the pressure (Pr) relating to the film of Example 1 above. . DR increases as Pr increases. That is, by raising Pr to about 70 Pa or more, it is possible to improve the crystallinity and simultaneously increase the film forming speed.

【0035】(実施例3:Ge密度と圧力との関係につい
て)図5に、膜中Ge密度(Ge/(Ge+Si))と微結晶になる製
膜圧力(Pr)との関係を示す。アモルファスから微結晶に
なったかどうかの判定は、ラマン散乱のGe-Ge結合ピー
クの結晶成分ピークとアモルファス成分ピークの比(Ic/
Ia)を用いた。ただし、Ge-Ge結合ピークのピーク波数
は、Ge/(Ge+Si)を減少すると、Ge/(Ge+Si)にほぼ比例し
て低波数側にシフトする。ここでは、Ge/(Ge+Si)に合わ
せて結晶成分とアモルファス成分のピーク波数を同定し
て、Ic/Iaを求めた。SiとGeを含む膜においても、Prが略
70Pa以上でIc/Ia〜1となり、微結晶になっているこ
とが分かる。ただし、Ic/Ia>2の結晶性の高い膜は、Ge/
(Ge+Si)が小さい領域では、より低いPrでも作製できて
いる。
Example 3 Relationship between Ge Density and Pressure FIG. 5 shows the relationship between the Ge density (Ge / (Ge + Si)) in the film and the film formation pressure (Pr) for forming microcrystals. . The determination as to whether or not the material has changed from amorphous to microcrystalline is made by determining the ratio of the crystalline component peak to the amorphous component peak of the Ge-Ge bond peak of Raman scattering (Ic /
Ia) was used. However, when the Ge / (Ge + Si) decreases, the peak wave number of the Ge—Ge bond peak shifts to a lower wave number side almost in proportion to Ge / (Ge + Si). Here, the peak wave numbers of the crystalline component and the amorphous component were identified according to Ge / (Ge + Si), and Ic / Ia was determined. Also in the film containing Si and Ge, Pr becomes Ic / Ia〜1 when the pressure is about 70 Pa or more, indicating that the film is microcrystalline. However, the film with high crystallinity of Ic / Ia> 2 is Ge /
In regions where (Ge + Si) is small, lower Pr can be produced.

【0036】(実施例4:シャワー電極による製膜につ
いて)図6に、請求項3の発明に関わる実施例を示す。
この実施例における高周波電極15は、図7に示すよう
に、電極本体15aと、ガス供給口15bと、穴あき金
属板15cとからなり、原料ガスを基板5に向かってシ
ャワー状に吹き出すようになっている。図2に示すよう
に、ガス供給口と高周波電極とを分けることもできる
が、図6に示す高周波電極とガス供給口との兼用構造に
よれば、原料ガスを基板に向かって略均一にシャワー状
に吹き出すことができ、より好適である。
FIG. 6 shows an embodiment according to the third aspect of the present invention.
The high-frequency electrode 15 in this embodiment includes an electrode body 15a, a gas supply port 15b, and a perforated metal plate 15c as shown in FIG. Has become. As shown in FIG. 2, the gas supply port and the high-frequency electrode can be separated from each other. However, according to the dual-purpose structure of the high-frequency electrode and the gas supply port shown in FIG. It can be blown out in a shape, which is more preferable.

【0037】ガスをシャワー状に吹き出すことによっ
て、電極間から外側に向かってガスが流れ、気相中で粉
が発生しても外側に押し流される。この結果、圧力を7
000Paに上げても、基板上に粉の付着は認められな
くなった。
By blowing the gas in a shower shape, the gas flows outward from between the electrodes, and even if powder is generated in the gas phase, it is swept outward. As a result, a pressure of 7
Even when the pressure was increased to 000 Pa, adhesion of powder on the substrate was no longer observed.

【0038】なお、上記実施例1〜4においては、Geの
原料ガスとして水素化ゲルマニウムのGeH4を用いたが、
この他にGe2H6等の高級同族体を用いることもできる。
また、Hをアルキル基(CH3)、シリル基(SiH3)で置換した
ものも使用可能である。
In the above Examples 1-4, GeH 4 of germanium hydride was used as the Ge source gas.
In addition, higher homologs such as Ge 2 H 6 can also be used.
Further, those in which H is substituted with an alkyl group (CH 3 ) or a silyl group (SiH 3 ) can also be used.

【0039】ハロゲン化ゲルマニウムとして四弗化ゲル
マニウム(GeF4)を用いた場合も、同様に製膜時の圧力
を70Pa以上に上げることによって、微結晶膜が得ら
れた。ハロゲン化ゲルマニウムとして、この他にGeCl4
GeBr4、GeI4等を用いることもできる。また、ハロゲン
をHで置換したものも使用可能である。
When germanium tetrafluoride (GeF 4 ) was used as the germanium halide, a microcrystalline film was obtained by increasing the pressure during film formation to 70 Pa or more. In addition to germanium halide, GeCl 4 ,
GeBr 4 , GeI 4 or the like can also be used. Further, those obtained by substituting H for halogen can also be used.

【0040】微結晶シリコンゲルマニウムを作製する際
のSiの原料としては、水素化シラン(SiH4、Si2H6等)
やハロゲン化シラン(SiF4、SiCl4等)が用いられる。
また、ハロゲン化シランの一部のハロゲンをHで置換し
たもの(SiH2Cl2等)を用いることも可能である。
Hydrogenated silane (SiH 4 , Si 2 H 6, etc.) is used as a raw material of Si for producing microcrystalline silicon germanium.
And halogenated silanes (SiF 4 , SiCl 4, etc.) are used.
Further, it is also possible to use a halogenated silane obtained by substituting a part of the halogen with H (SiH 2 Cl 2 or the like).

【0041】また、製膜時の圧力70Pa以上で原料ガ
スの水素希釈率を上げると、微結晶膜の体積分率をさら
に増加することも可能である。
When the hydrogen dilution ratio of the raw material gas is increased at a pressure of 70 Pa or more during film formation, the volume fraction of the microcrystalline film can be further increased.

【0042】[0042]

【発明の効果】上記のとおり、この発明によれば、微結
晶膜形成用基板の一側に配設した接地電極と、他側に配
設した高周波電極と、原料ガス供給口とを備えた成膜室
に、膜形成用の原料ガスを導入し、プラズマ放電によっ
て前記基板主面に微結晶膜を形成する微結晶膜の製造方
法において、前記原料ガスとして、少なくとも水素化ゲ
ルマニウムもしくはハロゲン化ゲルマニウムと水素とを
用い、前記成膜室の圧力を70〜700Paとすること
により、粉の発生がなく、良好な微結晶膜を作製するこ
とができる。また、製膜速度を向上することができる。
As described above, according to the present invention, the ground electrode provided on one side of the microcrystalline film forming substrate, the high-frequency electrode provided on the other side, and the source gas supply port are provided. In a method for producing a microcrystalline film, in which a source gas for film formation is introduced into a film forming chamber and a microcrystalline film is formed on the main surface of the substrate by plasma discharge, at least germanium hydride or germanium halide is used as the source gas. When hydrogen is used and the pressure in the film formation chamber is set to 70 to 700 Pa, a fine microcrystalline film can be manufactured without generating powder. Further, the film forming speed can be improved.

【0043】さらに、原料ガスを基板に向かってシャワ
ー状に吹き出すことによって、反応室の圧力が700P
aより大きくても、基板主面への粉の発生を抑制するこ
とができる。
Further, by blowing the raw material gas toward the substrate in the form of a shower, the pressure in the reaction chamber becomes 700 P.
Even if it is larger than a, generation of powder on the main surface of the substrate can be suppressed.

【0044】このように作成したGeを含有する微結晶膜
を薄膜太陽電池へ適用した場合、吸収係数の増加によっ
て膜厚を薄くできるとともに、製膜速度の増加によっ
て、作製時間短縮の効果がある。
When the microcrystalline film containing Ge prepared as described above is applied to a thin film solar cell, the film thickness can be reduced by increasing the absorption coefficient, and the production time can be shortened by increasing the film forming speed. .

【0045】また、このように作成したGeを含有する微
結晶膜をディスプレイ用の薄膜トランジスタへ適用した
場合、Geを含有することによる電子移動度の向上から、
ディスプレイの開口率を大きくし輝度やコントラストを
向上する上で効果がある。また、製膜速度の増加によっ
て、作製時間短縮の効果がある。
When the microcrystalline film containing Ge formed as described above is applied to a thin film transistor for a display, the improvement in electron mobility due to the inclusion of Ge is
This is effective in increasing the aperture ratio of the display and improving the brightness and contrast. In addition, an increase in the film forming speed has the effect of shortening the manufacturing time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の微結晶膜のラマン散乱スペクトルを
示す図
FIG. 1 is a diagram showing a Raman scattering spectrum of a microcrystalline film of the present invention.

【図2】この発明の微結晶膜の製膜装置の一例を示す図FIG. 2 is a diagram showing an example of a microcrystalline film forming apparatus of the present invention.

【図3】ピーク強度比(Ic/Ia)と圧力(Pr)との関係を示
す図
FIG. 3 is a diagram showing a relationship between a peak intensity ratio (Ic / Ia) and a pressure (Pr).

【図4】製膜速度(DR)と圧力(Pr)との関係を示す図FIG. 4 is a diagram showing a relationship between a film forming speed (DR) and a pressure (Pr).

【図5】膜中Ge密度(Ge/(Ge+Si))と製膜圧力(Pr)との関
係を示す図
FIG. 5 is a diagram showing the relationship between the Ge density (Ge / (Ge + Si)) in the film and the film forming pressure (Pr).

【図6】この発明の微結晶膜の異なる製膜装置を示す図FIG. 6 is a diagram showing a film forming apparatus for forming a microcrystalline film according to the present invention.

【図7】図6における高周波電極の概略構成の一例を示
す図
7 is a diagram showing an example of a schematic configuration of a high-frequency electrode in FIG.

【図8】従来の薄膜太陽電池用の成膜室の概略構造の一
例を示す図
FIG. 8 is a diagram showing an example of a schematic structure of a conventional film forming chamber for a thin film solar cell.

【符号の説明】[Explanation of symbols]

1:成膜室、2,15:高周波電極、3:接地電極、
4:ヒータ、5:基板、6,15b:ガス供給口、15
a:電極本体、15c:穴あき金属板。
1: film forming chamber, 2, 15: high-frequency electrode, 3: ground electrode,
4: heater, 5: substrate, 6, 15b: gas supply port, 15
a: Electrode main body, 15c: Perforated metal plate.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 AA05 AA17 BA09 BB04 CA06 EA04 FA03 JA09 KA17 LA16 5F045 AA08 AB05 AC01 AD06 AE19 AE21 AF07 CA13 CA15 EF05 EH05 EH12 5F051 AA04 CA07 CA16 CA35 CA36 CA37 GA03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 AA05 AA17 BA09 BB04 CA06 EA04 FA03 JA09 KA17 LA16 5F045 AA08 AB05 AC01 AD06 AE19 AE21 AF07 CA13 CA15 EF05 EH05 EH12 5F051 AA04 CA07 CA16 CA35 CA36 CA37 GA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微結晶膜形成用基板の一側に配設した接
地電極と、他側に配設した高周波電極と、原料ガス供給
口とを備えた成膜室に、膜形成用の原料ガスを導入し、
プラズマ放電によって前記基板主面に微結晶膜を形成す
る微結晶膜の製造方法において、前記原料ガスとして、
少なくとも水素化ゲルマニウムもしくはハロゲン化ゲル
マニウムと水素とを用い、前記成膜室の圧力を70〜7
00Paとすることを特徴とするプラズマ放電による微
結晶膜の製造方法。
1. A film forming material provided with a ground electrode provided on one side of a microcrystalline film forming substrate, a high-frequency electrode provided on the other side, and a material gas supply port. Introduce gas,
In the method of manufacturing a microcrystalline film for forming a microcrystalline film on the main surface of the substrate by plasma discharge, as the source gas,
Using at least germanium hydride or germanium halide and hydrogen, the pressure in the film formation chamber is set to 70 to 7
A method for producing a microcrystalline film by plasma discharge, wherein the pressure is set to 00 Pa.
【請求項2】 微結晶膜形成用基板の一側に配設した接
地電極と、他側に配設した高周波電極と、原料ガス供給
口とを備えた成膜室に、膜形成用の原料ガスを導入し、
プラズマ放電によって前記基板主面に微結晶膜を形成す
る微結晶膜の製造方法において、前記原料ガスとして、
少なくとも水素化ゲルマニウムもしくはハロゲン化ゲル
マニウムと水素とを用い、前記成膜室の圧力を70Pa
以上とし、前記原料ガスを基板に向かって吹き出すよう
に供給することを特徴とするプラズマ放電による微結晶
膜の製造方法。
2. A film forming material comprising a ground electrode provided on one side of a microcrystalline film forming substrate, a high-frequency electrode provided on the other side, and a material gas supply port. Introduce gas,
In the method of manufacturing a microcrystalline film for forming a microcrystalline film on the main surface of the substrate by plasma discharge, as the source gas,
Using at least germanium hydride or germanium halide and hydrogen, the pressure in the film formation chamber was set to 70 Pa
As described above, a method for producing a microcrystalline film by plasma discharge, wherein the source gas is supplied so as to be blown out toward a substrate.
【請求項3】 請求項2に記載の微結晶膜の製造方法に
おいて、前記高周波電極は、原料ガスを基板に向かって
シャワー状に吹き出すための複数のガス通流口を有する
ものとし、前記複数のガス通流口から原料ガスを供給す
ることを特徴とするプラズマ放電による微結晶膜の製造
方法。
3. The method for manufacturing a microcrystalline film according to claim 2, wherein the high-frequency electrode has a plurality of gas flow openings for blowing a source gas toward a substrate in a shower shape. A method for producing a microcrystalline film by plasma discharge, characterized in that a raw material gas is supplied from a gas flow port of (1).
【請求項4】 請求項1ないし3のいずれかに記載の微
結晶膜の製造方法において、基板に形成する微結晶膜
は、微結晶ゲルマニウム膜であることを特徴とするプラ
ズマ放電による微結晶膜の製造方法。
4. The microcrystalline film formed by plasma discharge according to claim 1, wherein the microcrystalline film formed on the substrate is a microcrystalline germanium film. Manufacturing method.
【請求項5】 請求項1ないし3のいずれかに記載の微
結晶膜の製造方法において、基板に形成する微結晶膜
は、微結晶シリコンゲルマニウム膜であることを特徴と
するプラズマ放電による微結晶膜の製造方法。
5. The microcrystalline film produced by a plasma discharge according to claim 1, wherein the microcrystalline film formed on the substrate is a microcrystalline silicon germanium film. Manufacturing method of membrane.
【請求項6】 請求項1ないし3のいずれかに記載の微
結晶膜の製造方法において、前記原料ガスとして、ゲル
マン(GeH4)と水素とを用いる、あるいはゲルマン(Ge
H4)とシラン(SiH4)と水素とを用いることを特徴とす
るプラズマ放電による微結晶膜の製造方法。
6. The method for producing a microcrystalline film according to claim 1, wherein germanium (GeH 4 ) and hydrogen are used as the source gas, or germane (Ge
A method for producing a microcrystalline film by plasma discharge, characterized by using H 4 ), silane (SiH 4 ) and hydrogen.
JP2000153003A 2000-05-24 2000-05-24 Method of manufacturing fine crystal film by plasma discharge Pending JP2001332503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153003A JP2001332503A (en) 2000-05-24 2000-05-24 Method of manufacturing fine crystal film by plasma discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153003A JP2001332503A (en) 2000-05-24 2000-05-24 Method of manufacturing fine crystal film by plasma discharge

Publications (1)

Publication Number Publication Date
JP2001332503A true JP2001332503A (en) 2001-11-30

Family

ID=18658340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153003A Pending JP2001332503A (en) 2000-05-24 2000-05-24 Method of manufacturing fine crystal film by plasma discharge

Country Status (1)

Country Link
JP (1) JP2001332503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024211A1 (en) * 2008-08-29 2010-03-04 株式会社カネカ Thin-film photoelectric converter and fabrication method therefor
JP2010082044A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Germanium vapor-deposited sheet
JP2012146981A (en) * 2011-01-11 2012-08-02 Imec Method for direct deposition of germanium layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024211A1 (en) * 2008-08-29 2010-03-04 株式会社カネカ Thin-film photoelectric converter and fabrication method therefor
JP5379801B2 (en) * 2008-08-29 2013-12-25 株式会社カネカ Thin film photoelectric conversion device and manufacturing method thereof
US8933327B2 (en) 2008-08-29 2015-01-13 Kaneka Corporation Thin-film photoelectric converter and fabrication method therefor
JP2010082044A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Germanium vapor-deposited sheet
JP2012146981A (en) * 2011-01-11 2012-08-02 Imec Method for direct deposition of germanium layer

Similar Documents

Publication Publication Date Title
US7648892B2 (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
JP2000012870A (en) Multistage cvd method for thin-film transistor
JP2001332503A (en) Method of manufacturing fine crystal film by plasma discharge
JP2003197536A (en) Plasma enhanced cvd system, amorphous silicon-based thin film, and its manufacturing method
JP4178202B2 (en) Thin film manufacturing method
JP4251256B2 (en) Method for producing microcrystalline film
JPH04298023A (en) Manufacture of single crystal silicon thin film
JPH04318973A (en) Thin film transistor and manufacture thereof
JPH04318921A (en) Manufacture of polycrystalline silicon film
JPH03101123A (en) Manufacture of amorphous semiconductor film
JP2002261312A (en) Method of manufacturing hybrid thin-film photoelectric conversion device
JPH0697079A (en) Manufacture of amorphous silicon
JPS6317519A (en) Method and apparatus for manufacture plasma cvd thin-film
JP2000101107A (en) Manufacture of silicon thin film photoconductive conversion device
JPS59227713A (en) Novel method for producing silicon fluoride thin film
JPS6077118A (en) Method for producing thin silicon film and apparatus therefor
JPH0351089B2 (en)
JPH10120491A (en) Formation of crystal film
JPH1174201A (en) Manufacture of non-single crystalline semiconductor thin film
JPH04266015A (en) Preparation of hydrogenated amorphous silicon film
JPS61278132A (en) Forming method for amorphous hydride sige film
JPH03250624A (en) Forming method for thin polycrystalline silicon film
Deng Strain-relief spiral buckling of a-Si: H films
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
Ganguly et al. Comparison of a-Si/a-SiGe tandem cell performance using silane or disilane for deposition of the amorphous silicon germanium intrinsic layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081016

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090122