JP2001332165A - Fuse element and electric component with built-in fuse - Google Patents

Fuse element and electric component with built-in fuse

Info

Publication number
JP2001332165A
JP2001332165A JP2001069617A JP2001069617A JP2001332165A JP 2001332165 A JP2001332165 A JP 2001332165A JP 2001069617 A JP2001069617 A JP 2001069617A JP 2001069617 A JP2001069617 A JP 2001069617A JP 2001332165 A JP2001332165 A JP 2001332165A
Authority
JP
Japan
Prior art keywords
fuse element
temperature
fuse
electric component
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001069617A
Other languages
Japanese (ja)
Other versions
JP4435439B2 (en
Inventor
Norisuke Hattori
教祐 服部
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2001069617A priority Critical patent/JP4435439B2/en
Publication of JP2001332165A publication Critical patent/JP2001332165A/en
Application granted granted Critical
Publication of JP4435439B2 publication Critical patent/JP4435439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuse element, particularly, a fuse element to be built in electric component including a tantalum capacitor, achieving good Sn-Ag based lead-free formation with the control of the mixing volume of Ag while satisfactorily assuring stable mounting of the electric component with a built-in fuse with lead-free soldering and carbonization and burning prevention of the electric component during fusing operation. SOLUTION: The fuse element built in the electric component to be mounted at 240-320 deg.C comprises a Ag-Sn composition consisting of 10-50 weight % of Ag and Sn in the rest, or 1-10 weight % of Sb added to the Ag-Sn composition consisting of 10-50 weight % of Ag and Sn in the rest.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンデンサやトラ
ンジスタ等の電気部品に内蔵されるヒュ−ズ素子及びヒ
ュ−ズ内蔵電気部品、例えばタンタルコンデンサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuse element incorporated in an electric component such as a capacitor or a transistor, and an electric component having a fuse, for example, a tantalum capacitor.

【0002】[0002]

【従来の技術】電気部品においては、電流ヒュ−ズ素子
を電気部品本体に接続し、これらを樹脂モ−ルド等によ
り封止することがある。例えば、タンタルコンデンサに
おいては、万一の極性誤装着による過電流を未然に防止
するために、コンデンサ素子にヒュ−ズ素子を接続し、
これらを樹脂でモ−ルドしている。また、パワ−トラン
ジスタにヒュ−ズ素子を接続し、これらを樹脂で封止す
ることも知られている。これらのヒュ−ズ内蔵電気部品
においては、ヒュ−ズ溶断時のヒュ−ズ素子の発熱温度
で加熱される。而して、その電気部品本体やモ−ルド樹
脂の炭化・燃焼を防止するために、その発熱温度を所定
温度以下に抑える必要があり、例えば、タンタルコンデ
ンサの場合、タンタル粉末焼結体の発煙防止のために、
600℃以下に抑えることが要求される。而るに、上記
電流ヒュ−ズは、速動溶断型であり、溶断電流をi、溶
断時間をtm、ヒュ−ズ素子の溶断時温度をTm、同じ
く抵抗をR、同じくヒュ−ズ素子の単位長さ当たりの熱
容量をK、周囲温度をθとすると、ほぼ
2. Description of the Related Art In an electric component, a current fuse element is sometimes connected to an electric component main body, and these are sealed with a resin mold or the like. For example, in a tantalum capacitor, a fuse element is connected to a capacitor element in order to prevent an overcurrent caused by incorrect polarity mounting.
These are molded with resin. It is also known to connect a fuse element to a power transistor and seal them with a resin. These electronic components with a built-in fuse are heated at the temperature of the fuse element when the fuse is blown. Therefore, in order to prevent carbonization and combustion of the electric component body and the mold resin, it is necessary to suppress the heat generation temperature to a predetermined temperature or less. For example, in the case of a tantalum capacitor, smoke of a tantalum powder sintered body is generated. To prevent
It is required to keep the temperature below 600 ° C. The current fuse is of a fast-blow type, in which the fusing current is i, the fusing time is tm, the temperature at the time of fusing of the fuse element is Tm, the resistance is R, and the fuse element is the same. Assuming that the heat capacity per unit length is K and the ambient temperature is θ, almost

【数1】 tm=K(Tm−θ)/Ri (1) が成立し、Tmを600℃以下にすることが要求され
る。
The following holds: tm = K (Tm−θ) / Ri 2 (1), and Tm is required to be 600 ° C. or less.

【0003】上記のヒュ−ズ内蔵電気部品は、通常リフ
ロ−法またはフロ−法により、回路基板に実装され、上
記ヒュ−ズ素子には、この実装時の温度で損傷されるこ
とのない融点のものを使用する必要がある。
The above-mentioned fuse-containing electric parts are usually mounted on a circuit board by a reflow method or a flow method, and the fuse element has a melting point which is not damaged by the temperature at the time of mounting. You need to use

【0004】[0004]

【発明が解決しようとする課題】従来、リフロ−法やフ
ロ−法には、Pb−Sn系はんだが使用されており、そ
の実装温度は220℃〜230℃とされていた。而し
て、上記電気部品に内蔵させるヒュ−ズ素子には、Pb
−Sn、Pb−Sn−Ag、Pb−In、Pb−In−
Ag系やこれらにSb、Au、Cu等を添加した融点2
60℃〜320℃の合金が使用されていた。
Conventionally, Pb-Sn based solder has been used in the reflow method and the flow method, and the mounting temperature has been set at 220 to 230 ° C. Thus, the fuse element incorporated in the electric component includes Pb
-Sn, Pb-Sn-Ag, Pb-In, Pb-In-
Ag-based or melting point 2 with Sb, Au, Cu, etc. added to them
An alloy between 60 ° C and 320 ° C was used.

【0005】しかしながら、近来、廃棄された電子・電
気機器からの鉛イオンの溶出による環境汚染を防止する
ために、鉛フリ−はんだの使用が要請され、Sn−3.
5AgやSn−0.7Cu等の鉛フリ−はんだが開発さ
れている。これらの鉛フリ−はんだを使用しての実装温
度は、Pb−Snはんだ使用の場合よりも高く、最高で
320℃が予定されている。而るに、上記ヒュ−ズ素子
においても、鉛フリ−化が要請され、この鉛フリ−化に
あたっては、上記実装時でのヒュ−ズ素子の損傷防止、
ヒュ−ズ溶断時の電気部品本体若しくはモ−ルド樹脂の
炭化・燃焼防止を保証し得るものであることが要求され
る。
[0005] However, recently, in order to prevent environmental pollution due to elution of lead ions from discarded electronic and electrical equipment, use of lead-free solder has been required, and Sn-3.
Lead-free solders such as 5Ag and Sn-0.7Cu have been developed. The mounting temperature using these lead-free solders is higher than that using Pb-Sn solder, and is expected to be 320 ° C. at the maximum. Therefore, the fuse element is also required to be lead-free, and this lead-free is required to prevent the fuse element from being damaged at the time of mounting.
It is required to be able to guarantee the prevention of carbonization and combustion of the electric component body or the mold resin when the fuse is blown.

【0006】而るに、Ag系、Al系、Au系では、過
電流遮断は可能であっても、就中、細線化が容易なAl
−Siでも、共晶温度が577℃であり、上記600℃
以下での溶断時温度の要求を辛うじて充たし得るに過ぎ
ない。また、亜鉛単体はんだの使用も提案されている
が、融点が420℃であって、上記2点の条件を充足さ
せ得ても、イオン化傾向が高く酸化し易く、蒸気圧が高
く電子部品用ヒュ−ズには使用し難い。
In the case of Ag-based, Al-based, and Au-based systems, even though overcurrent can be interrupted, it is particularly easy to reduce the thickness of Al.
-Si also has a eutectic temperature of 577 ° C,
It can only barely meet the fusing temperature requirements below. The use of zinc simple solder has also been proposed. However, even if the melting point is 420 ° C. and the above two conditions can be satisfied, the ionization tendency is high and the oxidation is easy, and the vapor pressure is high, so that the heat for electronic parts is high. -Hard to use.

【0007】従来、電極材として熱伝導率の小さい鉄−
ニッケル合金やコバ−ル合金を用い、モ−ルド樹脂に熱
伝導率の低いもの(15×10−4cm/℃・sec・cm以
下)を用い、Sn−5Ag(固相線温度221℃、液相
線温度240℃)のように共晶点(Ag3.5重量%、
共晶点温度221℃)近傍のSn−Agをヒュ−ズ素子
として用いた角型チップ状ヒュ−ズが公知であり(特開
昭59−81828号公報)、温度240℃で実装して
も、電極材やモ−ルド樹脂の低熱伝導性のためにヒュ−
ズ素子を損傷させることなく実装できると期待されてい
る。しかしながら、かかる結果は、前記鉛フリ−はんだ
使用のもとでのほぼ320℃という高温実装では、到底
期待し難い。
Conventionally, iron having a low thermal conductivity has been used as an electrode material.
Using a nickel alloy or a Kovar alloy, a mold resin having a low thermal conductivity (15 × 10 −4 cm 3 / ° C. · sec · cm or less), Sn-5Ag (solidus temperature 221 ° C.) Eutectic point (Ag 3.5% by weight, liquidus temperature 240 ° C.)
A square chip fuse using Sn-Ag near the eutectic point temperature of 221 ° C.) as a fuse element is known (Japanese Patent Laid-Open No. 59-81828), and even when mounted at a temperature of 240 ° C. Because of the low thermal conductivity of electrode materials and mold resin,
It is expected that the device can be mounted without damaging the device. However, such a result cannot be expected at all at a high temperature of about 320 ° C. under the use of the lead-free solder.

【0008】ところで、上記実装時でのヒュ−ズ素子の
損傷過程は、溶融されたヒュ−ズ素子がその溶融体の界
面エネルギ−に基づき電極への濡れで引っ張られて細く
され、実装終了に伴う冷却凝固でその細りが固定される
ことにあり、冷却凝固直前での細りが僅小であれば、実
質的な損傷は回避できる。而るに、図2に示すSn−A
gの平衡状態図において、非共晶領域では、固相線温度
221℃で溶け始め、更なる昇温で液相分が増加してい
き、液相線温度で溶融が完了して完全な液相になり、A
g量が異なると、同じ温度で共に固液共存状態になって
も、液相分の割合が相違し(従って、固相分の割合が相
違し)、その固液共存体の界面エネルギ-が相違する。
而して、同じ温度のもとでも、共晶点近傍領域と共晶点
隔離領域とでは、界面エネルギ-が相違し、上記した実
装時でのヒュ−ズ素子の細りの程度、すなわち損傷の程
度にも差が生じる。従って、Agの配合量を調整するこ
とによって、溶け始め温度が同じであっても、上記固液
共存状態(半溶融状態)での界面エネルギ−の調整で、
実装時でのヒュ−ズ素子の損傷を抑制することが可能で
あると推定される。
The damage process of the fuse element at the time of mounting is such that the melted fuse element is pulled thin by the wetting of the electrodes based on the interfacial energy of the melt, and becomes thin at the end of mounting. The thinning is fixed by the accompanying cooling and solidification. If the thinning immediately before the cooling and solidification is very small, substantial damage can be avoided. Thus, Sn-A shown in FIG.
In the equilibrium diagram of g, in the non-eutectic region, melting starts at a solidus temperature of 221 ° C., and the liquid phase component increases with a further increase in temperature. A phase
If the amount of g is different, even when both solid and liquid coexist at the same temperature, the ratio of the liquid phase is different (therefore, the ratio of the solid component is different), and the interfacial energy of the solid / liquid coexist is reduced. Different.
Therefore, even at the same temperature, the interfacial energy is different between the region near the eutectic point and the region isolated from the eutectic point, and the degree of thinning of the fuse element at the time of mounting, that is, Differences also occur in degree. Therefore, by adjusting the amount of Ag, even if the temperature at which melting starts is the same, the interfacial energy in the solid-liquid coexisting state (semi-molten state) is adjusted.
It is presumed that damage to the fuse element during mounting can be suppressed.

【0009】本発明の目的は、ヒュ−ズ素子、特に、タ
ンタルコンデンサ等の電気部品に内蔵させるヒュ−ズ素
子において、ヒュ−ズ内蔵電気部品の鉛フリ−はんだに
よる安定な実装やヒュ−ズ溶断作動時の電気部品の炭化
・燃焼防止を満足に保証しつつ、そのヒュ−ズ素子のS
n−Ag系での鉛フリ−化を、Ag配合量の調整により
良好に達成することにある。更に、上記目的に加え、加
工が容易なヒュ−ズ素子を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuse element, particularly a fuse element incorporated in an electric component such as a tantalum capacitor. While ensuring satisfactory prevention of carbonization and combustion of electrical components during fusing operation, the fuse element S
An object of the present invention is to achieve good lead-free in an n-Ag system by adjusting the amount of Ag. It is still another object of the present invention to provide a fuse element which can be easily processed.

【0010】[0010]

【課題を解決するための手段】本発明に係るヒュ−ズ素
子は、温度240℃〜320℃で実装される電気部品に
内蔵されるヒュ−ズ素子であり、Agが10〜50重量
%、残部がSnからなるAg−Sn組成とされているこ
とを特徴とする構成であり、溶断時のヒュ−ズ素子の温
度が通常600℃以下とされ、また線径が通常50μm
〜150μmとされる。
A fuse element according to the present invention is a fuse element incorporated in an electric component mounted at a temperature of 240 ° C. to 320 ° C., wherein Ag is 10 to 50% by weight. The composition is characterized in that the balance is an Ag-Sn composition comprising Sn, wherein the temperature of the fuse element at the time of fusing is usually 600 ° C. or less, and the wire diameter is usually 50 μm.
150150 μm.

【0011】本発明に係る他のヒュ−ズ素子は、温度2
40℃〜320℃で実装される電気部品に内蔵されるヒ
ュ−ズ素子であり、Agが10〜50重量%、残部がS
nからなるAg−Sn組成にSbが1〜10重量%添加
されている組成とされていることを特徴とする構成であ
り、溶断時のヒュ−ズ素子の温度が通常600℃以下と
され、また線径が通常50μm〜150μmとされる。
Another fuse element according to the present invention has a temperature of 2
A fuse element incorporated in an electric component mounted at 40 ° C. to 320 ° C., Ag is 10 to 50% by weight, and the balance is S
The composition is characterized in that Sb is added in an amount of 1 to 10% by weight to an Ag-Sn composition consisting of n, and the temperature of the fuse element at the time of fusing is usually 600 ° C. or less, The wire diameter is usually set to 50 μm to 150 μm.

【0012】本発明に係るヒュ−ズ内蔵電気部品は、温
度240℃〜320℃で実装される電気部品であり、A
gが10〜50重量%、残部がSnからなる組成のヒュ
−ズ素子を内蔵していることを特徴とする構成であり、
溶断時のヒュ−ズ素子の温度が通常600℃以下とさ
れ、また線径が通常50μm〜150μmとされる。
The electric component with a built-in fuse according to the present invention is an electric component mounted at a temperature of 240 ° C. to 320 ° C.
g is 10 to 50% by weight, and the balance contains a fuse element having a composition of Sn.
The temperature of the fuse element at the time of fusing is usually set to 600 ° C. or lower, and the wire diameter is usually set to 50 μm to 150 μm.

【0013】本発明に係る他のヒュ−ズ内蔵電気部品
は、温度240℃〜320℃で実装される電気部品であ
り、Agが10〜50重量%、残部がSnからなるAg
−Sn組成にSbが1〜10重量%添加されている組成
のヒュ−ズ素子を内蔵していることを特徴とする構成で
あり、溶断時のヒュ−ズ素子の温度が通常600℃以下
とされ、また線径が通常50μm〜150μmとされ
る。なお、上記組成に不可避的不純物が含まれていても
よい。
Another electric component with a built-in fuse according to the present invention is an electric component mounted at a temperature of 240 ° C. to 320 ° C., wherein Ag is 10 to 50% by weight and the balance is Sn.
A fuse element having a composition in which Sb is added to the Sn composition in an amount of 1 to 10% by weight, wherein the temperature of the fuse element at the time of fusing is usually 600 ° C. or less. And the wire diameter is usually 50 μm to 150 μm. The composition may contain unavoidable impurities.

【0014】[0014]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は、本発明に係るヒ
ュ−ズ素子を内蔵させたコンデンサの一例を示してい
る。図1において、1はタンタルコンデンサ素子、2は
陽極リ−ド導体である。3は配線板であり、一対の電極
31,32を有し、その電極間に本発明に係るヒュ−ズ
素子aを接続し、一方の電極31をコンデンサ素子1の
陰極に接合し、他方の電極32にリ−ド導体4を接合し
てある。5は封止樹脂層、例えばエポキシ樹脂層であ
る。上記ヒュ−ズ素子と電極との接合には、抵抗溶接、
ワイヤボ−ルボンディング、ウェッジボンディング等を
用いることができる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a capacitor incorporating a fuse element according to the present invention. In FIG. 1, 1 is a tantalum capacitor element, and 2 is an anode lead conductor. Reference numeral 3 denotes a wiring board having a pair of electrodes 31 and 32, a fuse element a according to the present invention is connected between the electrodes, one electrode 31 is joined to the cathode of the capacitor element 1, and the other is connected. The lead conductor 4 is joined to the electrode 32. Reference numeral 5 denotes a sealing resin layer, for example, an epoxy resin layer. The fuse element and the electrode are joined by resistance welding,
Wire ball bonding, wedge bonding, or the like can be used.

【0015】上記のコンデンサは、IC、トランジス
タ、チップ抵抗等の他の電気部品と共にリフロ−法やフ
ロ−法によって回路板に実装され、はんだには、鉛フリ
−はんだ、例えば、Sn−3.5Ag共晶(共晶点温度
221℃)、Sn−0.7Cu共晶(共晶点温度227
℃)、Sn−4Sb(固相線温度235℃、液相線温度
240℃)等を使用でき、実装温度は240℃〜320
℃とされる。本発明の請求項1に係るヒュ−ズ素子に
は、Ag10〜50重量%、残部Snの合金組成が使用
されているから、図2に示すSn−Agの平衡状態図か
ら明らかな通り、前記実装温度240℃〜320℃のも
とで半溶融状態になり、液相中に固相粒体が混在した状
態となり、濡れ性が悪く、実装加熱中での電極への濡れ
広がりによるヒュ−ズ素子の細りを僅かにとどめ得、実
装終了時での冷却凝固でほぼ元の太さに保持できる。従
って、上記のヒュ−ズ内蔵コンデンサを、ヒュ−ズ素子
の固相線温度温度よりも高い実装温度240℃〜320
℃という鉛フリ−はんだによるリフロ−法またはフロ−
法でもヒュ−ズ素子を安定に保持しつつ実装できる。
The above-mentioned capacitor is mounted on a circuit board by a reflow method or a flow method together with other electric components such as an IC, a transistor, a chip resistor, etc., and a lead-free solder such as Sn-3. 5Ag eutectic (eutectic point temperature 221 ° C), Sn-0.7Cu eutectic (eutectic point temperature 227)
° C), Sn-4Sb (solidus temperature 235 ° C, liquidus temperature 240 ° C), etc., and the mounting temperature is 240 ° C to 320 ° C.
° C. Since the fuse element according to claim 1 of the present invention uses an alloy composition of 10 to 50% by weight of Ag and the balance of Sn, as is clear from the equilibrium state diagram of Sn-Ag shown in FIG. It becomes a semi-molten state at a mounting temperature of 240 ° C. to 320 ° C., becomes a state in which solid particles are mixed in a liquid phase, and has poor wettability. The thinning of the element can be kept slightly, and it can be maintained at almost the original thickness by cooling and solidifying at the end of mounting. Therefore, the above-mentioned fuse built-in capacitor is mounted at a mounting temperature of 240 ° C. to 320 ° C. higher than the solidus temperature of the fuse element.
° C reflow method using lead-free solder or flow
It is possible to mount the fuse element while keeping it stable by the method.

【0016】上記したヒュ−ズ素子をタンタルコンデン
サに内蔵させる理由は、万一の極性誤接続によって過電
流が流れるのを防止するためであり、遮断電流をi、遮
断時間をtm、ヒュ−ズ素子の溶断時温度をTm、同じ
く抵抗をR、同じくヒュ−ズ素子の単位長さ当たりの熱
容量をK、周囲温度をθとすると、ほぼ前記の式(1)
が成立し、ヒュ−ズ素子の溶断時温度Tmをタンタル焼
結体の発煙温度600℃以下とし、かつ、tmを可及的
に短くすることが要求される。而るに、本発明の請求項
1に係るヒュ−ズ素子においては、後述の実施例から明
らかなように、線径50μmφ〜150μmφのもと
で、2〜6Aを数msecの遮断時間で、かつ、ヒュ−ズ素
子の溶断時温度600℃以下で過電流を遮断できる。
The reason why the fuse element is incorporated in the tantalum capacitor is to prevent an overcurrent from flowing due to an erroneous connection of the polarity. The interruption current is i, the interruption time is tm, and the fuse is not used. Assuming that the temperature at the time of fusing of the element is Tm, the resistance is R, the heat capacity per unit length of the fuse element is K, and the ambient temperature is θ, the above equation (1) is obtained.
It is required that the fuse element fusing temperature Tm be set to a smoke temperature of 600 ° C. or lower of the tantalum sintered body and tm be as short as possible. Thus, in the fuse element according to the first aspect of the present invention, as will be apparent from the examples described below, under a wire diameter of 50 μmφ to 150 μmφ, 2 to 6 A is cut off for several milliseconds, Further, the overcurrent can be cut off at a temperature of 600 ° C. or less when the fuse element is blown.

【0017】本発明の請求項1に係るヒュ−ズ素子にお
いては、Ag配合量を50重量%未満としてあるから、
充分な靱性を有し、前記50μmφ〜150μmφとい
う細線径のもとでも、ヒュ−ズ素子の供給や電気部品へ
の接合を断線なくスム−ズに行うことができる。また、
ヒュ−ズ素子の線引き加工も良好に行うことができる。
本発明の請求項1に係るヒュ−ズ素子においては、Ag
添加量を10重量%以上としており、図2に示すSn−
Ag平衡状態図から明らかなとおり、Sn量が多少増加
しても、液相線温度の変動を僅少に抑えることができる
から、Snメッキ電極との溶接等によりSnが拡散増加
しても、元の融点特性を充分に維持できる。本発明に係
るヒュ−ズ素子は、回路板のヒュ−ズ電極にヒュ−ズ素
子単体を前記したリフロー法またはフロー法により実装
する形態でも使用することができる。また、リフロー法
またはフロー法により実装した後での補修やあと付けで
も、鏝で安全にはんだ付けすることもできる。
In the fuse element according to the first aspect of the present invention, the Ag content is less than 50% by weight.
It has sufficient toughness, and can smoothly supply the fuse element and join it to the electric component without disconnection even under the thin wire diameter of 50 μmφ to 150 μmφ. Also,
The fuse element can be drawn well.
In the fuse element according to claim 1 of the present invention, Ag is used.
The addition amount was set to 10% by weight or more, and Sn-
As is clear from the Ag equilibrium state diagram, even if the amount of Sn is slightly increased, the fluctuation of the liquidus temperature can be suppressed to a small extent. Melting point characteristics can be sufficiently maintained. The fuse element according to the present invention can also be used in a form in which a single fuse element is mounted on a fuse electrode of a circuit board by the above-mentioned reflow method or flow method. Further, even after repairing or mounting after mounting by the reflow method or the flow method, it is also possible to safely solder with a trowel.

【0018】本発明の請求項1に係るヒュ−ズ素子は、
回転液中紡糸法によって製造することもできる。すなわ
ち、回転ドラムの内周面に遠心力により形成保持された
冷却液層に、ノズルから噴射した溶融ジェットを冷却液
層の周速と同速・同方向で入射させ、この液層入射ジェ
ットを冷却液層で急冷・凝固させて紡糸することもでき
る。この場合、ノズルから冷却液層に至る空間でのジェ
ットは、ノズルの円形形状が溶融金属の表面張力により
保持されて円形断面となる。更に、ジェットの表面張力
による円形保持力を冷却液層の動圧(ジェットを扁平化
しようとする圧力)よりも大とするように、冷却液層周
速、ジェットの冷却液層入射角等を調整してあり、冷却
液層に入射されたジェットも、断面円形を保持しつつ冷
却・凝固されていく。従って、線径50μmφ〜150
μmφという細線のヒュ−ズ素子を容易に製造できる。
The fuse element according to claim 1 of the present invention comprises:
It can also be manufactured by spinning in a rotating liquid. That is, a molten jet injected from a nozzle is made incident on the cooling liquid layer formed and held on the inner peripheral surface of the rotating drum by centrifugal force at the same speed and in the same direction as the peripheral speed of the cooling liquid layer. Spinning can also be performed by rapid cooling and solidification in a cooling liquid layer. In this case, the jet in the space from the nozzle to the cooling liquid layer has a circular cross-section because the circular shape of the nozzle is held by the surface tension of the molten metal. Further, the peripheral speed of the cooling liquid layer, the incident angle of the cooling liquid layer of the jet, and the like are set so that the circular holding force due to the surface tension of the jet is larger than the dynamic pressure of the cooling liquid layer (the pressure for flattening the jet). The jet that has been adjusted and incident on the cooling liquid layer also cools and solidifies while maintaining a circular cross section. Therefore, a wire diameter of 50 μmφ to 150
A fuse element having a fine line of μmφ can be easily manufactured.

【0019】本発明の請求項2に係るヒュ−ズ素子にお
いては、上記請求項1に係るヒュ−ズ素子のAg−Sn
組成(Agが10〜50重量%、残部がSn)にSbを
1〜10重量%添加した組成を使用しており、Sbの添
加により靱性を高め、線径50μmφ〜150μmφと
いう細線の線引加工、回転液中紡糸でのコイル取り時等
での耐断線性を高めて細線製造の一層の容易化を図って
いる。Sbの添加量を1〜10重量%とする理由は、1
重量%未満では靱性の向上に効果がなく、10重量%を
越えると、前記したAg−Sn組成(Agが10〜50
重量%、残部がSn)に基づく有利性の享有が困難にな
るからである。このヒュ−ズ素子もタンタルコンデンサ
等の電気部品に内蔵させて使用できる。
According to the fuse element of the second aspect of the present invention, the Ag-Sn of the fuse element of the first aspect is provided.
A composition in which Sb is added to the composition (Ag is 10 to 50% by weight, the balance being Sn) and Sb is added to 1 to 10% by weight. The addition of Sb enhances the toughness and draws a thin wire having a wire diameter of 50 μm to 150 μm. In addition, the wire breakage resistance at the time of coil removal by spinning in a rotating liquid is enhanced to further facilitate the production of fine wires. The reason why the addition amount of Sb is 1 to 10% by weight is as follows.
If the amount is less than 10% by weight, the effect of improving the toughness is not obtained.
This is because it becomes difficult to enjoy the advantages based on the weight% and the balance Sn). This fuse element can also be used by being incorporated in an electric component such as a tantalum capacitor.

【0020】[0020]

【実施例】〔実施例1〕内径500mm,巾45mmの
ドラムを200rpmで回転させて約1600mlの水
を層状に形成し、この冷却液層中に、ヒ−タにて溶融さ
せた組成材を窒素ガス加圧により、石英ガラスノズルか
らジェットとして上記冷却液層周速と同速度で噴射して
紡糸する方法により、Sn−15Agの140μmφ細
線を製造し、これをヒュ−ズ素子とした。このヒュ−ズ
素子の固相線温度は221℃、液相線温度は340℃で
ある。
[Example 1] A drum having an inner diameter of 500 mm and a width of 45 mm was rotated at 200 rpm to form about 1600 ml of water in a layered form. By pressurizing with nitrogen gas, spinning was performed by jetting a jet from a quartz glass nozzle as a jet at the same speed as the peripheral speed of the cooling liquid layer to produce a Sn-15Ag 140 μmφ fine wire, which was used as a fuse element. The fuse element has a solidus temperature of 221 ° C. and a liquidus temperature of 340 ° C.

【0021】〔実施例2〕実施例1と同様にして、Sn
−35Agの90μmφ細線を製造し、これをヒュ−ズ
素子とした。このヒュ−ズ素子の固相線温度は221
℃、液相線温度は430℃である。
[Embodiment 2] In the same manner as in Embodiment 1, Sn
A 90 μmφ thin wire of −35 Ag was manufactured and used as a fuse element. The solidus temperature of this fuse element is 221.
° C and the liquidus temperature is 430 ° C.

【0022】〔実施例3〕実施例1と同様にして、Sn
−50Agの110μmφ細線を製造し、これをヒュ−
ズ素子とした。このヒュ−ズ素子の固相線温度は221
℃、液相線温度は490℃である。
[Embodiment 3] In the same manner as in Embodiment 1, Sn
A 110 μmφ fine wire of −50 Ag was manufactured and
Element. The solidus temperature of this fuse element is 221.
℃, liquidus temperature is 490 ℃.

【0023】〔実施例4〕Sn−20Ag−6Sbの押
出線をダイス線引きにより80μmφ細線に加工し、こ
れをヒュ−ズ素子とした。このヒュ−ズ素子の固相線温
度は230℃、液相線温度は380℃である。
Example 4 An extruded wire of Sn-20Ag-6Sb was processed into a thin wire of 80 μmφ by die drawing, and this was used as a fuse element. The fuse element has a solidus temperature of 230 ° C. and a liquidus temperature of 380 ° C.

【0024】〔比較例1〕実施例1と同様にして、Sn
−5Agの110μmφ細線を製造し、これをヒュ−ズ
素子とした。このヒュ−ズ素子の固相線温度は221
℃、液相線温度は240℃である。
Comparative Example 1 In the same manner as in Example 1, Sn
A 110 μmφ fine wire of −5 Ag was manufactured and used as a fuse element. The solidus temperature of this fuse element is 221.
° C and the liquidus temperature is 240 ° C.

【0025】〔比較例2〕実施例1と同様にして、Sn
−55Agの90μmφ細線を製造し、これをヒュ−ズ
素子とした。このヒュ−ズ素子の固相線温度は221
℃、液相線温度は520℃である。
Comparative Example 2 In the same manner as in Example 1, Sn
A 90 μmφ fine wire of −55 Ag was manufactured and used as a fuse element. The solidus temperature of this fuse element is 221.
° C and the liquidus temperature is 520 ° C.

【0026】これらの実施例品及び比較例品につき、次
ぎの抵抗値変化率、電流遮断特性(遮断時間及び温度)
及び柔軟性を測定したところ、表1の通りであった(試
料数20個の平均値)。
The following resistance value change rates and current interruption characteristics (interruption time and temperature) of these examples and comparative examples are as follows.
The measured flexibility and flexibility were as shown in Table 1 (average value of 20 samples).

【0027】〔抵抗値変化率〕温度280℃のもとでの
実装の可否を評価するためのものである。図3に示すよ
うに、セラミック基板61にAgペ−ストの塗布・焼成
により対電極62,62を設け、両電極間にヒュ−ズ素
子aを載置し、更に各電極62に錫メッキ銅線63を溶
接し、その溶接熱で各電極とヒュ−ズ素子aとの間を溶
接した試料を大気中で10分間、280℃に保持し、1
0分時の初期に対する抵抗値変化率を測定した。錫メッ
キ銅線63を付設した理由は、溶融したヒュ−ズ素子の
濡れを生じ易くし、厳しい評価を行うためである。 〔遮断電流特性〕ヒュ−ズ素子に5Aの電流を通電し、
遮断時間と遮断時のヒュ−ズ素子温度を測定した。 〔柔軟性〕直径0.5mmの棒に巻きつけて折れなかっ
たものを○、折れたものを×とした。
[Rate of change in resistance value] This is for evaluating the possibility of mounting at a temperature of 280 ° C. As shown in FIG. 3, counter electrodes 62 and 62 are provided by applying and firing Ag paste on a ceramic substrate 61, a fuse element a is placed between the electrodes, and tin-plated copper is further provided on each electrode 62. The wire 63 was welded, and the sample welded between each electrode and the fuse element a by the welding heat was kept at 280 ° C. for 10 minutes in the atmosphere.
The rate of change in resistance value with respect to the initial time at 0 minutes was measured. The reason why the tin-plated copper wire 63 is provided is that the melted fuse element is apt to be wet and a strict evaluation is performed. [Interruption current characteristics] A current of 5 A flows through the fuse element.
The cut-off time and the fuse element temperature at the time of cut-off were measured. [Flexibility] A sample which was wound around a rod having a diameter of 0.5 mm and did not break was evaluated as ○, and a sample which was broken was evaluated as ×.

【0028】[0028]

【表1】 表1 電流遮断特性 合金組成 抵抗変化率(%) 遮断時間 溶断時温度 柔軟性 実施例1 Sn-15Ag +0.64 0.060秒 350℃ ○ 実施例2 Sn-35Ag +2.10 0.015秒 500℃ ○ 実施例3 Sn-50Ag −0.99 0.090秒 530℃ ○ 実施例4 Sn-20Ag6Sb −3.5 0.014秒 380℃ ○ 比較例1 Sn-5Ag 測定不可 0.050秒 300℃ ○ 比較例2 Sn-55Ag −0.76 0.120秒 540℃ ×Table 1 Current interruption characteristics Alloy composition Resistance change rate (%) Interruption time Fusing temperature Flexibility Example 1 Sn-15Ag +0.64 0.060 seconds 350 ° C ○ Example 2 Sn-35Ag +2.100 0.0015 seconds 500 ° C ○ Example 3 Sn-50Ag -0.99 0.090 seconds 530 ° C ○ Example 4 Sn-20Ag6Sb -3.5 0.014 seconds 380 ° C ○ Comparative Example 1 Sn-5Ag measurement impossible 0. 050 seconds 300 ° C ○ Comparative example 2 Sn-55Ag -0.76 0.120 seconds 540 ° C ×

【0029】本発明に係るヒュ−ズ素子においては、溶
け始め温度(固相線温度221℃)が実装最高320℃
より低くても、液相線温度が320℃以上であり、温度
320℃のもとでは完全に液化せずに半溶融状態とな
り、かかる半溶融状態では濡れ性が低くて細くなり難
く、本発明に係るヒュ−ズ素子を内蔵させた電気部品を
320℃という高い温度のもとで実装しても、そのヒュ
−ズ素子を実質的な細り無く安定に保持できる。このこ
とは、比較例1の抵抗変化率が測定不可(ヒュ−ズ素子
が溶断し、抵抗値上昇が極めて大)であるのに対し、実
施例1〜4の抵抗変化率が僅小であることからも確認で
きる。
In the fuse element according to the present invention, the melting start temperature (solidus temperature 221.degree. C.) is 320.degree.
Even if the temperature is lower, the liquidus temperature is 320 ° C. or higher, and the liquidus does not completely liquefy under the temperature of 320 ° C. and becomes a semi-molten state. Even if an electric component incorporating the fuse element according to (1) is mounted at a high temperature of 320 ° C., the fuse element can be stably held without substantial thinning. This means that the resistance change rate of Comparative Example 1 was not measurable (the fuse element was melted and the resistance value rise was extremely large), whereas the resistance change rates of Examples 1 to 4 were very small. It can be confirmed from that.

【0030】また、本発明に係るヒュ−ズ素子において
は、液相線温度が600℃よりも充分に低く、溶断時の
ヒュ−ズ素子の温度を600℃以下に抑え得て電気部品
や封止樹脂の炭化・燃焼を防止できることは、表1の電
流遮断特性の溶断時温度からも確認できる。
Further, in the fuse element according to the present invention, the liquidus temperature is sufficiently lower than 600 ° C., and the temperature of the fuse element at the time of fusing can be suppressed to 600 ° C. or less, so that electric parts and sealing can be prevented. The fact that carbonization and combustion of the resin can be prevented can also be confirmed from the temperature at the time of fusing of the current interruption characteristics in Table 1.

【0031】更に、本発明に係るヒュ−ズ素子において
は、柔軟性に優れ、供給時や電気部品への接合時に曲げ
破損するのを充分に防止できることは、表1の柔軟性の
評価からも確認できる。 特に、請求項2記載のヒュ−
ズ素子においては、上記有利性を充分に保持し得る範囲
でSbを添加して組成の靱性を一層に高めているので、
50μmφ〜150μmφ細線の製造の一層の容易化を
図ることができる。
Furthermore, the fuse element according to the present invention is excellent in flexibility, and can sufficiently prevent bending breakage during supply and bonding to an electric component, from the evaluation of flexibility in Table 1. You can check. In particular, the fuse according to claim 2.
In the size element, the toughness of the composition is further enhanced by adding Sb within a range that can maintain the above-mentioned advantage sufficiently.
It is possible to further facilitate the production of fine wires of 50 μmφ to 150 μmφ.

【0032】[0032]

【発明の効果】本発明によれば、ヒュ−ズ素子、特にタ
ンタルコンデンサ等の電気部品に内蔵させるヒュ−ズ素
子において、ヒュ−ズ内蔵電気部品の鉛フリ−はんだに
よる安定な実装及びヒュ−ズ溶断作動時の電気部品の炭
化・燃焼防止、更には、ヒュ−ズ素子の容易な取扱や容
易な製造等の点を満足に保証しつつそのヒュ−ズ素子の
Sn−Ag系での鉛フリ−化を可能にでき、鉛フリ−化
による環境保全上、極めて有用である。
According to the present invention, in a fuse element, in particular, in a fuse element incorporated in an electric component such as a tantalum capacitor, the electric component having a built-in fuse can be stably mounted with lead-free solder and the fuse can be incorporated. Prevents carbonization and combustion of electrical components during the fuse fusing operation, and further ensures that the fuse element is easy to handle and easy to manufacture. Freezing can be enabled, and lead free is extremely useful for environmental protection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るヒュ−ズ内蔵電気部品の一例を示
す図面である。
FIG. 1 is a drawing showing an example of a fuse built-in electrical component according to the present invention.

【図2】Sn−Ag合金の平衡状態図である。FIG. 2 is an equilibrium diagram of a Sn—Ag alloy.

【図3】抵抗変化率の測定試料を示す図面である。FIG. 3 is a drawing showing a measurement sample of a resistance change rate.

【符号の説明】[Explanation of symbols]

a ヒュ−ズ素子 1 コンデンサ素子 5 封止樹脂層 a fuse element 1 capacitor element 5 sealing resin layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】温度240℃〜320℃で実装される電気
部品に内蔵されるヒュ−ズ素子であり、Agが10〜5
0重量%、残部がSnからなるAg−Sn組成とされて
いることを特徴とするヒュ−ズ素子。
1. A fuse element incorporated in an electric component mounted at a temperature of 240.degree. C. to 320.degree.
A fuse element having an Ag-Sn composition of 0% by weight and the balance of Sn.
【請求項2】温度240℃〜320℃で実装される電気
部品に内蔵されるヒュ−ズ素子であり、Agが10〜5
0重量%、残部がSnからなるAg−Sn組成にSbが
1〜10重量%添加されていることを特徴とするヒュ−
ズ素子。
2. A fuse element incorporated in an electric component mounted at a temperature of 240.degree. C. to 320.degree.
0 to 10% by weight of Sb is added to an Ag-Sn composition comprising 0% by weight and the balance Sn.
Element.
【請求項3】溶断時のヒュ−ズ素子の温度が600℃以
下である請求項1または2記載のヒュ−ズ素子。
3. The fuse element according to claim 1, wherein the temperature of the fuse element at the time of fusing is 600 ° C. or less.
【請求項4】線径が50μmφ〜150μmφである請
求項1〜3何れか記載のヒュ−ズ素子。
4. The fuse element according to claim 1, wherein the wire diameter is 50 μmφ to 150 μmφ.
【請求項5】温度240℃〜320℃で実装される電気
部品であり、Agが10〜50重量%、残部がSnから
なるAg−Sn組成のヒュ−ズ素子を内蔵していること
を特徴とするヒュ−ズ内蔵電気部品。
5. An electric component mounted at a temperature of 240.degree. C. to 320.degree. C., wherein a fuse element having an Ag-Sn composition composed of 10 to 50% by weight of Ag and the balance of Sn is incorporated. Fuse built-in electrical parts.
【請求項6】温度240℃〜320℃で実装される電気
部品であり、Agが10〜50重量%、残部がSnから
なるAg−Sn組成にSbが1〜10重量%添加されて
いる組成のヒュ−ズ素子を内蔵していることを特徴とす
るヒュ−ズ内蔵電気部品。
6. An electrical component mounted at a temperature of 240 ° C. to 320 ° C., wherein Ag is 10 to 50% by weight, and the balance is Sn-Ag-Sn composition in which Sb is added at 1 to 10% by weight. An electronic component with a built-in fuse, comprising the fuse element of (1).
JP2001069617A 2000-03-16 2001-03-13 Method for mounting fuse element and fuse built-in electric component Expired - Fee Related JP4435439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069617A JP4435439B2 (en) 2000-03-16 2001-03-13 Method for mounting fuse element and fuse built-in electric component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-74804 2000-03-16
JP2000074804 2000-03-16
JP2001069617A JP4435439B2 (en) 2000-03-16 2001-03-13 Method for mounting fuse element and fuse built-in electric component

Publications (2)

Publication Number Publication Date
JP2001332165A true JP2001332165A (en) 2001-11-30
JP4435439B2 JP4435439B2 (en) 2010-03-17

Family

ID=26587721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069617A Expired - Fee Related JP4435439B2 (en) 2000-03-16 2001-03-13 Method for mounting fuse element and fuse built-in electric component

Country Status (1)

Country Link
JP (1) JP4435439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294618A (en) * 2004-04-01 2005-10-20 Kyocera Corp Electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294618A (en) * 2004-04-01 2005-10-20 Kyocera Corp Electronic component
JP4544896B2 (en) * 2004-04-01 2010-09-15 京セラ株式会社 Electronic components

Also Published As

Publication number Publication date
JP4435439B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP6713106B2 (en) Lead-free solder alloy, solder material and joint structure
JP2006255784A (en) Unleaded solder alloy
JP4722751B2 (en) Powder solder material and bonding material
US6819215B2 (en) Alloy type thermal fuse and fuse element thereof
US6774761B2 (en) Alloy type thermal fuse and fuse element thereof
KR20190113903A (en) Solder Alloys, Solder Bonding Materials, and Electronic Circuit Boards
JP2007160340A (en) Brazing filler metal
JP2001266724A (en) Alloy-type thermal fuse
JP2819408B2 (en) Alloy type temperature fuse
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4818641B2 (en) Fuse element
JP4429476B2 (en) Fuse element for built-in electrical parts
JP2007207558A (en) Fusible alloy type thermal fuse and circuit protection element
JP2006287064A (en) Semiconductor device and its manufacturing method
JP2007313548A (en) Cream solder
JP4435439B2 (en) Method for mounting fuse element and fuse built-in electric component
JP4409747B2 (en) Alloy type thermal fuse
JP4973109B2 (en) Manufacturing method of semiconductor device
JP4425760B2 (en) Fuse element
JP2001266734A (en) Fuse element
JP2019207764A (en) Fuse element material with low melting point metal part and manufacturing method therefor
JP3708252B2 (en) Solder alloy powder for reflow mounting of electronic parts
US7160504B2 (en) Alloy type thermal fuse and fuse element thereof
JP4471824B2 (en) High temperature solder and cream solder
JP2000076971A (en) Alloy type thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091224

R150 Certificate of patent or registration of utility model

Ref document number: 4435439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees