JP2001329331A - High hardness and high toughness cemented carbide and its production method - Google Patents

High hardness and high toughness cemented carbide and its production method

Info

Publication number
JP2001329331A
JP2001329331A JP2000147330A JP2000147330A JP2001329331A JP 2001329331 A JP2001329331 A JP 2001329331A JP 2000147330 A JP2000147330 A JP 2000147330A JP 2000147330 A JP2000147330 A JP 2000147330A JP 2001329331 A JP2001329331 A JP 2001329331A
Authority
JP
Japan
Prior art keywords
cemented carbide
hardness
toughness
gas pressure
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000147330A
Other languages
Japanese (ja)
Inventor
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2000147330A priority Critical patent/JP2001329331A/en
Publication of JP2001329331A publication Critical patent/JP2001329331A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide WC-Co cemented carbide excellent in hardness and toughness even though the kind and adding amount of a particle growth inhibitor are limited. SOLUTION: This cemented carbide has a composition containing, by weight, 4 to 20% Co and Cr and/or a Cr compound of 0.2 to 2% as a metallic content, and the balance WC with the average particle size of <=1 μm with inevitable impurities, and also, in the temperature rising stage for sintering, gas pressure, in the case the gas pressure in the furnace in a part or the whole in which the temperature in the furnace is >=1,500 K is defined as P (MPa), the average particle size of the raw material of WC composing the body to be sintered as (x) (μm), and the Co content as (y) (%), at least satisfying P>=9/(xy) is applied, and then, sintering is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、従来のWC−Co超硬
合金より硬度及び靱性がはるかに優れたWC−Co系超
硬合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a WC-Co cemented carbide having much higher hardness and toughness than conventional WC-Co cemented carbide.

【0002】[0002]

【従来の技術】WC−Co系超硬合金はWCの粒度を小
さくしておけば硬度を高めても靱性の低下を抑制するこ
とができるという特性がある。この為WC−Co系超硬
合金はその高硬度性、高靱性を利用してIC基板用加工
具材等に用いられている。しかしこの様なWC−Co系
合金であっても合金製造に当り焼結工程におけるWCの
粒成長は避け難く、その結果粒径の粗大化によって硬度
・靱性の両方を低下させるおそれがある。そこでWCの
粒成長を抑制する目的でVC,TaC,NbC,Ti
C,Cr等の遷移金属炭化物を少量添加すること
が一般に行なわれてきた。
2. Description of the Related Art A WC-Co cemented carbide has a characteristic that if the grain size of WC is reduced, a decrease in toughness can be suppressed even if the hardness is increased. For this reason, WC-Co-based cemented carbides are used for processing tools for IC substrates, etc., utilizing their high hardness and high toughness. However, even in such a WC-Co alloy, WC grain growth in the sintering step is inevitable in the production of the alloy, and as a result, both the hardness and the toughness may be reduced due to coarsening of the grain size. Therefore, VC, TaC, NbC, Ti are used for the purpose of suppressing the grain growth of WC.
It has been common practice to add a small amount of a transition metal carbide such as C or Cr 3 C 2 .

【0003】[0003]

【発明が解決しようとする問題点】しかしながら本発明
者等が実験・検討を重ねた結果、WCの粒成長抑制効果
が顕著なのはVC及びCr、TaCであり、Ti
Cは粒成長の抑制効果は殆んど生じない。またVCは硬
度を高めるが靱性を若干低下させ、Crは特に靱
性の向上を図る上で有効であることがわかった。
However, as a result of repeated experiments and studies conducted by the present inventors, it was found that VC, Cr 3 C 2 , and TaC were the most effective in suppressing the grain growth of WC.
C has almost no effect of suppressing grain growth. Further, VC increases the hardness but slightly lowers the toughness, and it has been found that Cr 3 C 2 is particularly effective in improving the toughness.

【0004】本発明はこの様な事情に鑑みてなされたも
のであって、上記遷移金属炭化物の種類及び添加量を制
限した上で、なおかつ硬度と靱性の優れたWC−Co系
超硬合金を提供しようとするものである。
[0004] The present invention has been made in view of such circumstances, and is intended to provide a WC-Co cemented carbide having excellent hardness and toughness while limiting the type and amount of the transition metal carbide. It is something to offer.

【0005】[0005]

【問題点を解決する為の手段】本発明は、炉内ガス圧を
P(MPa)、被焼結体を構成するWCの原料の平均粒
径をx(μm)、Co含有量をy(%)としたとき、P
≧9/(xy)のガス圧を付加して焼結した超硬合金で
あって、該超硬合金が、4%≦Co≦20%、Cr及び
/又はCr化合物を金属分として0.2〜2%含有し、
残部が平均粒径1μm以下のWC及び不可避不純物から
なることを特徴とする高硬度高靱性超硬合金であり、製
法として、4%≦Co≦20%(重量%の意味、以下同
じ)、Cr及び/又はCr化合物を金属分として0.2
〜2%含有し、残部が平均粒径1μm以下のWC及び不
可避不純物からなり、かつ焼結のための昇温過程におい
て、炉内温度が1500K以上の一部又は全部において
炉内ガス圧をP(MPa)、被焼結体を構成するWCの
原料の平均粒径をx(μm)、Co含有量をy(%)と
したとき、P≧9/(xy)のガス圧を付加して焼結す
ることを特徴とする高硬度高靱性超硬合金であり、さら
に好ましくは、WCの一部を0.1〜0.2%の範囲で
TaC及び/又はTaの化合物で置き換えたことを特徴
とする高硬度高靱性超硬合金である。
According to the present invention, the gas pressure in the furnace is set to P (MPa), the average particle size of the raw material of WC constituting the sintered body is set to x (μm), and the Co content is set to y ( %), P
A cemented carbide sintered by applying a gas pressure of ≧ 9 / (xy), wherein the cemented carbide is 4% ≦ Co ≦ 20% and contains 0.2% of Cr and / or Cr compound as a metal component. ~ 2%
A high-hardness and high-toughness cemented carbide characterized by the balance consisting of WC having an average particle size of 1 μm or less and unavoidable impurities. The manufacturing method is 4% ≦ Co ≦ 20% (meaning by weight%, the same applies hereinafter), Cr And / or a Cr compound having a metal content of 0.2
WC with an average particle diameter of 1 μm or less, and in the heating process for sintering, the gas pressure in the furnace is increased to P or K when the temperature in the furnace is 1500 K or more. (MPa), assuming that the average particle size of the WC raw material constituting the sintered body is x (μm) and the Co content is y (%), a gas pressure of P ≧ 9 / (xy) is applied. It is a high-hardness and high-toughness cemented carbide characterized by sintering. More preferably, WC is partially replaced with a compound of TaC and / or Ta in the range of 0.1 to 0.2%. It is a high hardness and high toughness cemented carbide.

【0006】本発明は4%≦Co≦20%、粒成長抑制
剤としてCr、Ta、V又はその化合物を含有し、残部
が平均粒径1μm以下のWC及び不可避不純物からな
り、かつ焼結中にガス圧による加圧を行って、粒成長抑
制効果を助長すると共に、極力粒成長抑制剤の添加量を
制限することで靭性の低下を抑える点に要旨を有するも
のである。また、炉内ガス圧も、好ましくはP≧10/
(xy)とした製法である。
The present invention contains 4% ≦ Co ≦ 20%, Cr, Ta, V or a compound thereof as a grain growth inhibitor, the balance consisting of WC having an average particle size of 1 μm or less and unavoidable impurities, and sintering. The gist is to pressurize with a gas pressure to promote the effect of suppressing grain growth and to suppress the decrease in toughness by limiting the amount of the grain growth inhibitor added as much as possible. Also, the gas pressure in the furnace is preferably P ≧ 10 /
(Xy).

【0007】[0007]

【作用】前述の如く合金の硬度を向上させると靱性は逆
に低下する傾向にあるが、本発明はCr及び/又はCr
の化合物を添加して硬度を向上させる一方、Cr及び/
又はCrの化合物の添加による靱性の低下を、加圧によ
る粒成長抑制効果を利用することによって、その添加量
を制限し、靭性の低下を防止しようとするものである。
As described above, when the hardness of the alloy is increased, the toughness tends to be reduced, but the present invention is based on Cr and / or Cr.
While increasing the hardness by adding the compound of
Alternatively, the toughness is reduced by the addition of a Cr compound by using the effect of suppressing the grain growth by pressurizing to limit the amount of the addition and prevent the toughness from being reduced.

【0008】添加成分の添加量限定理由は次の通りであ
る。
The reasons for limiting the amount of the added component are as follows.

【0009】4%≦Co≦20% 硬度が高く靱性が不十分なWCはCoの添加により靱性
が改善されるが、添加量が4%未満の場合は十分な添加
効果が得られず、一方20%を超すと逆に硬度が不十分
となる。
4% ≦ Co ≦ 20% The toughness of WC with high hardness and insufficient toughness is improved by adding Co. However, if the added amount is less than 4%, a sufficient effect of addition cannot be obtained. If it exceeds 20%, on the contrary, the hardness becomes insufficient.

【0010】 0.2%<Cr及び/又はCrの化合物≦2% 添加量が0.2%以下では粒成長抑制効果が改善されず
添加効果が得られない。一方2%を超えると靭性が不十
分となる。
0.2% <Cr and / or Cr compound ≦ 2% When the addition amount is 0.2% or less, the effect of suppressing grain growth is not improved and the addition effect cannot be obtained. On the other hand, if it exceeds 2%, the toughness becomes insufficient.

【0011】0.1%<V及び/又はVの化合物≦2% 添加量が0.1%以下では粒成長抑制効果が改善されず
添加効果がない。一方2%を超えると靱性が不十分とな
る。
0.1% <V and / or compound of V ≦ 2% When the addition amount is 0.1% or less, the effect of suppressing grain growth is not improved and there is no addition effect. On the other hand, if it exceeds 2%, the toughness becomes insufficient.

【0012】 0.1%<Ta及び/又はTaの化合物<2% 添加量が0.1%以下では粒成長抑制効果が改善されず
添加効果が不十分である。一方2%を越えると靭性が不
十分となる。
0.1% <Ta and / or Ta compound <2% When the addition amount is 0.1% or less, the effect of suppressing the grain growth is not improved and the addition effect is insufficient. On the other hand, if it exceeds 2%, the toughness becomes insufficient.

【0013】WCの平均粒径:1μm以下 WC−Co系超硬合金におけるWC粗大化抑制剤を添加
する場合、添加効果はWCの平均粒径によって異なる。
本発明は平均粒径1μm以下、特に0.3〜0.8μm
の場合に有効である。
Average particle size of WC: 1 μm or less When a WC coarsening inhibitor is added to a WC-Co cemented carbide, the effect of addition depends on the average particle size of WC.
The present invention has an average particle size of 1 μm or less, particularly 0.3 to 0.8 μm.
Is effective in the case of.

【0014】P≧9/(xy) 本発明は液相発生温度以上でガス圧による焼結促進を行
い、合金の微粒化と靭性の向上を図るものである。粒成
長は当然の事ながら焼結温度が高いほど、また、保持時
間が長いほど著しくなる。しかし、密度比がほぼ100
%の焼結体を得るためにも焼結温度は高く、保持時間は
長いことが望ましい。従って粒成長を抑えるために焼結
温度を低めると密度比100%を達成できず良好な焼結
体が得られない。そこでガス圧による焼結促進を行うと
密度比100%の焼結体が得られる。すなわち焼結加圧
は粒成長抑止と焼結促進の効果と等価である。本発明は
このような観点に基づき有効なガス圧を、粒成長抑制剤
を制限した種々の合金について調査した結果、有効なガ
ス圧P(Mpa)はWC原料粉末の平均粒径x(μm)
と合金のCo含有量y(%)とに関与し、その関係はP
≧9/(xy)、望ましくはP≧10/(xy)で表せ
ることを見出した。すなわち、Co含有量が少ないほど
必要な圧力は高くなり、またWC原料粉末の平均粒径が
小さいほど高い圧力を必要とするのである。このことは
一見不思議なことのように思われる。従来の焼結理論で
は微粒なほど表面エネルギーが高く、そのエネルギーが
焼結を促進するとされてきた。しかしながらガス圧によ
る焼結促進は粗粒ほど敏感で微粒になるほど鈍感になる
のである。P≦9(xy)では加圧の効果が期待できな
い。以下実施例について比較例と対比しつつ説明する。
P ≧ 9 / (xy) In the present invention, sintering is promoted by gas pressure at a temperature not lower than the liquid phase generation temperature, and the grain refinement and the toughness of the alloy are improved. Naturally, the grain growth becomes more remarkable as the sintering temperature is higher and the holding time is longer. However, the density ratio is almost 100
%, It is desirable that the sintering temperature is high and the holding time is long. Therefore, if the sintering temperature is lowered to suppress grain growth, a density ratio of 100% cannot be achieved, and a good sintered body cannot be obtained. Therefore, when sintering is promoted by gas pressure, a sintered body having a density ratio of 100% is obtained. That is, sintering pressure is equivalent to the effect of suppressing grain growth and promoting sintering. According to the present invention, based on such viewpoints, the effective gas pressure was investigated for various alloys having a limited grain growth inhibitor. As a result, the effective gas pressure P (Mpa) was determined as the average particle diameter x (μm) of the WC raw material powder.
And the Co content y (%) of the alloy, and the relationship is P
≧ 9 / (xy), desirably P ≧ 10 / (xy). In other words, the smaller the Co content, the higher the required pressure, and the smaller the average particle size of the WC raw material powder, the higher the required pressure. This seems strange at first glance. According to conventional sintering theory, the finer the grain, the higher the surface energy, and that energy promotes sintering. However, the promotion of sintering by gas pressure is more sensitive to coarser grains and less sensitive to finer grains. When P ≦ 9 (xy), the effect of pressurization cannot be expected. Hereinafter, examples will be described in comparison with comparative examples.

【0015】[0015]

【実施例】実施例1構成成分の粉末材の割合を表1の範
囲で混合した供試材からJIS抗折片をプレス成形し、
1350℃まで真空加熱後、同温度でNガスを導入
し、炉内圧力を上げて30分間保持後、冷却し焼結を完
了した。こうして得られたJIS抗折試験片を用いて有
孔度、WC平均粒径、抗折力及び硬さの測定を行った。
その値を表1に併記した。
Example 1 A JIS bent piece was press-formed from a test material in which the proportions of the powder materials of the constituent components were mixed in the range shown in Table 1.
After vacuum heating to 1350 ° C., N 2 gas was introduced at the same temperature, the pressure in the furnace was increased, and the temperature was maintained for 30 minutes, followed by cooling to complete sintering. The porosity, WC average particle size, bending force and hardness were measured using the JIS bending test piece thus obtained.
The values are also shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に明らかなように本発明例1〜16は
いずれもガス圧を、WC粒径、Co量に対応して、反比
例するように調整する事により緻密な焼結体が得られ、
高硬度、高靭性で有孔度が低く密度比がほぼ100%と
なった。Cr、Crの炭化物を粒成長抑制剤として用い
た本発明例1〜9は抗折力が4000Mpa以上と高
く、さらにTaの化合物を添加した本発明例10〜16
でも同様の抗折力、硬度が得られた。
As is clear from Table 1, in each of Examples 1 to 16 of the present invention, a dense sintered body can be obtained by adjusting the gas pressure so as to be inversely proportional to the WC particle size and the Co amount. ,
High hardness, high toughness, low porosity, and a density ratio of almost 100%. Examples 1 to 9 of the present invention using Cr, a carbide of Cr as a grain growth inhibitor had high transverse rupture strength of 4000 Mpa or more, and Examples 10 to 16 of the present invention to which a Ta compound was further added.
However, the same bending strength and hardness were obtained.

【0018】これら対して本発明の範囲外である比較例
17は、本発明例3と比較すれば同一組成でWC平均粒
径は小さいにも関わらず硬さは同程度で、有孔度が高く
抗折力は非常に劣る。Co量とWC粒径が同一で硬さも
同程度の本発明例9との比較では、本発明例9の方が多
量のCrを添加しているにもかかわらず抗折力が非常に
高い。比較例18、19、20、21は夫々同一組成、
同一WC粒径の本発明例4、5、7、8と比較すれば、
硬さは略同一ながら有孔度が高く抗折力が非常に劣る。
On the other hand, Comparative Example 17, which is out of the range of the present invention, has the same composition and the same hardness but has the same porosity as the Comparative Example 3 in spite of the small WC average particle diameter, as compared with Example 3 of the present invention. High bending strength is very poor. In comparison with Inventive Example 9 in which the amount of Co and the WC particle size are the same and the hardness is almost the same, Inventive Example 9 has a much higher transverse rupture strength despite the addition of a large amount of Cr. Comparative Examples 18, 19, 20, 21 each have the same composition,
Compared with inventive examples 4, 5, 7, 8 of the same WC particle size,
Although the hardness is almost the same, the porosity is high and the bending strength is very poor.

【0019】[0019]

【発明の効果】以上詳述したように本発明の超硬合金
は、高硬度を維持しつつ靱性が優れたWC−Co系超硬
合金を提供することができる。
As described in detail above, the cemented carbide of the present invention can provide a WC-Co-based cemented carbide having excellent toughness while maintaining high hardness.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炉内ガス圧をP(MPa)、被焼結体を
構成するWCの原料の平均粒径をx(μm)、Co含有
量をy(%)としたとき、P≧9/(xy)のガス圧を
付加して焼結した超硬合金であって、該超硬合金が、4
%≦Co≦20%、Cr及び/又はCr化合物を金属分
として0.2〜2%含有し、残部が平均粒径1μm以下
のWC及び不可避不純物からなることを特徴とする高硬
度高靱性超硬合金。
When the gas pressure in the furnace is P (MPa), the average particle diameter of the WC raw material constituting the sintered body is x (μm), and the Co content is y (%), P ≧ 9. / (Xy) is a cemented carbide sintered by applying a gas pressure, wherein the cemented carbide is 4
% ≦ Co ≦ 20%, containing 0.2% to 2% of Cr and / or a Cr compound as a metal component, with the balance being WC having an average particle size of 1 μm or less and unavoidable impurities, and characterized by high hardness and high toughness. Hard alloy.
【請求項2】 請求項1に記載の高硬度高靱性超硬合金
において、WCの一部を0.1〜0.2%の範囲でTa
C及び/又はTaの化合物で置き換えたことを特徴とす
る高硬度高靱性超硬合金。
2. The high-hardness and high-toughness cemented carbide according to claim 1, wherein a part of WC is 0.1 to 0.2% of Ta.
A high hardness and high toughness cemented carbide characterized by being replaced with a compound of C and / or Ta.
【請求項3】 4%≦Co≦20%、Cr及び/又はC
r化合物を金属分として0.2〜2%含有し、残部が平
均粒径1μm以下のWC及び不可避不純物からなり、か
つ焼結のための昇温過程において、炉内温度が1500
K以上の一部又は全部において炉内ガス圧をP(MP
a)、被焼結体を構成するWCの原料の平均粒径をx
(μm)、Co含有量をy(%)としたとき、P≧9/
(xy)のガス圧を付加して焼結することを特徴とする
高硬度高靱性超硬合金の製法。
3. 4% ≦ Co ≦ 20%, Cr and / or C
The compound contains 0.2 to 2% of an r compound as a metal component, the balance being WC having an average particle size of 1 μm or less and unavoidable impurities, and a furnace temperature of 1500 in a heating process for sintering.
The gas pressure in the furnace is P (MP
a) The average particle diameter of the WC raw material constituting the sintered body is x
(Μm), when the Co content is y (%), P ≧ 9 /
A method for producing a high-hardness and high-toughness cemented carbide characterized by sintering by applying a gas pressure of (xy).
【請求項4】 請求項1記載の高硬度高靱性超硬合金の
製法において、炉内ガス圧Pを、P≧10/(xy)、
のガス圧を付加して焼結することを特徴とする高硬度高
靱性超硬合金の製法。
4. The method for producing a high-hardness and high-toughness cemented carbide according to claim 1, wherein the gas pressure P in the furnace is P ≧ 10 / (xy),
A method for producing a high-hardness and high-toughness cemented carbide characterized by sintering by applying a gas pressure of
JP2000147330A 2000-05-19 2000-05-19 High hardness and high toughness cemented carbide and its production method Pending JP2001329331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000147330A JP2001329331A (en) 2000-05-19 2000-05-19 High hardness and high toughness cemented carbide and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000147330A JP2001329331A (en) 2000-05-19 2000-05-19 High hardness and high toughness cemented carbide and its production method

Publications (1)

Publication Number Publication Date
JP2001329331A true JP2001329331A (en) 2001-11-27

Family

ID=18653531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000147330A Pending JP2001329331A (en) 2000-05-19 2000-05-19 High hardness and high toughness cemented carbide and its production method

Country Status (1)

Country Link
JP (1) JP2001329331A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413591B2 (en) 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
KR101202225B1 (en) * 2003-07-25 2012-11-16 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a fine grained cemented carbide
CN105154744A (en) * 2009-08-20 2015-12-16 住友电气工业株式会社 Super hard alloy and cutting tool using same
CN106041092A (en) * 2016-08-19 2016-10-26 合肥东方节能科技股份有限公司 Method for low-pressure sintering formation of guide wheel of guide fitting based on WC-10Co cemented carbide
CN106077668A (en) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 A kind of method of sintering cemented carbide molding guide wheel based on high temperature insostatic pressing (HIP)
CN106216673A (en) * 2016-08-22 2016-12-14 合肥东方节能科技股份有限公司 A kind of method of sintering cemented carbide molding guide wheel based on plasma discharging
CN106312075A (en) * 2016-08-22 2017-01-11 合肥东方节能科技股份有限公司 Method for sinter molding of guide wheel based on reduced and carbonized hard alloy
CN113416877A (en) * 2021-06-22 2021-09-21 株洲鑫品硬质合金股份有限公司 Metal processing high-performance hard alloy and preparation method thereof
CN113637862A (en) * 2021-08-18 2021-11-12 岭南师范学院 Sintering method of WC-Co hard alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413591B2 (en) 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
DE10361321B4 (en) * 2002-12-24 2011-02-24 Kyocera Corp. Disposable tip and method of making same
KR101202225B1 (en) * 2003-07-25 2012-11-16 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a fine grained cemented carbide
CN105154744A (en) * 2009-08-20 2015-12-16 住友电气工业株式会社 Super hard alloy and cutting tool using same
CN106041092A (en) * 2016-08-19 2016-10-26 合肥东方节能科技股份有限公司 Method for low-pressure sintering formation of guide wheel of guide fitting based on WC-10Co cemented carbide
CN106077668A (en) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 A kind of method of sintering cemented carbide molding guide wheel based on high temperature insostatic pressing (HIP)
CN106216673A (en) * 2016-08-22 2016-12-14 合肥东方节能科技股份有限公司 A kind of method of sintering cemented carbide molding guide wheel based on plasma discharging
CN106312075A (en) * 2016-08-22 2017-01-11 合肥东方节能科技股份有限公司 Method for sinter molding of guide wheel based on reduced and carbonized hard alloy
CN113416877A (en) * 2021-06-22 2021-09-21 株洲鑫品硬质合金股份有限公司 Metal processing high-performance hard alloy and preparation method thereof
CN113637862A (en) * 2021-08-18 2021-11-12 岭南师范学院 Sintering method of WC-Co hard alloy

Similar Documents

Publication Publication Date Title
KR100436327B1 (en) Sintered hard alloy
KR20090023383A (en) Cemented carbide with refined structure
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
TWI652352B (en) Eutectic porcelain gold material
JP2001329331A (en) High hardness and high toughness cemented carbide and its production method
JP2004076049A (en) Hard metal of ultra-fine particles
JP2004059946A (en) Ultra-fine grain hard metal
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JP3496135B2 (en) Hard alloy and method for producing the same
JP2001181777A (en) Cylinder core and anvil core for superhigh pressure generating device
JP3341776B2 (en) Super hard alloy
JP2023518477A (en) Cobalt-free tungsten carbide cemented carbide material
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPS6176646A (en) Tungsten carbide-base sintered hard alloy
JPH05230588A (en) Hard alloy
JP2004131769A (en) Hyperfine-grained cemented carbide
JPS6256944B2 (en)
JP2004052110A (en) Hyper-fine grained cemented carbide
CN111850368A (en) Cemented carbide compositions and uses thereof
JP3605740B2 (en) Carbide alloy for end mill
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP3008532B2 (en) High hardness, high toughness cemented carbide
CN115584409B (en) Preparation method of graphene reinforced and toughened titanium-based metal ceramic
JP2003193172A (en) Tungsten carbide cemented carbide and production method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050720