JP2001328970A - Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide - Google Patents

Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide

Info

Publication number
JP2001328970A
JP2001328970A JP2000146663A JP2000146663A JP2001328970A JP 2001328970 A JP2001328970 A JP 2001328970A JP 2000146663 A JP2000146663 A JP 2000146663A JP 2000146663 A JP2000146663 A JP 2000146663A JP 2001328970 A JP2001328970 A JP 2001328970A
Authority
JP
Japan
Prior art keywords
amino acid
optically active
acid amide
producing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000146663A
Other languages
Japanese (ja)
Other versions
JP2001328970A5 (en
Inventor
Osamu Kato
修 加藤
Toshitaka Uragaki
俊孝 浦垣
Tetsuji Nakamura
哲二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2000146663A priority Critical patent/JP2001328970A/en
Priority to PCT/JP2001/004191 priority patent/WO2001087819A1/en
Priority to US10/276,702 priority patent/US6949658B2/en
Priority to EP01930218A priority patent/EP1300392B1/en
Publication of JP2001328970A publication Critical patent/JP2001328970A/en
Publication of JP2001328970A5 publication Critical patent/JP2001328970A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing an optically active alpha-amino acid and an optically active alpha-amino acid amide. SOLUTION: This method for producing the optically active alpha-amino acid and the optically active alpha-amino acid amide, comprising bringing the optically impure α-amino acid amide into contact with microbial cells having an asymmetric hydrolysis ability or their treated products in an aqueous solvent, replacing the water used as the solvent by at least one solvent selected from >=3C linear, branched or cyclic alcohols and further preferentially depositing the optically active alpha-amino acid from the obtained alcohol solution. The optically active alpha-amino acid amide-containing alcohol solution obtained after the separation of the optically active alpha-amino acid is recycled to the racemization reaction process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学活性α−アミ
ノ酸及び光学活性α−アミノ酸アミドの製造方法に関す
る。光学活性α−アミノ酸及び光学活性α−アミノ酸ア
ミドは医農薬等の出発原料として利用される。
TECHNICAL FIELD The present invention relates to a method for producing an optically active α-amino acid and an optically active α-amino acid amide. Optically active α-amino acids and optically active α-amino acid amides are used as starting materials for pharmaceuticals and agricultural chemicals.

【0002】[0002]

【従来の技術】光学活性α−アミノ酸の製造に関する報
告は化学的合成法、生物学的合成法ともに数多く見られ
る。例えば、生物学的合成法として、α−アミノ酸アミ
ド不斉加水分解能を有する微生物等を用いたラセミ体α
−アミノ酸アミドの光学分割法が知られている。この方
法は、立体選択性の高い微生物の取得により光学純度の
高いα−アミノ酸が容易に製造可能であること、原料と
なるラセミ体α−アミノ酸アミドの製造が容易であるこ
と、天然型及び非天然型のいずれの光学活性α−アミノ
酸製造にも応用が可能であること等の理由により、光学
活性α−アミノ酸の汎用的な製造法として有用である。
2. Description of the Related Art There are many reports on the production of optically active α-amino acids in both chemical and biological synthesis methods. For example, as a biological synthesis method, a racemic α using a microorganism having an α-amino acid amide asymmetric hydrolytic ability, etc.
-Optical resolution of amino acid amides is known. This method is capable of easily producing an α-amino acid having high optical purity by obtaining a microorganism having high stereoselectivity, easily producing a racemic α-amino acid amide as a raw material, a natural type and a non-amino acid amide. It is useful as a general-purpose production method for optically active α-amino acids because it can be applied to any optically active α-amino acid of the natural type.

【0003】しかし、上記、α−アミノ酸アミド不斉加
水分解能を有する微生物等を用いたラセミ体又は光学的
に純粋でないα−アミノ酸アミドの光学分割法において
は、反応終了後、液中に目的とする光学活性α−アミノ
酸と光学活性α−アミノ酸アミドが混在するため、光学
活性α−アミノ酸と光学活性α−アミノ酸アミドを分離
する必要がある。
[0003] However, in the above-mentioned optical resolution method of racemic or non-optically pure α-amino acid amide using a microorganism having an asymmetric hydrolytic ability of α-amino acid amide, after completion of the reaction, the objective solution is dissolved in a liquid. Since the optically active α-amino acid and the optically active α-amino acid amide are mixed, it is necessary to separate the optically active α-amino acid and the optically active α-amino acid amide.

【0004】α−アミノ酸とα−アミノ酸アミドを分離
する方法としては、α−アミノ酸アミドを溶媒抽出によ
り除去した後、α−アミノ酸を等電点にて回収する方法
(特開昭58−209989号、特開昭57−1300
0号各公報参照)、エタノールを加えアミノ酸を優先的
に晶析させる方法(特開昭63−87998号、特開昭
61−274690号、特開昭60−184392号、
特開昭59−159789号各公報参照)、イオン交換
樹脂を用いて吸着分離を行う方法(特開平1−2264
82号公報参照)、又はα−アミノ酸アミドを陽イオン
交換樹脂に吸着させた後、該イオン交換樹脂に酵素を接
触させて立体特異的に加水分解反応を行い、反応と分離
を同時に行う光学活性アミノ酸の製造方法(特開平8−
23996号公報参照)が報告されている。
As a method for separating an α-amino acid and an α-amino acid amide, a method of removing the α-amino acid amide by solvent extraction and then recovering the α-amino acid at an isoelectric point (Japanese Patent Laid-Open No. 58-209989). JP-A-57-1300
No. 0), a method of preferentially crystallizing amino acids by adding ethanol (JP-A-63-87998, JP-A-61-274690, JP-A-60-184392,
JP-A-59-159789, and a method of performing adsorption separation using an ion-exchange resin (JP-A-1-2264)
No. 82) or an α-amino acid amide is adsorbed on a cation exchange resin, and then an enzyme is brought into contact with the ion exchange resin to perform a stereospecific hydrolysis reaction, thereby simultaneously performing the reaction and the separation. Method for producing amino acid
No. 23996).

【0005】また、光学分割反応後、得られた光学活性
α−アミノ酸水溶液に含まれる水を減圧下除去し、熱有
機溶媒にて残渣を洗浄してα−アミノ酸アミドを選択的
に除去した後、残った光学活性α−アミノ酸を回収する
方法も報告されている(特開昭61−293394号公
報参照)。この報告には、洗浄・回収した光学活性α−
アミノ酸アミドの有機溶媒溶液に強塩基性化合物を加
え、加熱してα−アミノ酸アミドのラセミ化反応を行な
い、得られたD−体及びL−体混合物のα−アミノ酸ア
ミドを不斉加水分解反応に再利用する旨も記載されてい
る。また、ラセミ化に関しては、有機溶媒中、アルカリ
存在下加熱してα−アミノ酸アミドをラセミ化する方法
が、特開昭62−252751号公報明細書中に記載さ
れている。いずれの報告でも、ラセミ化反応中に副反応
として起こるα−アミノ酸アミドの加水分解反応を抑制
するため、光学活性α−アミノ酸アミド溶液中の水分含
量を低く抑えることが必須とされており、例えば特開昭
62−252751号公報では有機溶媒中の水分含量を
10%以下と規定している。
After the optical resolution reaction, water contained in the obtained aqueous solution of the optically active α-amino acid is removed under reduced pressure, and the residue is washed with a hot organic solvent to selectively remove the α-amino acid amide. A method of recovering the remaining optically active α-amino acid has also been reported (see JP-A-61-293394). In this report, the optically active α-
A strongly basic compound is added to an amino acid amide solution in an organic solvent, and the mixture is heated to racemize the α-amino acid amide. The resulting α-amino acid amide of the mixture of D- and L-forms is subjected to asymmetric hydrolysis reaction. Is also described. Regarding racemization, a method of heating an α-amino acid amide by heating in an organic solvent in the presence of an alkali is described in Japanese Patent Application Laid-Open No. 62-252751. In any report, in order to suppress the hydrolysis reaction of α-amino acid amide that occurs as a side reaction during the racemization reaction, it is essential to keep the water content of the optically active α-amino acid amide solution low, for example, JP-A-62-252751 specifies that the water content in an organic solvent is 10% or less.

【0006】しかしながら、上記の光学活性α−アミノ
酸の製造方法は各々欠点を有し工業的に効率の良い製造
方法ではない。α−アミノ酸アミドを溶媒抽出により除
去した後、α−アミノ酸を等電点にて回収する方法にお
いては、抽出に多量の溶媒を必要とする。よって、装
置、コスト面で不利となる。また、イオン交換樹脂を用
いて吸着分離を行う方法では、吸着・脱離、回収と多く
の行程が必要とし、設備投資の増加、回収効率の低下又
は不純物混入機会の増加の可能性等の問題があり工業的
に好ましくない。
However, the above-mentioned methods for producing optically active α-amino acids have disadvantages, and are not industrially efficient. In the method in which the α-amino acid amide is removed by solvent extraction and then the α-amino acid is recovered at the isoelectric point, a large amount of solvent is required for the extraction. Therefore, it is disadvantageous in terms of equipment and cost. In addition, the method of performing adsorption separation using an ion-exchange resin requires adsorption, desorption, and recovery, and requires many steps, which leads to problems such as an increase in capital investment, a reduction in recovery efficiency, and an increase in opportunities for impurity contamination. Is industrially undesirable.

【0007】一方、反応濃縮液にエタノールを加えα−
アミノ酸を優先的に晶析させる方法は、他の方法に比
べ、濃縮−晶析を同一槽内で行える等から、操作が簡便
であり、装置上の設備投資も少ないという特徴がある。
しかし、該方法では濃縮溶液の容積に対し数倍以上の量
のエタノールを添加する必要あり、コスト増加の一因と
なる。また、この技術の報告例は、限られた天然アミノ
酸しかなく、かつ取得したアミノ酸の純度について記載
されているのもバリンのみであり、他のアミノ酸につい
て高い純度のアミノ酸が収率良く得られるかどうかは全
く不明である。従ってこの方法は汎用性ある技術とは言
い難い。
[0007] On the other hand, ethanol is added to the reaction concentrate to add α-
The method of preferentially crystallizing an amino acid has a feature that, compared to other methods, concentration and crystallization can be performed in the same tank, so that the operation is simple and the equipment investment on the apparatus is small.
However, in this method, it is necessary to add several times or more of ethanol to the volume of the concentrated solution, which causes an increase in cost. In addition, the reported example of this technique has only a limited number of natural amino acids, and it is only valine that describes the purity of the obtained amino acid. It is unknown at all. Therefore, this method cannot be said to be a versatile technique.

【0008】また、該方法で、分離した光学活性α−ア
ミノ酸アミドをラセミ化して光学分割反応に再利用する
ことを想定した場合、エタノールは沸点が低く、ラセミ
化反応に適当な溶媒ではないことは明白である。例え
ば、特開昭62−252751号公報では、エタノール
溶液を用いたラセミ化反応の例が記載されているが、反
応温度を上昇させるため、反応容器を封管した後、11
0〜120℃に容器を加熱して反応を行っている。該方
法は、工業スケールにおいては、特殊な装置を必要とす
る。 従って、エタノールを用いた場合、装置上の設備
投資なく常圧下で反応を行うのは困難である。
Further, when it is assumed that the separated optically active α-amino acid amide is racemized and reused in the optical resolution reaction, ethanol has a low boiling point and is not a suitable solvent for the racemization reaction. Is obvious. For example, Japanese Patent Application Laid-Open No. 62-252751 discloses an example of a racemization reaction using an ethanol solution.
The reaction is carried out by heating the vessel to 0 to 120 ° C. The method requires special equipment on an industrial scale. Therefore, when ethanol is used, it is difficult to carry out the reaction at normal pressure without equipment investment on the apparatus.

【0009】さらには、分離・回収した光学活性α−ア
ミノ酸アミド含有エタノール溶液は水分含有率が高いこ
と等を考慮すると、光学活性α−アミノ酸アミドのラセ
ミ化反応を行うためには、さらなる溶液の脱水、溶媒置
換等の操作、又は光学活性α−アミノ酸アミド結晶の単
離・乾燥操作が必要であり、操作工程が煩雑となる。
Further, considering that the separated and recovered ethanol solution containing the optically active α-amino acid amide has a high water content, the racemization reaction of the optically active α-amino acid amide requires additional solution. Operations such as dehydration and solvent substitution, or operations for isolating and drying the optically active α-amino acid amide crystal are required, and the operation steps become complicated.

【0010】水を除去した後、熱有機溶媒にて残渣を洗
浄し、α−アミノ酸アミドを選択的に洗浄除去する方法
は、光学活性α−アミノ酸アミドを溶液から単離するこ
となく、ラセミ化反応を行なえるという特徴があるが、
工業的規模の製造において溶液から水分を完全に除去し
濃縮乾固することは技術的に困難であり、操作性、装置
上の設備投資等も考えると、この方法は実用的な製造方
法ではない。
The method of removing the water, washing the residue with a hot organic solvent, and selectively washing away the α-amino acid amide is a method of isolating the optically active α-amino acid amide from the solution without isolating the α-amino acid amide from the solution. It has the characteristic that it can react,
It is technically difficult to completely remove water from a solution and concentrate it to dryness in industrial-scale production, and this method is not a practical production method in view of operability and equipment investment on equipment. .

【0011】以上の理由から、公知の手法による光学活
性α−アミノ酸の製造方法は、反応後の光学活性α−ア
ミノ酸の回収方法に効率等の面で問題があり、工業的に
優位な方法となり得えなかった。
For the above reasons, the method for producing an optically active α-amino acid by a known method has a problem in terms of efficiency and the like in the method for recovering the optically active α-amino acid after the reaction, and is an industrially superior method. I didn't get it.

【0012】[0012]

【発明が解決しようとする課題】本発明は、上記問題点
を解決した効率の良い光学活性α−アミノ酸及び光学活
性α−アミノ酸アミドの製造方法を提供する。
SUMMARY OF THE INVENTION The present invention provides an efficient method for producing an optically active α-amino acid and an optically active α-amino acid amide which solves the above problems.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記課題
の解決のために、鋭意検討を重ねた結果、光学活性α−
アミノ酸及び光学活性α−アミノ酸アミド含有水溶液の
溶媒を水から炭素数3以上のアルコール溶媒へと置換
し、光学活性α−アミノ酸をアルコール溶液から優先的
に取得することで、非常に高い収率で光学活性α−アミ
ノ酸を製造し得ることを見いだした。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have found that the optically active α-
By replacing the solvent of the aqueous solution containing an amino acid and an optically active α-amino acid amide from water with an alcohol solvent having 3 or more carbon atoms, and obtaining the optically active α-amino acid preferentially from the alcohol solution, a very high yield It has been found that optically active α-amino acids can be produced.

【0014】さらには、より効率良く光学活性α−アミ
ノ酸を製造するため、不斉加水分解反応、光学活性α−
アミノ酸の晶析・分離操作の後、分離母液として得られ
る光学活性α−アミノ酸アミド含有アルコール溶液中か
ら光学活性α−アミノ酸アミドを単離する工程を経るこ
とことなく、光学活性α−アミノ酸アミドのラセミ化反
応を実施することができる。また、塩基性化合物添加
後、共沸脱水等の水分除去操作を行うことで、塩基性化
合物との反応で生じた水分を除去できるため、さらに効
率良く光学活性α−アミノ酸アミドのラセミ化反応を行
うことが可能であり、かつラセミ化反応後、回収された
D−体及びL−体α−アミノ酸アミド混合物がα−アミ
ノ酸アミドの不斉加水分解反応の原料として循環利用で
きることを見いだした。
Furthermore, in order to produce an optically active α-amino acid more efficiently, an asymmetric hydrolysis reaction, an optically active α-amino acid,
After the crystallization / separation operation of the amino acid, the optically active α-amino acid amide can be obtained without isolating the optically active α-amino acid amide from the optically active α-amino acid amide-containing alcohol solution obtained as the separated mother liquor. A racemization reaction can be performed. In addition, by performing a water removal operation such as azeotropic dehydration after the addition of the basic compound, the water generated by the reaction with the basic compound can be removed, so that the racemization reaction of the optically active α-amino acid amide can be more efficiently performed. It has been found that the mixture of D-form and L-form α-amino acid amide recovered after the racemization reaction can be recycled as a raw material for the asymmetric hydrolysis reaction of α-amino acid amide.

【0015】すなわち、本発明は、(1)光学活性α−
アミノ酸及び光学活性α−アミノ酸アミド含有溶液の溶
媒を水からアルコール溶媒へと置換し、光学活性α−ア
ミノ酸をアルコール溶液から優先的に析出させることを
特徴とする光学活性α−アミノ酸及び光学活性α−アミ
ノ酸アミドの製造方法。(2)光学活性α−アミノ酸を
取得後、分離母液として得られる光学活性α−アミノ酸
アミド含有アルコール溶液に塩基性化合物を加え、光学
活性α−アミノ酸アミドのラセミ化反応を行い、不斉ア
ミノ酸アミド加水分解反応に循環利用することを特徴と
する光学活性α−アミノ酸及び光学活性α−アミノ酸ア
ミドの製造方法である。
That is, the present invention provides (1) an optically active α-
Optically active α-amino acid and optically active α, wherein the solvent of the solution containing the amino acid and the optically active α-amino acid amide is substituted from water to an alcoholic solvent, and the optically active α-amino acid is preferentially precipitated from the alcohol solution. -A method for producing an amino acid amide. (2) After obtaining an optically active α-amino acid, a basic compound is added to an optically active α-amino acid amide-containing alcohol solution obtained as a separated mother liquor, and a racemicization reaction of the optically active α-amino acid amide is carried out to obtain an asymmetric amino acid amide. A method for producing an optically active α-amino acid and an optically active α-amino acid amide, which is characterized by being recycled for use in a hydrolysis reaction.

【0016】[0016]

【発明の実施の形態】以下に本発明の一般的実施態様に
ついて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The general embodiments of the present invention will be described below.

【0017】本発明に用いるα−アミノ酸アミドの種類
に制限はないが、次の一般式(III)で示されるもの
が好ましい。
The type of the α-amino acid amide used in the present invention is not limited, but those represented by the following general formula (III) are preferred.

【0018】[0018]

【化3】 (式中、R1及びR2は、同一又は異なっており、水素
原子、低級アルキル基、置換低級アルキル基、低級アル
ケニル基、置換低級アルケニル基、シクロアルキル基、
フェニル基、置換フェニル基、複素環基及び置換複素環
基を示す。) 一般式(III)で示されるものとして、例えば、アラ
ニンアミド、バリンアミド、ロイシンアミド、イソロイ
シンアミド、メチオニンアミド、トリプトファンアミ
ド、フェニルアラニンアミド、セリンアミド、システイ
ンアミド、チロシンアミド、リジンアミド、ヒスチジン
アミド、2−アミノ酪酸アミド、シクロヘキシルアラニ
ンアミド、ノルバリンアミド、ノルロイシンアミド、6
−ヒドロキシノルロイシンアミド、ネオペンチルグリシ
ンアミド、ペニシラミンアミド、tert−ロイシンア
ミド、フェニルグリシンアミド、2−クロロフェニルグ
リシンアミド、3−クロロフェニルグリシンアミド、4
−クロロフェニルグリシンアミド等を挙げることができ
る。
Embedded image (Wherein R1 and R2 are the same or different and each represent a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a cycloalkyl group,
A phenyl group, a substituted phenyl group, a heterocyclic group and a substituted heterocyclic group are shown. Examples of the compound represented by the general formula (III) include alaninamide, valinamide, leucinamide, isoleucinamide, methioninamide, tryptophanamide, phenylalaninamide, serinamide, cysteinamide, tyrosineamide, lysineamide, histidineamide and 2-amino. Butyric acid amide, cyclohexylalanine amide, norvaline amide, norleucinamide, 6
-Hydroxynorleucinamide, neopentylglycinamide, penicillamine, tert-leucinamide, phenylglycinamide, 2-chlorophenylglycinamide, 3-chlorophenylglycinamide, 4
-Chlorophenylglycinamide and the like.

【0019】本発明において、α−アミノ酸の種類に制
限はないが、次の一般式(IV)で示されるものが好ま
しい。
In the present invention, the type of α-amino acid is not limited, but those represented by the following general formula (IV) are preferred.

【0020】[0020]

【化4】 (式中、R1及びR2は、同一又は異なっており、水素
原子、低級アルキル基、置換低級アルキル基、低級アル
ケニル基、置換低級アルケニル基、シクロアルキル基、
フェニル基、置換フェニル基、複素環基及び置換複素環
基を示す。) 一般式(IV)で示されるものとして、例えば、アラニ
ン、バリン、ロイシン、イソロイシン、メチオニン、ト
リプトファン、フェニルアラニン、セリン、システイ
ン、チロシン、リジン、ヒスチジン、2−アミノ酪酸、
シクロヘキシルアラニン、ノルバリン、ノルロイシン、
6−ヒドロキシノルロイシン、ネオペンチルグリシン、
ペニシラミン、tert−ロイシン、フェニルグリシ
ン、2−クロロフェニルグリシン、3−クロロフェニル
グリシン、4−クロロフェニルグリシン等を挙げること
ができる。
Embedded image (Wherein R1 and R2 are the same or different and each represent a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a cycloalkyl group,
A phenyl group, a substituted phenyl group, a heterocyclic group and a substituted heterocyclic group are shown. ) As those represented by the general formula (IV), for example, alanine, valine, leucine, isoleucine, methionine, tryptophan, phenylalanine, serine, cysteine, tyrosine, lysine, histidine, 2-aminobutyric acid,
Cyclohexylalanine, norvaline, norleucine,
6-hydroxynorleucine, neopentylglycine,
Penicillamine, tert-leucine, phenylglycine, 2-chlorophenylglycine, 3-chlorophenylglycine, 4-chlorophenylglycine and the like can be mentioned.

【0021】α−アミノ酸アミドの光学分割反応は、水
性媒体中でラセミ体あるいは光学的に純粋でないα−ア
ミノ酸アミドに立体特異的に作用し、光学活性α−アミ
ノ酸と対応する光学特性を有するα−アミノ酸アミドを
与える微生物の作用により行うことができる。該微生物
としては、上記反応を触媒するものであれば、特に制限
はなく、例えば、エンテロバクタ−・クロアッセイ N
−7901(FERMBP−873)、E.coli
JM109/pLA205( FERM BP−713
2)等を挙げることができる。これら微生物は菌体をそ
のまま又は菌体処理物(洗浄菌体、乾燥菌体、菌体破砕
物、菌体抽出物、粗又は精製酵素、及びこれらの固定化
物)として使用される。
The optical resolution reaction of the α-amino acid amide acts stereospecifically on the racemic or optically pure α-amino acid amide in an aqueous medium, and the α-amino acid amide has an optical property corresponding to that of the optically active α-amino acid. -It can be carried out by the action of a microorganism giving the amino acid amide. The microorganism is not particularly limited as long as it catalyzes the above reaction. For example, the microorganism may be Enterobacter cloassay N
-7901 (FERMBP-873); coli
JM109 / pLA205 (FERM BP-713
2) and the like. These microorganisms are used as they are or as processed cells (washed cells, dried cells, crushed cells, cell extracts, crude or purified enzymes, and immobilized products thereof).

【0022】該光学分割反応は、水性媒体中においてα
−アミノ酸アミドを上記菌体又は菌体処理物と接触させ
ることによって行われる。通常、α−アミノ酸アミド濃
度は0.1〜60質量%、好ましくは1〜40質量%、
菌体又は菌体処理物の濃度は、その活性量により異なる
がアミノ酸アミド質量に対し1/10000〜1質量、
好ましくは1/1000〜1/10質量、反応液のpH
は4〜11、好ましくは6〜10、及び反応温度は10
〜60℃、好ましくは20〜50℃である。
The optical resolution reaction is carried out in an aqueous medium using α
-It is carried out by contacting the amino acid amide with the above-mentioned cells or the treated cells. Usually, the concentration of α-amino acid amide is 0.1 to 60% by mass, preferably 1 to 40% by mass,
The concentration of the cells or the processed cells varies depending on the amount of activity, but 1/10000 to 1% by mass relative to the amino acid amide mass,
Preferably 1/1000 to 1/10 mass, pH of reaction solution
Is 4-11, preferably 6-10, and the reaction temperature is 10
-60 ° C, preferably 20-50 ° C.

【0023】反応終了後、反応液からの菌体又は菌体処
理物の除去方法は特に限定しないが例えば、遠心分離、
ろ過等の方法を用いて行うことができる。菌体又は該処
理物を除去した反応液は必要に応じて減圧濃縮操作を行
ってもよい。
After completion of the reaction, the method for removing the cells or the treated cells from the reaction solution is not particularly limited.
It can be performed using a method such as filtration. The reaction solution from which the cells or the treated product has been removed may be subjected to vacuum concentration if necessary.

【0024】得られた反応液又は濃縮液中の水は、炭素
数3以上、好ましくは3〜6、さらに好ましくは4〜6
の直鎖、分岐、あるいは環状アルコールの中から選ばれ
た少なくとも1種類の溶媒に置換される。溶媒の置換は
共沸等の操作によって行なわれ、α−アミノ酸アミドの
不斉加水分解反応後得られる光学活性α−アミノ酸及び
光学活性α−アミノ酸アミド含有水溶液に含まれる水
が、好ましくは90質量%以上までアルコール溶媒へと
置換されるまで操作を行なう。
The water in the obtained reaction solution or concentrated solution has 3 or more carbon atoms, preferably 3 to 6, more preferably 4 to 6 carbon atoms.
At least one solvent selected from among linear, branched or cyclic alcohols. The solvent is replaced by an operation such as azeotropic distillation, and the water contained in the aqueous solution containing the optically active α-amino acid and the optically active α-amino acid amide obtained after the asymmetric hydrolysis reaction of the α-amino acid amide is preferably 90 mass%. The operation is continued until the substitution with the alcohol solvent to at least%.

【0025】アルコール溶媒へ置換した後、光学活性α
−アミノ酸を取得する方法は、特に限定されないが、例
えば、析出による取得法が挙げられる。光学活性α−ア
ミノ酸を析出させる際の光学活性α−アミノ酸の濃度、
温度については高い収率で光学活性α−アミノ酸が回収
できるのであれば特に限定はしないが、操作効率等を考
慮して濃度は1〜50質量%、好ましくは5〜30質量
%で、温度は−20〜60℃、好ましくは0〜40℃で
行なわれる。また、析出操作時より高い温度にて溶液を
加温、撹拌した後、前述した温度にて光学活性α−アミ
ノ酸を析出させることで、純度の高い光学活性α−アミ
ノ酸を得ることができる。さらに析出した光学活性α−
アミノ酸の回収操作は連続及び回分のいずれの方法によ
っても行うことができる。
After substitution with an alcohol solvent, the optically active α
-The method for obtaining an amino acid is not particularly limited, and examples thereof include an obtaining method by precipitation. Concentration of optically active α-amino acid when precipitating optically active α-amino acid,
The temperature is not particularly limited as long as the optically active α-amino acid can be recovered in a high yield, but the concentration is 1 to 50% by mass, preferably 5 to 30% by mass in consideration of operation efficiency and the like. The reaction is performed at -20 to 60C, preferably 0 to 40C. After heating and stirring the solution at a higher temperature than during the precipitation operation, the optically active α-amino acid can be precipitated at the above-mentioned temperature to obtain a highly pure optically active α-amino acid. Further precipitated optically active α-
The operation of recovering amino acids can be performed by any of continuous and batch methods.

【0026】上記操作により、結晶として析出した光学
活性α−アミノ酸は、遠心分離又はろ過等の方法により
回収され、その結果、光学活性α−アミノ酸は溶液中に
溶解している光学活性α−アミノ酸アミドと分離するこ
とができる。
By the above operation, the optically active α-amino acid precipitated as crystals is recovered by a method such as centrifugation or filtration. As a result, the optically active α-amino acid dissolved in the solution is removed. Can be separated from amide.

【0027】分離母液中の光学活性α−アミノ酸アミド
は、必要により、光学活性α−アミノ酸アミドに対して
溶解度の低い溶媒への置換、あるいは溶媒を除去して固
体状で回収することができる。
If necessary, the optically active α-amino acid amide in the separated mother liquor can be recovered in a solid form by substitution with a solvent having low solubility for the optically active α-amino acid amide or by removing the solvent.

【0028】光学活性α−アミノ酸アミドのラセミ化反
応は、塩基性化合物を分離母液として得られる光学活性
α−アミノ酸アミド含有アルコール溶液に加えて行う。
塩基性化合物としては、アルカリ金属水酸化物、又はア
ルカリ金属のアルコラートのうち、少なくとも1種類が
選ばれる。アルカリ金属水酸化物としては、例えば、水
酸化ナトリウム、水酸化カリウムが、アルカリ金属のア
ルコラートとしてはナトリウムメチラート、ナトリウム
エチラート、カリウムメチラート、カリウム−tert
−ブチラート等が挙げられる。加えられるべき塩基化合
物の量はアミノ酸アミドに対して0.01〜1.0モル
当量、好ましくは0.05〜0.5モル当量である。α
−アミノ酸アミド含有アルコール溶液中にα−アミノ酸
が混在する場合は、α−アミノ酸の1.0モル当量以上
の塩基性化合物を前述した量に加算して加えることがで
きる。また、塩基性化合物添加後、共沸脱水等の水分除
去操作を行うことで、塩基性化合物との反応で生じた水
分を除去できるため、さらに効率良く光学活性α−アミ
ノ酸アミドのラセミ化反応を行うことが可能である。か
くしてアルコール溶液として回収された光学活性α−ア
ミノ酸アミドは、アルコール溶媒中に溶解したまま複雑
な工程を経ることなく、単純な操作のみでラセミ化反応
を実施することができる。
The racemization reaction of the optically active α-amino acid amide is carried out by adding a basic compound to an optically active α-amino acid amide-containing alcohol solution obtained as a separated mother liquor.
As the basic compound, at least one of an alkali metal hydroxide and an alkali metal alcoholate is selected. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide, and examples of the alkali metal alcoholate include sodium methylate, sodium ethylate, potassium methylate, and potassium-tert.
-Butyrate and the like. The amount of the basic compound to be added is 0.01 to 1.0 molar equivalent, preferably 0.05 to 0.5 molar equivalent, based on the amino acid amide. α
-When α-amino acids are mixed in the amino acid amide-containing alcohol solution, a basic compound of 1.0 molar equivalent or more of α-amino acids can be added to the above-mentioned amount. In addition, by performing a water removal operation such as azeotropic dehydration after the addition of the basic compound, the water generated by the reaction with the basic compound can be removed, so that the racemization reaction of the optically active α-amino acid amide can be more efficiently performed. It is possible to do. The optically active α-amino acid amide thus recovered as an alcohol solution can be subjected to a racemization reaction only by a simple operation without going through complicated steps while being dissolved in an alcohol solvent.

【0029】光学活性α−アミノ酸アミドのラセミ化反
応の条件は、α−アミノ酸アミド、塩基化合物の種類、
濃度等の諸要因により異なり特に限定されるものではな
いが、一般には反応温度80〜200℃、好ましくは1
00〜150℃で10分〜24時間行う。反応後、 D
−体及びL−体α−アミノ酸アミド混合物は、公知の方
法により回収され、不斉アミノ酸アミド加水分解反応に
循環利用することができる
The conditions for the racemization reaction of the optically active α-amino acid amide are as follows: α-amino acid amide, type of basic compound,
Although it depends on various factors such as concentration and is not particularly limited, the reaction temperature is generally 80 to 200 ° C., preferably 1 to 200 ° C.
Perform at 00 to 150 ° C. for 10 minutes to 24 hours. After the reaction, D
The -isomer and L-isomer α-amino acid amide mixture can be recovered by a known method and recycled to an asymmetric amino acid amide hydrolysis reaction.

【0030】[0030]

【実施例】次に、本発明を実施例により具体的に説明す
る。
Next, the present invention will be described in detail with reference to examples.

【0031】〔参考例1〕光学活性α−アミノ酸と光学
活性α−アミノ酸アミドを含む水溶液の調製 特開昭62−55097号公報記載の方法に従い、エン
テロバクター クロアッセイ N−7901(FERM
P−873)の培養を行った。培養液1Lを遠心分離
し、次いで湿潤菌体を蒸留水に懸濁して菌体懸濁溶液8
00gを調製した。この懸濁液にD,L−tert−ロ
イシンアミド200gを溶解させた後、40℃にて52
時間反応させた。反応後、遠心分離により菌体を除去
し、L−tert−ロイシン及びD−tert−ロイシ
ノアミドを各々10質量%含む水溶液970gを得た。
tert−ロイシン及びtert−ロイシンアミドの濃
度は高速液体クロマトグラフィー(HPLC)分析条件
1で、各々の光学純度は、HPLC分析条件2で分析を
行った。また、溶液の水分量はカールフィッシャー水分
測定器(三菱モイスチャーメーターCA-60:三菱化成社
製)を用いて測定した。
Reference Example 1 Preparation of an Aqueous Solution Containing Optically Active α-Amino Acid and Optically Active α-Amino Acid Amide According to the method described in JP-A-62-55097, Enterobacter Cloassay N-7901 (FERM)
P-873). 1 L of the culture solution is centrifuged, and then the wet cells are suspended in distilled water to form a cell suspension solution 8.
00 g was prepared. After 200 g of D, L-tert-leucinamide was dissolved in this suspension,
Allowed to react for hours. After the reaction, the cells were removed by centrifugation to obtain 970 g of an aqueous solution containing 10% by mass of each of L-tert-leucine and D-tert-leucinoamide.
The concentrations of tert-leucine and tert-leucinamide were analyzed under high performance liquid chromatography (HPLC) analysis condition 1, and the optical purity of each was analyzed under HPLC analysis condition 2. The water content of the solution was measured using a Karl Fischer moisture meter (Mitsubishi Moisture Meter CA-60: manufactured by Mitsubishi Kasei Corporation).

【0032】〔HPLC分析条件1〕 カラム:イナートシル ODS−3V(4.6φ×25
0mm) 移動層:0.1% リン酸水溶液 流速: 1mL/min 検出: RI 〔HPLC分析条件2〕 カラム:SUMICHIRAL OA−5000(4.
6φ×250mm) 移動層:水−メタノール(85:15) 流速: 1mL/min 検出: UV 254nm
[HPLC analysis conditions 1] Column: Inertosyl ODS-3V (4.6φ × 25)
0 mm) Moving layer: 0.1% phosphoric acid aqueous solution Flow rate: 1 mL / min Detection: RI [HPLC analysis condition 2] Column: SUMICHIRAL OA-5000 (4.
6φ × 250mm) Moving layer: water-methanol (85:15) Flow rate: 1 mL / min Detection: UV 254 nm

【0033】〔実施例1〕参考例1で得られたL−te
rt−ロイシンとD−tert−ロイシンアミドを含む
水溶液200gを72gまで減圧濃縮した後、溶液にイ
ソプロピルアルコール300gを加えた。さらに溶液を
減圧濃縮し、最終的に濃縮液140gを得た。この時の
濃縮液の水分濃度は6.5質量%であった。この濃縮液
を50℃にて1時間撹拌した後、溶液を冷却し、15℃
にてさらに4時間撹拌した。析出した結晶を吸引濾過に
より回収し、乾燥質量18.4gのL−tert−ロイ
シンを得た(収率92%)。この時、L−tert−ロ
イシン結晶中に含まれるD−tert−ロイシンアミド
の量は0.01質量%以下であった。
Example 1 L-te obtained in Reference Example 1
After 200 g of an aqueous solution containing rt-leucine and D-tert-leucinamide was concentrated under reduced pressure to 72 g, 300 g of isopropyl alcohol was added to the solution. The solution was further concentrated under reduced pressure to finally obtain 140 g of a concentrated solution. At this time, the water concentration of the concentrated liquid was 6.5% by mass. After stirring this concentrated liquid at 50 ° C. for 1 hour, the solution was cooled and then cooled to 15 ° C.
And further stirred for 4 hours. The precipitated crystals were collected by suction filtration to obtain L-tert-leucine having a dry mass of 18.4 g (yield 92%). At this time, the amount of D-tert-leucinamide contained in the L-tert-leucine crystal was 0.01% by mass or less.

【0034】〔実施例2〕参考例1で得られたL−te
rt−ロイシンとD−tert−ロイシンアミドを含む
水溶液400gを140gまで減圧濃縮した後、溶液に
1−ブタノール300gを加えた。さらに溶液を減圧濃
縮し、最終的に濃縮液265gを得た。この時の濃縮液
の水分濃度は0.9質量%であった。濃縮液に1−ブタ
ノール10gを加えて得た溶液を60℃にて1時間撹拌
した後、溶液を冷却し、20℃にてさらに3時間撹拌し
た。析出した結晶を遠心ろ過により回収し、乾燥質量3
9.2gのL−tert−ロイシンを得た(収率98
%)。この時、L−tert−ロイシン結晶中に含まれ
るD−tert−ロイシンアミドの量は0.05質量%
であった。
Example 2 L-te obtained in Reference Example 1
After 400 g of an aqueous solution containing rt-leucine and D-tert-leucinamide was concentrated under reduced pressure to 140 g, 300 g of 1-butanol was added to the solution. Further, the solution was concentrated under reduced pressure to finally obtain 265 g of a concentrated liquid. At this time, the water concentration of the concentrated liquid was 0.9% by mass. After a solution obtained by adding 10 g of 1-butanol to the concentrated solution was stirred at 60 ° C. for 1 hour, the solution was cooled and further stirred at 20 ° C. for 3 hours. The precipitated crystals were collected by centrifugal filtration and had a dry mass of 3
9.2 g of L-tert-leucine was obtained (yield 98).
%). At this time, the amount of D-tert-leucinamide contained in the L-tert-leucine crystal was 0.05% by mass.
Met.

【0035】〔実施例3〕参考例1で得られたL−te
rt−ロイシンとD−tert−ロイシンアミドを含む
水溶液500gを250gまで減圧濃縮した後、溶液に
1−ブタノール250gを加えた。さらに溶液を減圧濃
縮し、溜出液が240gとなった時点で再度溶液に1−
ブタノールを250g加えた。添加後、再び減圧濃縮を
行ない、最終的に濃縮液350gを得た。この時の濃縮
液の水分濃度は0.6質量%であった。この濃縮液を6
0℃にて2時間撹拌した後、溶液を冷却し、20℃にて
さらに2時間撹拌した。析出した結晶を遠心ろ過により
回収し、乾燥質量48.9gのL−tert−ロイシン
を得た(収率98%)。この時、L−tert−ロイシ
ン結晶中に含まれるD−tert−ロイシンアミドの量
は0.01質量%未満であった。回収した分離母液29
5g中にはD−tert−ロイシンアミド49.0gが
含まれていた。
Example 3 L-te obtained in Reference Example 1
After 500 g of an aqueous solution containing rt-leucine and D-tert-leucinamide was concentrated under reduced pressure to 250 g, 250 g of 1-butanol was added to the solution. The solution was further concentrated under reduced pressure, and when the amount of the distillate reached 240 g, 1-
250 g of butanol was added. After the addition, the mixture was again concentrated under reduced pressure to finally obtain 350 g of a concentrated liquid. At this time, the water concentration of the concentrated liquid was 0.6% by mass. 6
After stirring at 0 ° C. for 2 hours, the solution was cooled and further stirred at 20 ° C. for 2 hours. The precipitated crystals were collected by centrifugal filtration to obtain 48.9 g of dry mass of L-tert-leucine (yield 98%). At this time, the amount of D-tert-leucinamide contained in the L-tert-leucine crystal was less than 0.01% by mass. Separated mother liquor 29 collected
5 g contained 49.0 g of D-tert-leucinamide.

【0036】〔実施例4〕実施例3で得られたD−te
rt−ロイシンアミドの1−ブタノール溶液(分離母
液)295gに水酸化ナトリウム3.0gを加え、4時
間加熱還流した。反応液を80gまで減圧濃縮した後、
濃縮液にn−ヘプタン100gを加えて5℃にて10時
間攪拌した。析出した結晶を吸引ろ過にて回収し、乾燥
質量38.7gのD−体及びL−体の混合物のtert
−ロイシンアミドを得た(分離母液からの収率79
%)。このときのtert−ロイシンアミド結晶のD−
体:L−体の存在比率は50.2:49.8であった。
Example 4 D-te obtained in Example 3
3.0 g of sodium hydroxide was added to 295 g of a 1-butanol solution of rt-leucinamide (separated mother liquor), and the mixture was refluxed for 4 hours. After the reaction solution was concentrated under reduced pressure to 80 g,
100 g of n-heptane was added to the concentrated solution, and the mixture was stirred at 5 ° C for 10 hours. The precipitated crystals were collected by suction filtration, and tert-type mixture of D-form and L-form having a dry mass of 38.7 g was obtained.
-Leucinamide was obtained (yield from separated mother liquor 79
%). At this time, D- of the tert-leucinamide crystal
The abundance ratio of body: L-form was 50.2: 49.8.

【0037】〔実施例5〕実施例4で得られたD−体及
びL−体の混合物のtert−ロイシンアミド結晶20
gと参考例1にて調製した菌体懸濁液80gを混合し、
参考例1と同様にして菌体反応を行った。52時間後反
応液中にはL−tert−ロイシン及びD−tert−
ロイシノアミドが各々10質量%存在していた。
Example 5 Tert-leucinamide crystal 20 of the mixture of D-form and L-form obtained in Example 4
g and 80 g of the cell suspension prepared in Reference Example 1,
A cell reaction was performed in the same manner as in Reference Example 1. After 52 hours, the reaction solution contained L-tert-leucine and D-tert-
Leucinoamide was present in each 10% by weight.

【0038】〔実施例6〕実施例3で得られたD−te
rt−ロイシンアミドの1−ブタノール溶液(分離母
液)295gに水酸化カリウム3.0gを加えた後、こ
の溶液を206gまで減圧濃縮した。濃縮液の水分濃度
は0.06質量%であった。濃縮液を6時間加熱還流し
た後、反応液を81gまで減圧濃縮し、さらに濃縮液に
n−ヘプタン100gを加えて5℃にて3時間攪拌し
た。析出した結晶を吸引ろ過にて回収し、乾燥質量4
0.2gのD−体及びL−体の混合物のtert−ロイ
シンアミドを得た(分離母液からの収率82%)。この
ときのtert−ロイシンアミド結晶のD−体:L−体
の存在比率は50.0:50.0であった。
Example 6 D-te obtained in Example 3
After adding 3.0 g of potassium hydroxide to 295 g of a 1-butanol solution of rt-leucinamide (separated mother liquor), the solution was concentrated under reduced pressure to 206 g. The water concentration of the concentrated liquid was 0.06% by mass. After the concentrated solution was heated under reflux for 6 hours, the reaction solution was concentrated under reduced pressure to 81 g, and 100 g of n-heptane was added to the concentrated solution, followed by stirring at 5 ° C. for 3 hours. The precipitated crystals were collected by suction filtration and had a dry mass of 4
0.2 g of tert-leucinamide as a mixture of D-form and L-form was obtained (82% yield from separated mother liquor). At this time, the abundance ratio of the D-form: L-form of the tert-leucinamide crystal was 50.0: 50.0.

【0039】〔実施例7〕1−ブタノールの代わりに、
表1に示した各アルコール溶媒を用いて実施例2と同様
の操作を行ない、参考例1で得られたL−tert−ロ
イシンとD−tert−ロイシンアミドを含む水溶液4
00gからL−tert−ロイシン結晶を回収した。表
1に溶媒置換操作後の各アルコール溶液の水分含量、晶
析温度、及びL−tert−ロイシン取得収率、を示し
た。
Example 7 Instead of 1-butanol,
The same operation as in Example 2 was performed using each of the alcohol solvents shown in Table 1, and the aqueous solution 4 containing L-tert-leucine and D-tert-leucinamide obtained in Reference Example 1 was obtained.
L-tert-leucine crystals were recovered from 00 g. Table 1 shows the water content, the crystallization temperature, and the L-tert-leucine acquisition yield of each alcohol solution after the solvent replacement operation.

【表1】 [Table 1]

【0040】〔参考例2〕光学活性α−アミノ酸と光学
活性α−アミノ酸アミドを含む水溶液の調製 特開昭62−55097号公報記載の方法に従い、エン
テロバクター クロアッセイ N−7901株(FER
M BP−873)の培養を行った。培養液500mL
を遠心分離し、次いで湿潤菌体を蒸留水に懸濁して菌体
懸濁溶液1140gを調製した。この懸濁液にD,L−
フェニルアラニンアミド60gを溶解させた後、40℃
にて24時間反応させた。反応後、遠心分離により菌体
を除去し、L−フェニルアラニン及びD−フェニルアラ
ニンアミドを各々2.5質量%含む水溶液1150gを
得た。フェニルアラニン及びフェニルアラニンアミドの
濃度はHPLC分析条件3で、各々の光学純度は、HP
LC分析条件4で分析を行った。
Reference Example 2 Preparation of Aqueous Solution Containing Optically Active α-Amino Acid and Optically Active α-Amino Acid Amide According to the method described in JP-A-62-55097, Enterobacter Cloassay strain N-7901 (FER)
MBP-873). 500 mL of culture solution
Was centrifuged, and the wet cells were suspended in distilled water to prepare a cell suspension solution (1140 g). D, L-
After dissolving 60g of phenylalanine amide,
For 24 hours. After the reaction, the cells were removed by centrifugation to obtain 1150 g of an aqueous solution containing 2.5% by mass of each of L-phenylalanine and D-phenylalaninamide. The concentrations of phenylalanine and phenylalanine amide were determined under HPLC analysis condition 3, and the optical purity of each was HP
The analysis was performed under LC analysis condition 4.

【0041】[HPLC分析条件3] カラム:イナートシル ODS−3V(4.6φ×25
0mm) 移動層:0.1% リン酸水溶液−メタノール(80:
20) 流速: 1mL/min 検出: UV 254nm [HPLC分析条件4] カラム:SUMICHIRAL OA−5000(4.
6φ×250mm) 移動層:水−メタノール(70:30) 流速: 1mL/min 検出: UV 254nm
[HPLC analysis condition 3] Column: Inertosyl ODS-3V (4.6φ × 25)
0 mm) Moving layer: 0.1% phosphoric acid aqueous solution-methanol (80:
20) Flow rate: 1 mL / min Detection: UV 254 nm [HPLC analysis condition 4] Column: SUMICHIRAL OA-5000 (4.
6φ × 250mm) Moving layer: water-methanol (70:30) Flow rate: 1 mL / min Detection: UV 254 nm

【0042】〔実施例8〕参考例2で得られたL−フェ
ニルアラニンとD−フェニルアラニンアミドを含む水溶
液1100gを310gまで減圧濃縮した後、溶液に1
−ブタノール770gを加えた。さらに溶液を減圧濃縮
し、最終的に濃縮液335gを得た。この時の濃縮液の
水分濃度は0.2質量%であった。濃縮液を70℃にて
1時間撹拌した後、溶液を冷却し、40℃にてさらに1
時間撹拌した。析出した結晶を遠心ろ過により回収し、
乾燥質量28.2gのL−フェニルアラニンを得た(収
率94%)。この時、L−フェニルアラニン結晶中に含
まれるD−フェニルアラニンアミドの量は0.07質量
%であった。
Example 8 1100 g of the aqueous solution containing L-phenylalanine and D-phenylalaninamide obtained in Reference Example 2 was concentrated under reduced pressure to 310 g.
770 g of butanol were added. Further, the solution was concentrated under reduced pressure to finally obtain 335 g of a concentrated solution. At this time, the water concentration of the concentrated liquid was 0.2% by mass. After the concentrated solution was stirred at 70 ° C. for 1 hour, the solution was cooled, and further stirred at 40 ° C. for 1 hour.
Stirred for hours. The precipitated crystals are collected by centrifugal filtration,
L-phenylalanine having a dry mass of 28.2 g was obtained (yield 94%). At this time, the amount of D-phenylalanine amide contained in the L-phenylalanine crystal was 0.07% by mass.

【0043】[0043]

【発明の効果】水性媒体中、ラセミ体α−アミノ酸アミ
ドと立体特異的なα−アミノ酸アミド加水分解能を有す
る菌体もしくは酵素を接触させた後、溶媒である水を炭
素数3以上の直鎖、分岐又は環状アルコールからなる群
から選ばれる少なくとも1種の溶媒に置換し、さらに得
られたアルコール溶液から光学活性α−アミノ酸を優先
的に析出させることで、非常に高い収率で光学活性α−
アミノ酸を製造することができる。また、光学活性α−
アミノ酸を分離した後に得られる光学活性α−アミノ酸
アミド含有アルコール溶液は、容易に、ラセミ化反応工
程へと供することができるので、光学活性α−アミノ酸
の製造効率を向上させることができる。
EFFECT OF THE INVENTION After contacting racemic α-amino acid amide with a cell or an enzyme having a stereospecific α-amino acid amide hydrolytic ability in an aqueous medium, water as a solvent is converted into a linear C 3 -amino acid amide. By substituting at least one solvent selected from the group consisting of branched or cyclic alcohols, and by preferentially precipitating the optically active α-amino acid from the obtained alcohol solution, the optically active α-amino acid can be obtained in a very high yield. −
Amino acids can be produced. In addition, the optical activity α-
Since the optically active α-amino acid amide-containing alcohol solution obtained after separating the amino acid can be easily subjected to the racemization reaction step, the production efficiency of the optically active α-amino acid can be improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 237/06 C07C 237/06 237/20 237/20 C12P 13/02 C12P 13/02 13/04 13/04 41/00 41/00 A // C07B 57/00 365 C07B 57/00 365 370 370 61/00 300 61/00 300 (C12P 13/02 (C12P 13/02 C12R 1:01) C12R 1:01) (C12P 13/04 (C12P 13/04 C12R 1:01) C12R 1:01) (C12P 41/00 (C12P 41/00 A C12R 1:01) C12R 1:01) C07M 7:00 C07M 7:00 Fターム(参考) 4B064 AE02 AE03 CA02 CB05 DA16 4H006 AA02 AC82 AC83 AD15 BB14 BC50 BD42 BD52 BE10 BU32 BU36 BV21 BV52 4H039 CA99 CJ20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 237/06 C07C 237/06 237/20 237/20 C12P 13/02 C12P 13/02 13/04 13 / 04 41/00 41/00 A // C07B 57/00 365 C07B 57/00 365 370 370 61/00 300 61/00 300 (C12P 13/02 (C12P 13/02 C12R 1:01) C12R 1:01) (C12P 13/04 (C12P 13/04 C12R 1:01) C12R 1:01) (C12P 41/00 (C12P 41/00 A C12R 1:01) C12R 1:01) C07M 7:00 C07M 7: 00F Term (reference) 4B064 AE02 AE03 CA02 CB05 DA16 4H006 AA02 AC82 AC83 AD15 BB14 BC50 BD42 BD52 BE10 BU32 BU36 BV21 BV52 4H039 CA99 CJ20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光学活性α−アミノ酸及び光学活性α−
アミノ酸アミド含有水溶液の溶媒を、水からアルコール
溶媒へと置換し、光学活性α−アミノ酸を該アルコール
溶液から析出させることを特徴とする光学活性α−アミ
ノ酸及び光学活性α−アミノ酸アミドの製造方法。
1. An optically active α-amino acid and an optically active α-amino acid.
A method for producing an optically active α-amino acid and an optically active α-amino acid amide, wherein the solvent of the amino acid amide-containing aqueous solution is replaced with an alcohol solvent from water, and the optically active α-amino acid is precipitated from the alcohol solution.
【請求項2】 光学活性α−アミノ酸及び光学活性α−
アミノ酸アミド含有水溶液が、光学的に純粋でないα−
アミノ酸アミドに該不斉加水分解能を有する菌体又は該
処理物を接触させ、得られたものである請求項1記載の
光学活性α−アミノ酸及び光学活性α−アミノ酸アミド
の製造方法。
2. An optically active α-amino acid and an optically active α-amino acid.
The amino acid amide-containing aqueous solution is not optically pure α-
The method for producing an optically active α-amino acid and an optically active α-amino acid amide according to claim 1, which is obtained by contacting a cell having the asymmetric hydrolysis ability or the treated product with the amino acid amide.
【請求項3】 アルコール溶媒が、炭素数3以上の直
鎖、分岐又は環状アルコールからなる群から選ばれる少
なくとも1種のアルコールである請求項1又は2記載の
光学活性α−アミノ酸及び光学活性α−アミノ酸アミド
及び光学活性α−アミノ酸アミドの製造方法。
3. The optically active α-amino acid and optically active α according to claim 1 or 2, wherein the alcohol solvent is at least one alcohol selected from the group consisting of linear, branched or cyclic alcohols having 3 or more carbon atoms. -A method for producing an amino acid amide and an optically active α-amino acid amide.
【請求項4】 光学活性α−アミノ酸が析出した後の分
離母液の水分含有率が10質量%以下である請求項1〜
3いずれか1項に記載の光学活性α−アミノ酸及び光学
活性α−アミノ酸アミドの製造方法。
4. The water content of the separated mother liquor after precipitation of the optically active α-amino acid is 10% by mass or less.
3. The method for producing an optically active α-amino acid and an optically active α-amino acid amide according to any one of 3.
【請求項5】 光学活性α−アミノ酸が析出した後の分
離母液に、塩基性化合物を加え、ラセミ化反応を行うこ
とを特徴とする請求項1〜4いずれか1項に記載の光学
活性α−アミノ酸及び光学活性α−アミノ酸アミドの製
造方法。
5. The optically active α according to claim 1, wherein a basic compound is added to the separated mother liquor after the optically active α-amino acid is precipitated, and a racemization reaction is carried out. -Methods for producing amino acids and optically active α-amino acid amides.
【請求項6】 塩基性化合物が、アルカリ金属水酸化物
又はアルカリ金属のアルコラートのうち、少なくとも1
種である請求項5に記載の光学活性α−アミノ酸及び光
学活性α−アミノ酸アミドの製造方法。
6. The method according to claim 1, wherein the basic compound is at least one of alkali metal hydroxides and alkali metal alcoholates.
The method for producing an optically active α-amino acid and an optically active α-amino acid amide according to claim 5, which is a seed.
【請求項7】 請求項5又は6記載の方法により得られ
たα−アミノ酸アミドを不斉加水分解反応の原料として
循環利用することを特徴とする光学活性α−アミノ酸及
び光学活性α−アミノ酸アミドの製造方法。
7. An optically active α-amino acid and an optically active α-amino acid amide, wherein the α-amino acid amide obtained by the method according to claim 5 or 6 is recycled as a raw material for an asymmetric hydrolysis reaction. Manufacturing method.
【請求項8】α−アミノ酸が一般式(I)で示されるも
のである請求項1〜7いずれか1項に記載の光学活性α
−アミノ酸及び光学活性α−アミノ酸アミドの製造方
法。 【化1】 (式中、R1及びR2は、同一又は異なっており、水素
原子、低級アルキル基、置換低級アルキル基、低級アル
ケニル基、置換低級アルケニル基、シクロアルキル基、
フェニル基、置換フェニル基、複素環基及び置換複素環
基を示す。)
8. The optically active α according to any one of claims 1 to 7, wherein the α-amino acid is represented by the general formula (I).
-Methods for producing amino acids and optically active α-amino acid amides. Embedded image (Wherein R1 and R2 are the same or different and each represent a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a cycloalkyl group,
A phenyl group, a substituted phenyl group, a heterocyclic group and a substituted heterocyclic group are shown. )
【請求項9】α−アミノ酸アミドが一般式(II)で示
されるものである請求項1〜7いずれか1項に記載の光
学活性α−アミノ酸及び光学活性α−アミノ酸アミドの
製造方法。 【化2】 (式中、R1及びR2は、同一又は異なっており、水素
原子、低級アルキル基、置換低級アルキル基、低級アル
ケニル基、置換低級アルケニル基、シクロアルキル基、
フェニル基、置換フェニル基、複素環基及び置換複素環
基を示す。)
9. The method for producing an optically active α-amino acid and an optically active α-amino acid amide according to any one of claims 1 to 7, wherein the α-amino acid amide is represented by the general formula (II). Embedded image (Wherein R1 and R2 are the same or different and each represent a hydrogen atom, a lower alkyl group, a substituted lower alkyl group, a lower alkenyl group, a substituted lower alkenyl group, a cycloalkyl group,
A phenyl group, a substituted phenyl group, a heterocyclic group and a substituted heterocyclic group are shown. )
JP2000146663A 2000-05-18 2000-05-18 Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide Pending JP2001328970A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000146663A JP2001328970A (en) 2000-05-18 2000-05-18 Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide
PCT/JP2001/004191 WO2001087819A1 (en) 2000-05-18 2001-05-18 PROCESS FOR PRODUCING OPTICALLY ACTIVE α-AMINO ACID AND OPTICALLY ACTIVE α-AMINO ACID AMIDE
US10/276,702 US6949658B2 (en) 2000-05-18 2001-05-18 Process for producing optically active α-amino acid and optically active α-amino acid amide
EP01930218A EP1300392B1 (en) 2000-05-18 2001-05-18 Process for producing optically active alpha-amino acid and optically active alpha-amino acid amide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000146663A JP2001328970A (en) 2000-05-18 2000-05-18 Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007198755A Division JP4730913B2 (en) 2007-07-31 2007-07-31 Optically active tert-leucine and method for producing optically active tert-leucine amide

Publications (2)

Publication Number Publication Date
JP2001328970A true JP2001328970A (en) 2001-11-27
JP2001328970A5 JP2001328970A5 (en) 2007-07-05

Family

ID=18652984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146663A Pending JP2001328970A (en) 2000-05-18 2000-05-18 Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide

Country Status (1)

Country Link
JP (1) JP2001328970A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090152A1 (en) * 2003-04-08 2004-10-21 Mitsubishi Gas Chemical Company, Inc. 2-alkylcysteinamide or salt thereof, process for producing these, and use of these
WO2005102988A1 (en) * 2004-04-22 2005-11-03 Mitsubishi Gas Chemical Company, Inc. Method of separately collecting optically active amino acid amide and optically active amino acid
JP2008125364A (en) * 2006-11-16 2008-06-05 Mitsubishi Rayon Co Ltd Method for producing optically active amino acid and n-alkoxycarbonylamino acids
JP2010235547A (en) * 2009-03-31 2010-10-21 Mitsubishi Gas Chemical Co Inc METHOD FOR PRODUCING DL-tert-LEUCINE AMIDE
JP2011036135A (en) * 2009-08-06 2011-02-24 Mitsubishi Gas Chemical Co Inc METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE
WO2011068206A1 (en) * 2009-12-04 2011-06-09 三菱瓦斯化学株式会社 Process for production of optically active amino acid or optically active amino acid amide
JP2013255505A (en) * 2013-08-06 2013-12-26 Mitsubishi Rayon Co Ltd Production method for optically active amino acid and n-alkoxycarbonylamino acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197530A (en) * 1985-02-25 1986-09-01 Mitsubishi Gas Chem Co Inc Method of racemization
JPS61293394A (en) * 1985-06-21 1986-12-24 Mitsubishi Gas Chem Co Inc Production of l-alpha-amino acid
JPS62252751A (en) * 1986-04-25 1987-11-04 Nitto Chem Ind Co Ltd Racemization of alpha-amino acid amide
JPH01186850A (en) * 1988-01-20 1989-07-26 Mitsubishi Gas Chem Co Inc 2-methylphenylalanines
JP2001011034A (en) * 1999-06-29 2001-01-16 Mitsubishi Rayon Co Ltd Separation and recovery of optically active amino acid and optically active amino acid amide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197530A (en) * 1985-02-25 1986-09-01 Mitsubishi Gas Chem Co Inc Method of racemization
JPS61293394A (en) * 1985-06-21 1986-12-24 Mitsubishi Gas Chem Co Inc Production of l-alpha-amino acid
JPS62252751A (en) * 1986-04-25 1987-11-04 Nitto Chem Ind Co Ltd Racemization of alpha-amino acid amide
JPH01186850A (en) * 1988-01-20 1989-07-26 Mitsubishi Gas Chem Co Inc 2-methylphenylalanines
JP2001011034A (en) * 1999-06-29 2001-01-16 Mitsubishi Rayon Co Ltd Separation and recovery of optically active amino acid and optically active amino acid amide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090152A1 (en) * 2003-04-08 2004-10-21 Mitsubishi Gas Chemical Company, Inc. 2-alkylcysteinamide or salt thereof, process for producing these, and use of these
US7208631B2 (en) 2003-04-08 2007-04-24 Mitsubishi Gas Chemical Company, Inc. 2-alkylcysteinamide or salt thereof, process for producing these, and use of these
WO2005102988A1 (en) * 2004-04-22 2005-11-03 Mitsubishi Gas Chemical Company, Inc. Method of separately collecting optically active amino acid amide and optically active amino acid
US7402695B2 (en) 2004-04-22 2008-07-22 Mitsubishi Gas Chemical Company, Inc. Method of separately collecting optically active amino acid amide and optically active amino acid
JP4816454B2 (en) * 2004-04-22 2011-11-16 三菱瓦斯化学株式会社 Separation and recovery of optically active amino acid amide and optically active amino acid
JP2008125364A (en) * 2006-11-16 2008-06-05 Mitsubishi Rayon Co Ltd Method for producing optically active amino acid and n-alkoxycarbonylamino acids
JP2010235547A (en) * 2009-03-31 2010-10-21 Mitsubishi Gas Chemical Co Inc METHOD FOR PRODUCING DL-tert-LEUCINE AMIDE
JP2011036135A (en) * 2009-08-06 2011-02-24 Mitsubishi Gas Chemical Co Inc METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE
WO2011068206A1 (en) * 2009-12-04 2011-06-09 三菱瓦斯化学株式会社 Process for production of optically active amino acid or optically active amino acid amide
JP2013255505A (en) * 2013-08-06 2013-12-26 Mitsubishi Rayon Co Ltd Production method for optically active amino acid and n-alkoxycarbonylamino acid

Similar Documents

Publication Publication Date Title
US4736060A (en) Method for optical resolution of DL-cysteine and (R,S)-1-(1-naphthyl) ethylamine
JP2001328970A (en) Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide
US6949658B2 (en) Process for producing optically active α-amino acid and optically active α-amino acid amide
US4487717A (en) Process for recovering a dipeptide derivative
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
JPH09208546A (en) Addition salt of new substituted benzylamine and its optical resolution
JP5092743B2 (en) Separation and recovery method of optically active amino acid amide
JP2008125364A (en) Method for producing optically active amino acid and n-alkoxycarbonylamino acids
JP4730913B2 (en) Optically active tert-leucine and method for producing optically active tert-leucine amide
JP4548756B2 (en) Purification method of amino acid amide
JP5097607B2 (en) Method for producing optically active amino acid
CA1263094A (en) Process for the separation of l-leucine and l- isoleucine
US4621151A (en) Optical resolution of DL-cysteine
JP3849163B2 (en) Method for recovering monoammonium aspartate
JP3888402B2 (en) Process for producing optically active N-carbobenzoxy-tert-leucine
JP4035856B2 (en) Method for producing high optical purity optically active amino acid ester
EP1741698B1 (en) Method of separately collecting optically active amino acid amide and optically active amino acid
JP5157997B2 (en) Method for producing DL-tert-leucinamide
JP4544385B2 (en) Process for producing optically active 2,6-diaminoheptanoic acid
JP2011036135A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE
JP2012193135A (en) Method of manufacturing amino acid
JPH0634751B2 (en) Method for separating D-phenylalanine
JP2001316342A (en) Method for purifying isoleucine
JP2013255505A (en) Production method for optically active amino acid and n-alkoxycarbonylamino acid
JPH11100364A (en) Production of high-purity n-protected s-phenylcysteine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Written amendment

Effective date: 20100604

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100701

Free format text: JAPANESE INTERMEDIATE CODE: A02