JP2011036135A - METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE - Google Patents

METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE Download PDF

Info

Publication number
JP2011036135A
JP2011036135A JP2009183537A JP2009183537A JP2011036135A JP 2011036135 A JP2011036135 A JP 2011036135A JP 2009183537 A JP2009183537 A JP 2009183537A JP 2009183537 A JP2009183537 A JP 2009183537A JP 2011036135 A JP2011036135 A JP 2011036135A
Authority
JP
Japan
Prior art keywords
tert
leucine
optically active
solvent
amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009183537A
Other languages
Japanese (ja)
Inventor
Sachiko Arie
幸子 有江
Masanori Sugita
将紀 杉田
Shin Iida
慎 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009183537A priority Critical patent/JP2011036135A/en
Publication of JP2011036135A publication Critical patent/JP2011036135A/en
Ceased legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing optically active L- or D-tert-leucine important as a raw material for medicines and agrochemicals, which is excellent in operability and can industrially be performed. <P>SOLUTION: In the method for producing optically active tert-leucine, including treating tert-leucine amide with a biological catalyst capable of stereoselectively hydrolyzing tert-leucine amide in an aqueous solution containing acid radicals, adding a base to the reaction solution, and then displacing the solvent of the reaction solution from water to a poor solvent of the optically active tert-leucine to deposit and take out the produced optically active tert-leucine, acetic acid radical among the acid radicals in a liquid added for the solvent displacement is 45 mol% or more, and the poor solvent is an alcohol. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、医農薬中間体として重要な光学活性tert−ロイシンの、操作性に優れた工業的に実施可能な製造方法に関する。詳しくは、原料基質のDL−tert−ロイシンアミドを立体選択性を有する生体触媒を用いて加水分解した後、貧溶媒に置換して光学活性tert−ロイシンを析出させる方法に関する。   The present invention relates to an industrially feasible production method of optically active tert-leucine, which is important as an intermediate for medicines and agrochemicals, with excellent operability. More specifically, the present invention relates to a method for precipitating optically active tert-leucine by hydrolyzing DL-tert-leucine amide as a raw material substrate using a biocatalyst having stereoselectivity and then substituting with a poor solvent.

本発明の方法によって得られる光学活性tert−ロイシンは、HIVやHCVのプロテアーゼ阻害剤等の医薬品原料として重要な中間体である(例えば、特許文献1、2参照)。従来、立体選択性を有する生体触媒、即ち、酵素または該酵素を有する微生物もしくはその処理物をDL−tert−ロイシンアミドに作用させてL体またはD体選択的加水分解を行うことにより、光学活性L−またはD−tert−ロイシンを生成させた後、反応液の溶媒を水から有機溶媒へ置換することにより未反応のD−またはL−tert−ロイシンアミドを有機溶媒に溶解させ、光学活性L−またはD−tert−ロイシンを有機溶媒から析出させる方法が知られている(例えば、特許文献3,4,5参照)。   Optically active tert-leucine obtained by the method of the present invention is an important intermediate as a raw material for pharmaceuticals such as HIV and HCV protease inhibitors (see, for example, Patent Documents 1 and 2). Conventionally, a biocatalyst having stereoselectivity, that is, an optical activity is obtained by allowing an enzyme, a microorganism having the enzyme, or a processed product thereof to act on DL-tert-leucinamide to perform L-form or D-form selective hydrolysis. After producing L- or D-tert-leucine, unreacted D- or L-tert-leucine amide is dissolved in the organic solvent by substituting the solvent of the reaction solution from water to an organic solvent. A method for precipitating-or D-tert-leucine from an organic solvent is known (see, for example, Patent Documents 3, 4, and 5).

国際公開第99/036404号パンフレットInternational Publication No. 99/036404 Pamphlet 国際公開第03/035060号パンフレットInternational Publication No. 03/035060 Pamphlet 特開2001−11034号公報JP 2001-11034 A 特開2001−328970号公報JP 2001-328970 A 特開2002−253293号公報JP 2002-253293 A

一般に、生体触媒反応の際、生体触媒の至適pHにおいて行われることが望ましい。tert−ロイシンアミドの立体選択的加水分解に適したpHは、使用する生体触媒により異なり一概に規定することはできないが、例えばL体選択的加水分解活性を有する遺伝子組換菌株であるpMCA1/JM109(FERM AP−20056)由来の酵素を用いた場合はpH6〜10、より好ましくはpH6〜9において好適に反応が進行する。遊離のtert−ロイシンアミドの水溶液のpHは10.5程度となるため、立体選択的加水分解を至適pH条件で実施するためには酸を添加してpHを調整しなければならない。至適pHに合わせるために塩酸などの無機酸を加えるのが一般的であるが、加えられた酸は未反応のtert−ロイシンアミドに作用して有機溶媒に対して溶解性の低い酸塩を形成してしまうため、有機溶媒中に析出した光学活性tert−ロイシンを分離取得する際に、光学活性L−またはD−tert−ロイシンにその対掌体のD−またはL−tert−ロイシンアミドの酸塩が混入してしまう。対掌体のtert−ロイシンアミドの酸塩が混入した光学活性L−またはD−tert−ロイシンを原料として誘導体を製造した場合、tert−ロイシンの光学純度が高いにもかかわらずtert−ロイシンアミドがtert−ロイシンと類似の反応性を示すことによりtert−ロイシン誘導体の光学純度を低下させる場合がある。従って、D−またはL−tert−ロイシンの対掌体であるtert−ロイシンアミドの酸塩の混入を防ぐ必要があり、生体触媒反応後にtert−ロイシンアミドより強い塩基を加えてアミドを遊離化する操作が必要になる。   In general, it is desirable that the biocatalytic reaction is performed at an optimum pH of the biocatalyst. The pH suitable for the stereoselective hydrolysis of tert-leucine amide differs depending on the biocatalyst used and cannot be defined unconditionally. For example, pMCA1 / JM109, which is a recombinant strain having L-form selective hydrolysis activity, is available. When an enzyme derived from (FERM AP-20056) is used, the reaction suitably proceeds at pH 6 to 10, more preferably pH 6 to 9. Since the pH of the aqueous solution of free tert-leucinamide is about 10.5, it is necessary to adjust the pH by adding an acid in order to carry out stereoselective hydrolysis under optimum pH conditions. In general, an inorganic acid such as hydrochloric acid is added to adjust to an optimum pH, but the added acid acts on an unreacted tert-leucinamide to form an acid salt having low solubility in an organic solvent. Therefore, when the optically active tert-leucine precipitated in the organic solvent is separated and obtained, the optically active L- or D-tert-leucine is converted into the enantiomer of D- or L-tert-leucine amide. Acid salts are mixed in. When a derivative is produced using optically active L- or D-tert-leucine mixed with an enantiomer of tert-leucine amide as a raw material, the tert-leucine amide is obtained despite the high optical purity of tert-leucine. In some cases, the optical purity of the tert-leucine derivative is lowered by showing a reactivity similar to that of tert-leucine. Therefore, it is necessary to prevent the inclusion of the acid salt of tert-leucine amide, which is the enantiomer of D- or L-tert-leucine, and after the biocatalytic reaction, a stronger base than tert-leucine amide is added to liberate the amide. Operation is required.

ところが、酵素反応後にアルカリ金属水酸化物などの無機塩基を加えてアミドを遊離化した後、反応液の溶媒を水から有機溶媒へ置換することにより光学活性tert−ロイシンを有機溶媒から析出させる操作を行うと、有機溶媒のゲル化が生じ、流動性が失われてしまう問題が発生した。   However, after the enzymatic reaction, an inorganic base such as an alkali metal hydroxide is added to liberate the amide, and then the optically active tert-leucine is precipitated from the organic solvent by substituting the solvent in the reaction solution from water to an organic solvent. When this was performed, gelation of the organic solvent occurred, resulting in a problem of loss of fluidity.

また、原料としてtert−ロイシンアミド塩酸塩などの酸塩を使用し、アルカリ金属水酸化物などの無機塩基でpH調整を行って生体触媒反応を行った場合も、溶媒を水から有機溶媒へ置換する操作に伴って同様に溶媒のゲル化が生じた。   In addition, when an acid salt such as tert-leucinamide hydrochloride is used as a raw material and a biocatalytic reaction is performed by adjusting the pH with an inorganic base such as an alkali metal hydroxide, the solvent is replaced from water to an organic solvent. In the same way, gelation of the solvent occurred.

その際、光学活性tert−ロイシンは、溶媒の流動性が失われたことにより回収することが困難であった。また、流動性が失われたことによりtert−ロイシンアミドを分離することができなくなり、光学活性tert−ロイシンの純度を著しく低下させる問題が生じた。反応液のゲル化には塩の存在が関係しており、ゲル化を回避するために有効と考えられる脱塩操作を行った場合には、工程数の増加に伴い収率の低下を免れない。さらに、流動性を回復するために大量の有機溶媒を添加した場合には、tert−ロイシンアミドは除去することができるが、光学活性tert−ロイシンの回収率の低下を招く結果となった。工業的な面からも大量の有機溶媒の使用は好ましくない。文献にはゲル化については記載されていないが、文献記載の方法ではこのように、光学活性tert−ロイシンの製造方法として工業的に実施することが困難であることが判明した。   At that time, the optically active tert-leucine was difficult to recover due to the loss of fluidity of the solvent. Further, the loss of fluidity makes it impossible to separate tert-leucine amide, resulting in a problem of significantly reducing the purity of optically active tert-leucine. The presence of salt is involved in the gelation of the reaction solution, and when a desalting operation considered to be effective for avoiding gelation is performed, a decrease in yield is inevitable as the number of steps increases. . Furthermore, when a large amount of an organic solvent is added to restore fluidity, tert-leucine amide can be removed, but the recovery rate of the optically active tert-leucine was reduced. The use of a large amount of organic solvent is not preferable from the industrial aspect. Although the gelation is not described in the literature, it has been found that the method described in the literature is difficult to implement industrially as a method for producing optically active tert-leucine.

生体触媒反応液の溶媒を水から有機溶媒へ置換することによりtert−ロイシンを有機溶媒から析出させる操作を行うと、有機溶媒のゲル化が生じる理由の詳細は明らかではないが、例えば、tert−ロイシンの構造異性体であるイソロイシンなどの誘導体では、水素結合の分子間相互作用により低分子でありながらゲルを生成する性質が知られている(英謙二, 高分子論文集, 52773,1995年、英謙二, 高分子論文集, 55,585,1998年)。tert−ロイシンにおいても同様の現象が起こっていると考えられ、ゆえに、有機溶媒のゲル化が生じていると考えられるが、本課題の解決法を示した報告は認められない。   Although the details of the reason why gelation of the organic solvent occurs when the operation of precipitating tert-leucine from the organic solvent by replacing the solvent of the biocatalyst reaction solution from water to an organic solvent is not clear, for example, tert- Derivatives such as isoleucine, which is a structural isomer of leucine, are known to have a low molecular weight due to intermolecular interaction of hydrogen bonds (Kenji Ei, Polymer Journal, 52773, 1995, Eiji Kenji, Polymer Journals, 55, 585, 1998). It is considered that the same phenomenon occurs in tert-leucine, and therefore, it is considered that gelation of the organic solvent occurs, but there is no report showing a solution to this problem.

本発明の目的は、従来技術における上記した課題を解決し、医農薬原料として重要な光学活性L−またはD−tert−ロイシンを製造するための操作性に優れた工業的に実施可能な方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems in the prior art and to provide an industrially feasible method excellent in operability for producing optically active L- or D-tert-leucine important as a raw material for medicines and agricultural chemicals. It is to provide.

本発明者らは、光学活性tert−ロイシンの工業的に実施可能な製造方法に関して鋭意検討した。   The present inventors diligently investigated an industrially feasible production method of optically active tert-leucine.

一般的な酸、たとえば塩酸、硫酸等の存在下で、アミドを遊離化しないまま反応液の溶媒を水から有機溶媒へ置換することにより光学活性L−またはD−tert−ロイシンを有機溶媒に析出させると、未反応のtert−ロイシンアミドの酸塩が光学活性tert−ロイシンと共に析出し、光学活性tert−ロイシンの純度を低下させた。そのため、反応液の溶媒を水から有機溶媒へ置換する操作の前に塩基を添加してアミドの遊離化を行う必要がある。ここでアミドの遊離化のために添加する塩基として水酸化ナトリウムなどの無機塩基を使用した場合、生成する塩により、反応液の溶媒を水から有機溶媒へ置換する操作中に反応混合物がゲル化してしまい、工業的操作が困難となるという問題点がある。反応液のゲル化という現象は、塩酸、硫酸をはじめとする鉱酸および蟻酸、プロピオン酸をはじめとする有機酸など多くの酸でpH調整して生体触媒反応を行い、アミドを遊離化して反応液の溶媒を水から有機溶媒へ置換した場合に観察された。   Precipitation of optically active L- or D-tert-leucine in an organic solvent by substituting the solvent of the reaction solution from water to an organic solvent in the presence of a general acid such as hydrochloric acid or sulfuric acid without liberating the amide. As a result, an unreacted tert-leucine amide acid salt was precipitated together with the optically active tert-leucine, thereby reducing the purity of the optically active tert-leucine. Therefore, it is necessary to liberate the amide by adding a base before the operation of replacing the solvent of the reaction solution from water to an organic solvent. Here, when an inorganic base such as sodium hydroxide is used as the base to be added for liberation of the amide, the reaction mixture gels during the operation of replacing the solvent of the reaction solution from water to an organic solvent due to the generated salt. Therefore, there is a problem that industrial operation becomes difficult. The phenomenon of gelation of the reaction solution is the reaction of the biocatalytic reaction by adjusting the pH with various acids such as mineral acids such as hydrochloric acid and sulfuric acid and organic acids such as formic acid and propionic acid, and liberating amides. This was observed when the solvent of the liquid was replaced from water to an organic solvent.

ゲル化に関与すると考えられる成分について広く検討したところ、溶媒置換に供する液に含まれる酸根として酢酸根を含む場合にゲル化を防止できることを見出した。遊離のtert−ロイシンアミドを原料とし無機酸によるpH調整下で生体触媒反応を行った後に無機塩基により未反応のアミドを遊離化する場合や、tert−ロイシンアミドの無機酸塩を原料とし無機塩基によるpH調整下で生体触媒反応を行った後に無機塩基をさらに加えて未反応のアミドを遊離化する場合など、反応系内にtert−ロイシンアミド酸塩以外の塩が存在する場合には溶媒置換中にゲル化が起こることがあるが、これらの塩のほかに反応液に酢酸根を含ませることによりゲル化を防止することが可能である。このように、ゲル化を回避しながらtert−ロイシンアミドまたはその塩を含まない高純度の光学活性tert−ロイシンを取得できることを見出した。
さらに貧溶媒として相応しい溶媒の種類について検討したところ、酢酸添加下でゲル化を起こさないこと、水と共沸し沸点も比較的低いこと、析出する光学活性tert−ロイシンに対する溶解性が低く、しかもtert−ロイシンアミド酢酸塩の溶解性が高いこと、その他溶媒としての安全性や経済性の面から、炭素数3〜7のアルコール類、特に2−メチル−1−プロパノールが好適に使用できることを見出した。
When the component considered to be involved in gelation has been extensively studied, it has been found that gelation can be prevented when an acetic acid radical is included as an acid radical contained in a solution subjected to solvent substitution. When free tert-leucine amide is used as a raw material and a biocatalytic reaction is carried out under pH adjustment with an inorganic acid, then an unreacted amide is liberated with an inorganic base, or an inorganic acid salt of tert-leucine amide is used as a raw material. If a salt other than tert-leucine amidate is present in the reaction system, such as when an inorganic base is further added to liberate unreacted amide after performing biocatalytic reaction under pH adjustment by In some cases, gelation may occur. In addition to these salts, gelation can be prevented by including an acetate group in the reaction solution. Thus, it was found that high-purity optically active tert-leucine containing no tert-leucine amide or a salt thereof can be obtained while avoiding gelation.
Furthermore, when the kind of solvent suitable as a poor solvent was examined, it did not cause gelation under the addition of acetic acid, it was azeotropic with water and its boiling point was relatively low, the solubility in the precipitated optically active tert-leucine was low, and It has been found that alcohols having 3 to 7 carbon atoms, particularly 2-methyl-1-propanol, can be suitably used from the viewpoint of the high solubility of tert-leucinamide acetate and the safety and economics as other solvents. It was.

このように、溶媒置換前の反応液に酢酸根を存在させ、反応液の溶媒を水からアルコール類へ置換すれば、反応液をゲル化させることなく、かつ光学活性tert−ロイシンを析出させtert−ロイシンアミドまたはその酸塩から分離取得することが可能であることを見出し、本発明を完成するに至った。   In this way, if an acetic acid radical is present in the reaction solution before solvent replacement and the solvent of the reaction solution is replaced from water to alcohols, the optically active tert-leucine can be precipitated without causing the reaction solution to gel. -The present inventors have found that it is possible to separate and acquire from leucine amide or its acid salt, and have completed the present invention.

すなわち、本発明は、光学活性tert−ロイシンを得るための(1)から(6)に示す製造方法に関する。
(1)酸根を含有する水溶液中でtert−ロイシンアミドを立体選択的に加水分解する生体触媒をtert−ロイシンアミドに作用させた後、反応液に塩基を添加し、続いて反応液の溶媒を水から光学活性tert−ロイシンの貧溶媒に置換することにより、生成した光学活性tert−ロイシンを析出させ分取する方法において、溶媒置換に供する液中の酸根のうち酢酸根が45mol%以上であると共に、貧溶媒がアルコール類であることを特徴とする、tert−ロイシンアミドからの光学活性tert−ロイシンの製造方法。
(2)tert−ロイシンアミドを立体選択的に加水分解する生体触媒がキサントバクター属、プロタミノバクター属、ミコバクテリウム属もしくはミコプラナ属に属する微生物、またはこれら微生物から人工的変異手段によって誘導される変異株、細胞融合もしくは遺伝子組換法により誘導される組換株より調製された、酵素または該酵素を有する微生物もしくはその処理物である、(1)に記載の光学活性tert−ロイシンの製造方法。
(3)アルコール類が2−プロパノール、2−メチル−1−プロパノール、1−ブタノールおよび2−ブタノールから選ばれる一種以上である、(1)に記載の光学活性tert−ロイシンの製造方法。
(4)アルコール類が2−メチル−1−プロパノールである、(1)に記載の光学活性tert−ロイシンの製造方法。
(5)光学活性tert−ロイシンがL−tert−ロイシンである、(1)〜(4)の何れか一項に記載の光学活性tert−ロイシンの製造方法。
That is, this invention relates to the manufacturing method shown in (1) to (6) for obtaining optically active tert-leucine.
(1) After allowing a biocatalyst that stereoselectively hydrolyzes tert-leucine amide to act on tert-leucine amide in an aqueous solution containing acid radicals, a base is added to the reaction solution, and then the solvent of the reaction solution is changed. In the method of precipitating and separating the optically active tert-leucine produced by substituting the poor solvent for optically active tert-leucine from water, the acetic acid radical is 45 mol% or more of the acid radicals in the solution used for solvent substitution. A method for producing optically active tert-leucine from tert-leucine amide, wherein the poor solvent is an alcohol.
(2) A biocatalyst that stereoselectively hydrolyzes tert-leucinamide is derived from microorganisms belonging to the genus Xantobacter, Protaminobacter, Mycobacterium or Mycoplana, or from these microorganisms by artificial mutation means Of the optically active tert-leucine according to (1), which is an enzyme, a microorganism having the enzyme, or a processed product thereof, which is prepared from a mutant strain, a recombinant strain derived by cell fusion or a gene recombination method Production method.
(3) The method for producing an optically active tert-leucine according to (1), wherein the alcohol is one or more selected from 2-propanol, 2-methyl-1-propanol, 1-butanol and 2-butanol.
(4) The method for producing an optically active tert-leucine according to (1), wherein the alcohol is 2-methyl-1-propanol.
(5) The method for producing optically active tert-leucine according to any one of (1) to (4), wherein the optically active tert-leucine is L-tert-leucine.

本発明の方法によれば、tert−ロイシンアミドに立体選択的加水分解活性を有する酵素を作用させ、続いて反応液の溶媒を水から有機溶媒へ置換することにより光学活性L−またはD−tert−ロイシンを有機溶媒に析出せしめる際に反応混合物をゲル化させることなくL−またはD−tert−ロイシンを高純度かつ高収率に取得することが可能となる。   According to the method of the present invention, an optically active L- or D-tert is obtained by allowing a tert-leucinamide to act on an enzyme having stereoselective hydrolysis activity, and subsequently substituting the solvent of the reaction solution from water to an organic solvent. -L- or D-tert-leucine can be obtained in high purity and high yield without causing the reaction mixture to gel when leucine is precipitated in an organic solvent.

本発明の実施形態はtert−ロイシンアミドを立体選択的に加水分解する生体触媒を、酸根を含む液中でtert−ロイシンアミドに作用させる生体触媒反応を行い、光学活性tert−ロイシンならびにその対掌体であるtert−ロイシンアミドおよびその塩を含む反応液を得、該反応液に塩基を添加することによってtert−ロイシンアミドを遊離させ、その後、反応液中に酢酸根が存在する状態で、溶媒を水からtert−ロイシンの貧溶媒に置換することにより、光学活性tert−ロイシンを析出させるものである。   In an embodiment of the present invention, a biocatalyst that stereoselectively hydrolyzes tert-leucine amide is allowed to act on tert-leucine amide in a solution containing an acid radical, and the optically active tert-leucine and its enantiomer are subjected to a biocatalytic reaction To obtain a reaction solution containing tert-leucinamide and a salt thereof as a body, and by adding a base to the reaction solution, tert-leucineamide is liberated, and in the presence of acetate radicals in the reaction solution, Is substituted from water with a poor solvent of tert-leucine to precipitate optically active tert-leucine.

[生体触媒反応]
まず、生体触媒反応により、tert−ロイシンアミドの立体選択的加水分解を行う。すなわち、酸根を含む水溶液中で、tert−ロイシンアミドを立体選択的に加水分解する生体触媒をtert−ロイシンアミドに作用させて、光学活性tert−ロイシンとその対掌体であるtert−ロイシンアミドを含む反応液を得る。酸根としては、塩酸根、硫酸根、リン酸根などの無機酸根、蟻酸根、酢酸根、プロピオン酸根などの有機酸根が例示される。
[Biocatalytic reaction]
First, stereoselective hydrolysis of tert-leucinamide is performed by a biocatalytic reaction. That is, a biocatalyst that stereoselectively hydrolyzes tert-leucine amide in an aqueous solution containing an acid radical is allowed to act on tert-leucine amide, so that optically active tert-leucine and its counter tert-leucine amide are converted. A reaction solution containing is obtained. Examples of acid radicals include inorganic acid radicals such as hydrochloric acid radicals, sulfate radicals, and phosphate radicals, and organic acid radicals such as formic acid radicals, acetate radicals, and propionate radicals.

生体触媒反応に使用される生体触媒は、L−またはD−tert−ロイシンに対応するL−またはD−tert−ロイシンアミドを立体選択的に加水分解する生体触媒であればよく、このような生体触媒を有する微生物として例えば、キサントバクター属、プロタミノバクター属、ミコバクテリウム属またはミコプラナ属等に属する微生物、具体的にはキサントバクター フラバス(Xanthobacter flavus)NCIB 10071T、プロタミノバクター アルボフラバス(Protaminobacter alboflavus)ATCC8458、ミコバクテリウム メタノリカ(Mycobacterium methanolica)BT−84(FERM P8823)、ミコバクテリウム メタノリカ(Mycobacterium methanolica)P−23(FERM P8825)、ミコプラナ ラモサ(Mycoplana ramosa)NCIB9440T、ミコプラナ ディモルファ(Mycoplana dimorpha)ATCC4279T、バリオボラックス パラドクサス(Variovorax paradoxus)DSM14468が挙げられるが、これらに限定されるものではない。また、これら微生物から人工的変異手段によって誘導される変異株、あるいは細胞融合もしくは遺伝子組換法等の遺伝学的手法により誘導される組換株、例えばpMCA1/JM109(FERM AP−20056)等の何れの菌株であっても上記能力を有するものであれば本発明に使用できる。また、これら微生物は、菌体または菌体処理物、例えば菌体濃縮液、乾燥菌体、菌体破砕物、菌体抽出物もしくは精製酵素、またはこれらの担体固定物等の形態で使用することができる。   The biocatalyst used for the biocatalytic reaction may be a biocatalyst that stereoselectively hydrolyzes L- or D-tert-leucine amide corresponding to L- or D-tert-leucine. Examples of microorganisms having a catalyst include microorganisms belonging to the genus Xantobacter, Protaminobacter, Mycobacterium or Mycoplana, specifically Xantobacter flavus NCIB 10071T, Protaminobacter alboflavus (Protaminobacter alboflavus) ATCC 8458, Mycobacterium methanolica BT-84 (FERM P8823), Mycobacterium methanolica (Myco) acterium methanolica) P-23 (FERM P8825), Mikopurana Lamosa (Mycoplana ramosa) NCIB9440T, Mikopurana Dimorufa (Mycoplana dimorpha) ATCC4279T, Barrio borax Paradokusasu (Variovorax paradoxus) DSM14468 including without being limited thereto. Further, mutant strains derived from these microorganisms by artificial mutation means, or recombinant strains derived by genetic techniques such as cell fusion or gene recombination methods, such as pMCA1 / JM109 (FERM AP-20056), etc. Any strain having the above-mentioned ability can be used in the present invention. In addition, these microorganisms should be used in the form of microbial cells or processed microbial products, for example, microbial cell concentrate, dried microbial cells, microbial cell lysates, microbial cell extracts or purified enzymes, or fixed carriers thereof. Can do.

生体触媒反応に適したtert−ロイシンアミド初期濃度は0.01wt%〜飽和濃度、好ましくは1〜20wt%、より好ましくは5〜20wt%である。低濃度域では反応液体積当りの生産性が非常に低くなり、高濃度域では酵素の失活を招きやすい。なお、tert−ロイシンアミドの塩を原料として使用することも可能である。   The initial concentration of tert-leucinamide suitable for the biocatalytic reaction is 0.01 wt% to a saturated concentration, preferably 1 to 20 wt%, more preferably 5 to 20 wt%. Productivity per volume of the reaction solution is very low in the low concentration range, and the enzyme is easily deactivated in the high concentration range. It is also possible to use a tert-leucinamide salt as a raw material.

生体触媒の使用量はその比活性または活性量によって決定され、例えばpMCA1/JM109(FERM AP−20056)の場合にはtert−ロイシンアミドに対して乾燥重量として重量比0.0005〜3とするのが好ましく、0.0005〜0.05がより好ましい。   The amount of biocatalyst used is determined by the specific activity or the amount of activity. For example, in the case of pMCA1 / JM109 (FERM AP-20056), the dry weight with respect to tert-leucine amide is 0.0005-3. Is preferable, and 0.0005 to 0.05 is more preferable.

生体触媒反応に適した反応温度は生体触媒により異なり一概に規定することはできないが、一般的には10〜70℃の範囲が好ましい。   The reaction temperature suitable for the biocatalytic reaction differs depending on the biocatalyst and cannot be defined unconditionally, but generally it is preferably in the range of 10 to 70 ° C.

生体触媒反応に適したpHは使用する生体触媒により異なり一概に規定することはできないが、例えばpMCA1/JM109(FERM AP−20056)の場合にはpH6〜10が好適であり、pH6〜9がより好適である。遊離tert−ロイシンアミドを原料とする場合、原料水溶液のpHは10.5程度となるため、生体触媒反応を至適pH条件で実施するためには酸を添加してpHを調整する必要がある。添加する酸の量は、使用する酵素により異なり一概に規定することはできないが、例えばpMCA1/JM109(FERM AP−20056)の場合には、pH調整に効果を有する範囲としてtert−ロイシンアミドに対して0.005〜1mol倍量、好ましくは0.005〜0.5mol倍量である。また、tert−ロイシンアミドの酸塩を原料として使用し、その水溶液のpHよりも生体触媒の至適pHが高い場合には、塩基を添加して至適pH付近で生体触媒反応を行うことが好ましい。原料としてtert−ロイシンアミドを使用して酸を添加した場合においてもtert−ロイシンアミドの酸塩を使用した場合においても、pHが調整された水溶液は、添加した酸またはtert−ロイシンアミドの酸塩に由来する酸根を含有する。   The pH suitable for the biocatalytic reaction differs depending on the biocatalyst used, and cannot be defined unconditionally. For example, in the case of pMCA1 / JM109 (FERM AP-20056), pH 6-10 is preferable, and pH 6-9 is more Is preferred. When free tert-leucinamide is used as a raw material, the pH of the aqueous raw material solution is about 10.5. Therefore, in order to carry out the biocatalytic reaction under optimum pH conditions, it is necessary to adjust the pH by adding an acid. . The amount of acid to be added differs depending on the enzyme to be used and cannot be specified in general. For example, in the case of pMCA1 / JM109 (FERM AP-20056), the range effective for pH adjustment is tert-leucinamide. 0.005 to 1 mol times, preferably 0.005 to 0.5 mol times. In addition, when an acid salt of tert-leucinamide is used as a raw material and the optimum pH of the biocatalyst is higher than the pH of the aqueous solution, a biocatalytic reaction can be performed near the optimum pH by adding a base. preferable. Whether the acid is added using tert-leucinamide as a raw material or the acid salt of tert-leucinamide is used, the aqueous solution whose pH is adjusted is the acid added or acid salt of tert-leucinamide. Contains acid radicals derived from

生体触媒を用いた反応系にさらに、Fe2+、Mn2+、Zn2+、Ni2+、Co2+などの各種金属イオンを反応溶液中に1〜50ppm添加することにより、立体選択的加水分解速度を向上させることができる。この際、添加する金属イオンは反応液内において非常に低濃度で添加するため、ゲル化の要因としては無視し得る。tert−ロイシンアミド水溶液への添加順序は特に限定されないが、より高い反応速度を得るために酸、金属イオン、生体触媒の順であることが好ましい。 Further, by adding 1 to 50 ppm of various metal ions such as Fe 2+ , Mn 2+ , Zn 2+ , Ni 2+ and Co 2+ to the reaction system using a biocatalyst, the stereoselective hydrolysis rate is improved. Can be made. At this time, the metal ions to be added are added at a very low concentration in the reaction solution, and thus can be ignored as a cause of gelation. The order of addition to the aqueous tert-leucinamide solution is not particularly limited, but is preferably in the order of acid, metal ion, and biocatalyst in order to obtain a higher reaction rate.

生体触媒反応の反応様式は、回分でも連続でも良い。反応装置は、撹拌機を備えた槽でも、固定化触媒を充填した塔でも、それらの組み合わせでも良い。   The reaction mode of the biocatalytic reaction may be batch or continuous. The reactor may be a tank equipped with a stirrer, a column packed with an immobilized catalyst, or a combination thereof.

生体触媒反応は、L−またはD−tert−ロイシンアミドの95%以上がL−またはD−tert−ロイシンに変換されるまで、好ましくはL−またはD−tert−ロイシンアミドが検出されなくなるまで行うと、収率上のみならず品質上も好適である。   The biocatalytic reaction is performed until 95% or more of the L- or D-tert-leucine amide is converted to L- or D-tert-leucine, preferably until no L- or D-tert-leucine amide is detected. And it is suitable not only in yield but also in quality.

生体触媒反応終了後、反応液中に存在する生体触媒は、例えば遠心分離、濾過膜あるいは吸着分離などの通常の分離手段により生体触媒を除くことが望ましい。さらに限外濾過し、または活性炭等の吸着剤を用いて微生物由来の有機物の大部分を除去するとより好適である。また、生体触媒反応に使用した生体触媒は、反応に使用した後も、遠心分離もしくはろ過操作などにより回収し、生体触媒反応の容器に戻すことにより再利用することができる。   After completion of the biocatalyst reaction, it is desirable that the biocatalyst present in the reaction solution is removed from the biocatalyst by ordinary separation means such as centrifugation, filtration membrane, or adsorption separation. Further, it is more preferable to perform ultrafiltration or remove most of organic substances derived from microorganisms using an adsorbent such as activated carbon. In addition, the biocatalyst used for the biocatalyst reaction can be reused by collecting it by centrifugal separation or filtration operation and returning it to the biocatalyst reaction container.

[アミドの遊離化]
生体触媒反応終了後または生体触媒除去後の反応液はtert−ロイシンとtert−ロイシンアミドおよびその塩を含有している。塩酸や硫酸等の無機酸とtert−ロイシンアミドの塩はアルコールへの溶解挙動がtert−ロイシンと類似しているが、後工程で光学活性tert−ロイシンとその対掌体であるtert−ロイシンアミドを分離する目的から、塩基を添加してtert−ロイシンアミドと塩を形成している酸と添加した塩基との塩を形成させることによりアミドの遊離化を行い、tert−ロイシンとtert−ロイシンアミドの溶解性を大幅に異なる状態とする。塩基としては金属水酸化物、金属アルコラートなど通常用いられる強塩基および、アルカリ金属酢酸塩などの酢酸塩を用いることができる。ただし、光学活性tert−ロイシンアミド酢酸塩は、アルコールへの溶解度が高いことから、塩基添加による遊離化を行うことなくtert−ロイシンアミドとtert−ロイシンを分離できる。従って、塩基添加は溶媒置換に供する液に含まれる酢酸根以外の酸根を対象として行えばよく、塩基の添加量は、好ましくは溶媒置換に供する液に含まれる酢酸根以外の酸根に対して0.95〜1.05当量、さらに好ましくは1当量である。これより不足の場合には、得られる光学活性tert−ロイシン中にその対掌体であるtert−ロイシンアミドが含有されるために好ましくなく、また過剰の場合にはtert−ロイシンアミド塩として溶解除去されるべき酢酸分までもが酢酸塩として光学活性tert−ロイシン中に残留するために不要な塩分増加を招き好ましくない。
[Liberation of amide]
The reaction solution after completion of the biocatalytic reaction or after removal of the biocatalyst contains tert-leucine, tert-leucine amide and a salt thereof. Salts of inorganic acids such as hydrochloric acid and sulfuric acid and tert-leucine amide are similar to tert-leucine in the dissolution behavior in alcohols. However, optically active tert-leucine and its enantiomer tert-leucine amide are used in the subsequent steps. For the purpose of separating tert-leucine and tert-leucine amide, the amide is liberated by forming a salt between the acid forming the salt with tert-leucine amide and the added base, tert-leucine and tert-leucine amide The solubilities of the are significantly different. As the base, a commonly used strong base such as a metal hydroxide or metal alcoholate and an acetate such as an alkali metal acetate can be used. However, since optically active tert-leucine amide acetate has high solubility in alcohol, tert-leucine amide and tert-leucine can be separated without liberation by addition of a base. Therefore, the base addition may be performed on an acid radical other than the acetate radical contained in the liquid used for solvent substitution, and the amount of the base added is preferably 0 with respect to the acid radical other than the acetate radical contained in the liquid used for solvent substitution. .95 to 1.05 equivalents, more preferably 1 equivalent. When the amount is shorter than this, the enantiomer tert-leucine amide is contained in the obtained optically active tert-leucine, which is not preferable. When the amount is excessive, it is dissolved and removed as a tert-leucine amide salt. Even the acetic acid content to be formed remains in the optically active tert-leucine as the acetic acid salt, which causes an undesirable increase in salinity.

[酢酸根の添加]
溶媒置換の際にゲル化を引き起こさないという観点から、溶媒置換に供する液に含まれる酸根のうち45mol%以上を酢酸根とすることが必要であり、含まれる酸根のうち50mol%以上を酢酸根とすることがより好ましい。溶媒置換に供する液に酢酸根を含ませるには、酢酸、酢酸塩等を溶媒置換の前までに反応液に添加すればよい。また、アミドの遊離化と酢酸根の添加の両方の目的を兼ね、アルカリ金属酢酸塩などの酢酸塩を添加することも有効である。
[Addition of acetate radical]
From the viewpoint of not causing gelation at the time of solvent substitution, it is necessary to use 45 mol% or more of the acid radicals contained in the solution to be subjected to solvent substitution as acetate radicals, and 50 mol% or more of the acid radicals contained are acetate radicals. More preferably. In order to include acetic acid radicals in the solution used for solvent replacement, acetic acid, acetate, etc. may be added to the reaction solution before solvent replacement. It is also effective to add acetates such as alkali metal acetates for the purpose of both liberation of amides and addition of acetate radicals.

[溶媒置換]
続いて、溶媒置換を行う。反応液の溶媒を水からtert−ロイシンの貧溶媒へと置換し、未反応のtert−ロイシンアミドは溶解させ、光学活性tert−ロイシンを析出させたのちに回収する方法により、光学活性tert−ロイシンを容易に取得することができる。溶媒置換の方法は、減圧または常圧で濃縮した後にtert−ロイシンの貧溶媒(以下単に貧溶媒とする)を加える方法、貧溶媒を加えて水と共沸させる方法など、通常の溶媒置換方法を用いることができる。
[Solvent substitution]
Subsequently, solvent replacement is performed. The solvent of the reaction solution is replaced with a poor solvent of tert-leucine from water, the unreacted tert-leucine amide is dissolved, and the optically active tert-leucine is precipitated and then recovered. Can be easily obtained. Solvent replacement methods include normal solvent replacement methods such as a method of adding a tert-leucine poor solvent (hereinafter simply referred to as a poor solvent) after concentration at reduced pressure or normal pressure, a method of adding a poor solvent and azeotroping with water, etc. Can be used.

貧溶媒として用いる有機溶媒は、tert−ロイシンアミドの溶解度が高く、光学活性tert−ロイシンの溶解度が低い溶媒としてアルコール類が好適である。より好適には、2−プロパノール、2−メチル−1−プロパノール、1−ブタノールおよび2−ブタノール等の炭素数3〜7のアルコール類が好適に使用される。さらには水と共沸し、水への溶解性が低い性質を有する有機溶媒は、溶媒の置換操作が容易になることから、より好適であり、特に2−メチル−1−プロパノールが有効である。この場合、生体触媒を除去した反応液、または該反応液を濃縮した後に有機溶媒を添加し、常圧または減圧下にて共沸させながら水を留去させ、貧溶媒へ置換していく方法を用いることができる。貧溶媒中の水分量は少ないほど光学活性tert−ロイシンの収率が高くなる。貧溶媒中の水分量は、好ましくは10%未満、より好ましくは1%未満である。さらに、貧溶媒への置換を行い、光学活性tert−ロイシンを析出させたのちに回収する操作の温度は、特に限定されず、常用の温度域である。   The organic solvent used as the poor solvent is preferably an alcohol as a solvent having high solubility of tert-leucine amide and low solubility of optically active tert-leucine. More preferably, alcohols having 3 to 7 carbon atoms such as 2-propanol, 2-methyl-1-propanol, 1-butanol and 2-butanol are preferably used. Furthermore, an organic solvent having a property of being azeotroped with water and having low solubility in water is more preferable since the operation of replacing the solvent becomes easy, and 2-methyl-1-propanol is particularly effective. . In this case, the reaction liquid from which the biocatalyst has been removed, or a method of adding an organic solvent after concentrating the reaction liquid, distilling off water while azeotroping under normal pressure or reduced pressure, and replacing with a poor solvent Can be used. The smaller the amount of water in the poor solvent, the higher the yield of optically active tert-leucine. The amount of water in the poor solvent is preferably less than 10%, more preferably less than 1%. Furthermore, the temperature of the operation for recovering after substituting with a poor solvent and precipitating the optically active tert-leucine is not particularly limited, and is a usual temperature range.

[光学活性tert−ロイシンの回収]
析出した光学活性tert−ロイシンは、遠心分離や濾過などの通常の固液分離手段により容易に回収することができる。回収された光学活性tert−ロイシンは残留するtert−ロイシンアミドを抽出する溶媒で洗浄した後、通風乾燥や真空乾燥などにより乾燥させ、tert−ロイシンアミドの混入のないものとして得られる。
[Recovery of optically active tert-leucine]
The precipitated optically active tert-leucine can be easily recovered by ordinary solid-liquid separation means such as centrifugation or filtration. The recovered optically active tert-leucine is washed with a solvent for extracting the remaining tert-leucine amide and then dried by ventilation drying, vacuum drying, or the like, and is obtained as a mixture free of tert-leucine amide.

次に、本発明を実施例および比較例をもってより具体的に説明する。ただし、本発明はこれらの例にのみ制限されるものではない。なお、tert−ロイシンアミドおよびtert−ロイシンの定量には以下に示す高速液体クロマトグラフィー(HPLC)分析条件を用いた。
〔HPLC分析条件1〕
カラム:Lichrosorb RP−18(4.6φ×250mm)
溶離液:過塩素酸50mM水溶液
流速:0.5ml/min
検出:RI
〔HPLC分析条件2〕
カラム:スミキラルOA−5000(4.6φ×50mm)
溶離液:硫酸銅1mM水溶液
流速:0.6ml/min
検出:UV 254nm
Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited only to these examples. The following high performance liquid chromatography (HPLC) analysis conditions were used for quantification of tert-leucine amide and tert-leucine.
[HPLC analysis condition 1]
Column: Licrosorb RP-18 (4.6φ × 250 mm)
Eluent: Perchloric acid 50 mM aqueous solution Flow rate: 0.5 ml / min
Detection: RI
[HPLC analysis condition 2]
Column: Sumichiral OA-5000 (4.6φ × 50 mm)
Eluent: Copper sulfate 1 mM aqueous solution Flow rate: 0.6 ml / min
Detection: UV 254nm

実施例1
[生体触媒の培養]
生体触媒としては、L−tert−ロイシンアミド立体選択的加水分解酵素を有する形質転換株pMCA1/JM109(FERM AP−20056)の菌体を用いた。該株を下記の培地にて回分培養を行い、さらに遠心分離濃縮によって培養濃縮液を得た。
培地組成(pH7.0)
グリセリン 60g
ポリペプトン 48g
チアミン塩酸塩 4.8mg
KH2PO4 4.8g
MgSO4・7H2O 1.8g
MnCl2・4H2O 12mg
FeSO4・7H2O 72mg
H2O 1200mL
[光学活性tert−ロイシンの製造]
100mLのフラスコに6.51g(0.0500mol)のDL−tert−ロイシンアミドと水58.1gを加えて溶解した後、35%塩酸0.52g(0.0050mol)を添加して溶液pHを10.5から8.6に調整した。さらに、塩化マンガン四水和物2.3mgを添加し、生体触媒としてL−tert−ロイシンアミド立体選択的加水分解酵素を有する形質転換株pMCA1/JM109(FERM AP−20056)を上記の培養濃縮液0.75g(乾燥菌体の重量として0.065gを含有)を接種し、40℃において20時間撹拌により立体選択的加水分解を行った。
反応の進行は高速液体クロマトグラフィー(HPLC)条件1で確認した。生体触媒添加後20時間で原料DL−tert−ロイシンアミド中のL−tert−ロイシンアミドが検出限界以下となるまでL−tert−ロイシンに変換された。
反応後、反応液に活性炭および濾過助剤を加えて濾過することにより菌体を除去した濾液を取得した。濾液に酢酸0.30g(0.0050mol、溶媒置換に供する液中の酸根における酢酸根(以下単に酢酸根)は50モル%)、水酸化ナトリウム0.20g(0.0050mol)を加えた後、濾液に2−メチル−1−プロパノール80mLを加え、20kPaにて含水濃度が1%に達するまで共沸脱水を行い、溶媒置換操作を行った。共沸脱水は沸点60℃で進行し、共沸脱水終了時には沸点は76℃であった。溶媒置換により析出した光学活性L−tert−ロイシンを吸引濾過により濾取し、70℃に加温した2−メチル−1−プロパノール22mLで洗浄し、さらに20℃のアセトン55mLで洗浄した後、40℃で真空乾燥を行い、白色粉末を3.85g取得した。このL−tert−ロイシンの化学純度をHPLC条件1で分析したところ、光学活性L−tert−ロイシンの化学純度は91.5%であり、L−tert−ロイシン以外に塩化ナトリウムを含んでいた。tert−ロイシンアミドおよびその酸塩は検出されなかった。光学純度をHPLC条件2で分析したところ、光学純度は99%以上であった。また、原料DL−tert−ロイシンアミド中のL−tert−ロイシンアミドに対する収率は96.0mol%であった。
Example 1
[Biocatalyst culture]
As a biocatalyst, cells of a transformed strain pMCA1 / JM109 (FERM AP-20056) having L-tert-leucinamide stereoselective hydrolase were used. The strain was subjected to batch culture in the following medium, and a culture concentrate was obtained by centrifugal concentration.
Medium composition (pH 7.0)
Glycerin 60g
Polypeptone 48g
Thiamine hydrochloride 4.8mg
KH2PO4 4.8g
MgSO4 · 7H2O 1.8g
MnCl2 · 4H2O 12mg
FeSO4 · 7H2O 72mg
H2O 1200mL
[Production of optically active tert-leucine]
In a 100 mL flask, 6.51 g (0.0500 mol) of DL-tert-leucine amide and 58.1 g of water were added and dissolved, and then 0.52 g (0.0050 mol) of 35% hydrochloric acid was added to adjust the solution pH to 10. Adjusted from .5 to 8.6. Further, 2.3 mg of manganese chloride tetrahydrate was added, and the transformant pMCA1 / JM109 (FERM AP-20056) having L-tert-leucinamide stereoselective hydrolase as a biocatalyst was added to the above culture concentrate. 0.75 g (containing 0.065 g as the weight of the dried cells) was inoculated and subjected to stereoselective hydrolysis by stirring at 40 ° C. for 20 hours.
The progress of the reaction was confirmed by high performance liquid chromatography (HPLC) condition 1. 20 hours after the addition of the biocatalyst, L-tert-leucine amide in the raw material DL-tert-leucine amide was converted to L-tert-leucine until it was below the detection limit.
After the reaction, activated carbon and a filter aid were added to the reaction solution and filtered to obtain a filtrate from which the cells were removed. After adding 0.30 g of acetic acid (0.0050 mol, acetic acid radical (hereinafter simply referred to as acetic acid radical) in the liquid to be used for solvent substitution) to the filtrate, 0.20 g (0.0050 mol) of sodium hydroxide was added, To the filtrate, 80 mL of 2-methyl-1-propanol was added, and azeotropic dehydration was performed at 20 kPa until the water concentration reached 1%, and a solvent replacement operation was performed. Azeotropic dehydration proceeded at a boiling point of 60 ° C., and the boiling point was 76 ° C. at the end of azeotropic dehydration. The optically active L-tert-leucine precipitated by solvent substitution was collected by suction filtration, washed with 22 mL of 2-methyl-1-propanol heated to 70 ° C., and further washed with 55 mL of acetone at 20 ° C. Vacuum drying was performed at 0 ° C. to obtain 3.85 g of a white powder. When the chemical purity of this L-tert-leucine was analyzed under HPLC condition 1, the chemical purity of the optically active L-tert-leucine was 91.5%, and sodium chloride was included in addition to L-tert-leucine. Tert-leucine amide and its acid salt were not detected. When the optical purity was analyzed under HPLC condition 2, the optical purity was 99% or more. Moreover, the yield with respect to L-tert-leucinamide in raw material DL-tert-leucineamide was 96.0 mol%.

実施例2
実施例1と同様に立体選択的加水分解反応を行い、菌体を除去した後、添加する酢酸量を0.60g(0.0100mol、酢酸根67モル%)、水酸化ナトリウム量を0.20g(0.0050mol)とした以外は実施例1と同様の操作を行った。白色粉末3.43gを取得した。このL−tert−ロイシンの化学純度をHPLC条件1で分析したところ、光学活性L−tert−ロイシンの化学純度は91.5%であり、L−tert−ロイシン以外に塩化ナトリウムを含んでいた。tert−ロイシンアミドおよびその酸塩は検出されなかった。光学純度をHPLC条件2で分析したところ、光学純度は99%以上であった。また、原料DL−tert−ロイシンアミド中のL−tert−ロイシンアミドに対する収率は95.6mol%であった。
Example 2
A stereoselective hydrolysis reaction was carried out in the same manner as in Example 1 to remove the cells, and then the amount of acetic acid to be added was 0.60 g (0.0100 mol, acetate root 67 mol%), and the amount of sodium hydroxide was 0.20 g. The same operation as in Example 1 was performed except that (0.0050 mol) was used. 3.43 g of white powder was obtained. When the chemical purity of this L-tert-leucine was analyzed under HPLC condition 1, the chemical purity of the optically active L-tert-leucine was 91.5%, and sodium chloride was included in addition to L-tert-leucine. Tert-leucine amide and its acid salt were not detected. When the optical purity was analyzed under HPLC condition 2, the optical purity was 99% or more. Moreover, the yield with respect to L-tert-leucinamide in raw material DL-tert-leucineamide was 95.6 mol%.

実施例3
菌体除去後に酢酸および水酸化ナトリウムに代えて酢酸ナトリウム0.41g(0.0050mol、酢酸根50モル%)を添加してから溶媒置換を行った以外は実施例1と同様の操作を行った。溶媒置換に際し、ゲル化は起こらず、白色粉末3.41gを取得した。HPLC条件1で分析したところ、この粉末中のL−tert−ロイシン濃度は91.4%であり、L−tert−ロイシンのほかに塩化ナトリウムが含まれていた。tert−ロイシンアミドおよびその酸塩は検出されなかった。HPLC条件2で分析したところ、L−tert−ロイシンの光学純度は99%以上であった。また、原料DL−tert−ロイシンアミド中のL−tert−ロイシンアミドに対する収率は95.1mol%であった。
Example 3
After removing the cells, the same operation as in Example 1 was performed except that the solvent was replaced after adding 0.41 g of sodium acetate (0.0050 mol, 50 mol% of acetate root) instead of acetic acid and sodium hydroxide. . Upon solvent substitution, gelation did not occur and 3.41 g of white powder was obtained. When analyzed under HPLC condition 1, the concentration of L-tert-leucine in this powder was 91.4%, and sodium chloride was contained in addition to L-tert-leucine. Tert-leucine amide and its acid salt were not detected. When analyzed under HPLC condition 2, the optical purity of L-tert-leucine was 99% or more. Moreover, the yield with respect to L-tert-leucinamide in raw material DL-tert-leucineamide was 95.1 mol%.

実施例4
DL−tert−ロイシンアミドに代えてDL−tert−ロイシンアミド酢酸塩8.61g(0.0500mol、酢酸根100%)を用い、35%塩酸に代えて水酸化ナトリウム1.60g(0.0400mol)を加えてpHを8.4に調整し、菌体除去後、酢酸を添加せずに水酸化ナトリウム0.40g(0.0100mol)を添加してから溶媒置換を行った以外は実施例1と同様の操作を行い、白色粉末7.23gを取得した。HPLC条件1で分析したところ、この粉末中のL−tert−ロイシン濃度は43.3%であり、L−tert−ロイシンのほかに酢酸ナトリウムが含まれていた。tert−ロイシンアミドおよびその酸塩は検出されなかった。HPLC条件2で分析したところ、L−tert−ロイシンの光学純度は99%以上であった。また、原料DL−tert−ロイシンアミド中のL−tert−ロイシンアミドに対する収率は95.6mol%であった。
Example 4
Instead of DL-tert-leucinamide, 8.61 g (0.0500 mol, acetate radical 100%) of DL-tert-leucineamide acetate was used, and 1.60 g (0.0400 mol) of sodium hydroxide was substituted for 35% hydrochloric acid. PH was adjusted to 8.4, and after removing the cells, Example 1 was repeated except that 0.40 g (0.0100 mol) of sodium hydroxide was added without adding acetic acid and then solvent replacement was performed. The same operation was performed to obtain 7.23 g of white powder. When analyzed under HPLC condition 1, the concentration of L-tert-leucine in this powder was 43.3%, and sodium acetate was contained in addition to L-tert-leucine. Tert-leucine amide and its acid salt were not detected. When analyzed under HPLC condition 2, the optical purity of L-tert-leucine was 99% or more. Moreover, the yield with respect to L-tert-leucinamide in raw material DL-tert-leucineamide was 95.6 mol%.

比較例1
実施例1と同様に立体選択的加水分解反応を行い、菌体を除去した後、酢酸を添加しない以外は実施例1と同様の操作を行った。溶媒を水から2−メチル−1−プロパノールに置換する途中、反応混合物全体がゲル化し、流動性が失われたため、L−tert−ロイシンを回収することができなかった。
Comparative Example 1
A stereoselective hydrolysis reaction was carried out in the same manner as in Example 1, and after removing the cells, the same operation as in Example 1 was carried out except that acetic acid was not added. During the replacement of the solvent from water with 2-methyl-1-propanol, the entire reaction mixture gelled and lost its fluidity, so L-tert-leucine could not be recovered.

比較例2
実施例1と同様に立体選択的加水分解反応を行い、菌体を除去した後、添加する酢酸量を0.06g(0.0010mol、酢酸根17モル%)とした以外は実施例1と同様の操作を行った。溶媒を水から2−メチル−1−プロパノールに置換する途中、反応混合物全体がゲル化し、流動性が失われたため、L−tert−ロイシンを回収することができなかった。
Comparative Example 2
Similar to Example 1, after performing a stereoselective hydrolysis reaction and removing the cells, the amount of acetic acid to be added was changed to 0.06 g (0.0010 mol, acetate root 17 mol%). Was performed. During the replacement of the solvent from water with 2-methyl-1-propanol, the entire reaction mixture gelled and lost its fluidity, so L-tert-leucine could not be recovered.

比較例3
実施例1と同様に立体選択的加水分解反応を行い、菌体を除去した後、添加する酢酸量を0.20g(0.0033mol、酢酸根40モル%)とした以外は実施例1と同様の操作を行った。溶媒を水から2−メチル−1−プロパノールに置換する途中、反応混合物全体がゲル化し、流動性が失われたため、L−tert−ロイシンを回収することができなかった。
Comparative Example 3
A stereoselective hydrolysis reaction was carried out in the same manner as in Example 1, and after removing the cells, the amount of acetic acid to be added was changed to 0.20 g (0.0033 mol, acetate root 40 mol%). Was performed. During the replacement of the solvent from water with 2-methyl-1-propanol, the entire reaction mixture gelled and lost its fluidity, so L-tert-leucine could not be recovered.

比較例4〜10
実施例1と同様に立体選択的加水分解反応を行い、菌体を除去した後、酢酸に換えて表1の化合物(0.0050mol)を添加した以外は実施例1と同様の操作を行った。いずれも溶媒を水から2−メチル−1−プロパノールに置換する途中、反応混合物全体がゲル化し、流動性が失われたため、L−tert−ロイシンを回収することができなかった。

Figure 2011036135
Comparative Examples 4-10
A stereoselective hydrolysis reaction was carried out in the same manner as in Example 1, and after removing the cells, the same operation as in Example 1 was carried out except that the compound shown in Table 1 (0.0050 mol) was added instead of acetic acid. . In either case, L-tert-leucine could not be recovered because the entire reaction mixture gelled and the fluidity was lost during the replacement of the solvent from water with 2-methyl-1-propanol.
Figure 2011036135

Claims (5)

酸根を含有する水溶液中でtert−ロイシンアミドを立体選択的に加水分解する生体触媒をtert−ロイシンアミドに作用させた後、反応液に塩基を添加し、続いて反応液の溶媒を水から光学活性tert−ロイシンの貧溶媒に置換することにより、生成した光学活性tert−ロイシンを析出させ分取する方法において、溶媒置換に供する液中の酸根のうち酢酸根が45mol%以上であると共に、貧溶媒がアルコール類であることを特徴とする、tert−ロイシンアミドからの光学活性tert−ロイシンの製造方法。   A biocatalyst that stereoselectively hydrolyzes tert-leucinamide in an aqueous solution containing an acid radical is allowed to act on tert-leucinamide, then a base is added to the reaction solution, and then the solvent of the reaction solution is optically converted from water. In the method of precipitating and fractionating the produced optically active tert-leucine by substituting it with a poor solvent for active tert-leucine, the acetic acid radical in the solution used for solvent substitution is 45 mol% or more, A method for producing optically active tert-leucine from tert-leucine amide, wherein the solvent is an alcohol. tert−ロイシンアミドを立体選択的に加水分解する生体触媒がキサントバクター属、プロタミノバクター属、ミコバクテリウム属もしくはミコプラナ属に属する微生物、またはこれら微生物から人工的変異手段によって誘導される変異株、細胞融合もしくは遺伝子組換法により誘導される組換株より調製された、酵素または該酵素を有する微生物もしくはその処理物である、請求項1に記載の光学活性tert−ロイシンの製造方法。   A biocatalyst that stereoselectively hydrolyzes tert-leucinamide is a microorganism belonging to the genus Xantobacter, Protaminobacter, Mycobacterium or Mycoplana, or a mutation derived from these microorganisms by artificial mutation means The method for producing an optically active tert-leucine according to claim 1, which is an enzyme, a microorganism having the enzyme, or a processed product thereof, prepared from a recombinant strain derived by a strain, cell fusion or gene recombination method. アルコール類が2−プロパノール、2−メチル−1−プロパノール、1−ブタノールおよび2−ブタノールから選ばれる一種以上である、請求項1に記載の光学活性tert−ロイシンの製造方法。   The method for producing optically active tert-leucine according to claim 1, wherein the alcohol is one or more selected from 2-propanol, 2-methyl-1-propanol, 1-butanol and 2-butanol. アルコール類が2−メチル−1−プロパノールである、請求項1に記載の光学活性tert−ロイシンの製造方法。   The method for producing an optically active tert-leucine according to claim 1, wherein the alcohol is 2-methyl-1-propanol. 光学活性tert−ロイシンがL−tert−ロイシンである、請求項1〜4の何れか一項に記載の光学活性tert−ロイシンの製造方法。   The method for producing optically active tert-leucine according to any one of claims 1 to 4, wherein the optically active tert-leucine is L-tert-leucine.
JP2009183537A 2009-08-06 2009-08-06 METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE Ceased JP2011036135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183537A JP2011036135A (en) 2009-08-06 2009-08-06 METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183537A JP2011036135A (en) 2009-08-06 2009-08-06 METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE

Publications (1)

Publication Number Publication Date
JP2011036135A true JP2011036135A (en) 2011-02-24

Family

ID=43764623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183537A Ceased JP2011036135A (en) 2009-08-06 2009-08-06 METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE

Country Status (1)

Country Link
JP (1) JP2011036135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563026A (en) * 2016-07-28 2019-04-02 昭和电工株式会社 The manufacturing method of a-amino acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387998A (en) * 1986-09-30 1988-04-19 Mitsubishi Gas Chem Co Inc Production of d-alpha-amino acid
JP2001328970A (en) * 2000-05-18 2001-11-27 Mitsubishi Rayon Co Ltd Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide
JP2002253293A (en) * 2001-03-02 2002-09-10 Mitsubishi Gas Chem Co Inc METHOD FOR PRODUCING OPTICALLY ACTIVE L-tert-LEUCINE
JP2003225094A (en) * 2001-12-06 2003-08-12 Degussa Ag D-AMIDASE DERIVED FROM VARIOVORAX, GENE ENCODING THE SAME, PLASMID, VECTOR AND MICROORGANISM INCLUDING SUCH NUCLEIC ACID, HYBRIDIZING NUCLEIC ACID, PRIMER FOR PRODUCING NUCLEIC ACID, METHOD FOR PRODUCING IMPROVED rec-AMIDASE, CODE FOR rec-AMIDASE AND NUCLEIC ACID, USE OF D-AMIDASE AND NUCLEIC ACID, AND WHOLE CELL CATALYST

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387998A (en) * 1986-09-30 1988-04-19 Mitsubishi Gas Chem Co Inc Production of d-alpha-amino acid
JP2001328970A (en) * 2000-05-18 2001-11-27 Mitsubishi Rayon Co Ltd Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide
JP2002253293A (en) * 2001-03-02 2002-09-10 Mitsubishi Gas Chem Co Inc METHOD FOR PRODUCING OPTICALLY ACTIVE L-tert-LEUCINE
JP2003225094A (en) * 2001-12-06 2003-08-12 Degussa Ag D-AMIDASE DERIVED FROM VARIOVORAX, GENE ENCODING THE SAME, PLASMID, VECTOR AND MICROORGANISM INCLUDING SUCH NUCLEIC ACID, HYBRIDIZING NUCLEIC ACID, PRIMER FOR PRODUCING NUCLEIC ACID, METHOD FOR PRODUCING IMPROVED rec-AMIDASE, CODE FOR rec-AMIDASE AND NUCLEIC ACID, USE OF D-AMIDASE AND NUCLEIC ACID, AND WHOLE CELL CATALYST

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563026A (en) * 2016-07-28 2019-04-02 昭和电工株式会社 The manufacturing method of a-amino acid
CN109563026B (en) * 2016-07-28 2021-12-28 昭和电工株式会社 Process for producing alpha-amino acid

Similar Documents

Publication Publication Date Title
EP1669459B1 (en) Method of purifying succinic acid from fermentation liquid
JP2005139156A (en) Method for producing monoammonium succinate
WO2011078172A1 (en) Process for production of optically active 3-substituted glutaric acid monoamide
EP2540700B1 (en) Stable aqueous acrylamide solution
JP3273578B2 (en) Method for producing salt of ornithine with acidic amino acids or keto acids
JP2011036135A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE
EP1300392B1 (en) Process for producing optically active alpha-amino acid and optically active alpha-amino acid amide
JP4361641B2 (en) Separation and recovery method of optically active amino acid and optically active amino acid amide
JP2010284109A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE tert-LEUCINE
JP5079320B2 (en) Method for producing glycolic acid
JP2008125364A (en) Method for producing optically active amino acid and n-alkoxycarbonylamino acids
JP2001328970A (en) Method for producing optically active alpha-amino acid and optically active alpha-amino acid amide
JP5092743B2 (en) Separation and recovery method of optically active amino acid amide
JP5093248B2 (en) Process for producing optically active indoline-2-carboxylic acids or derivatives thereof
JP5097607B2 (en) Method for producing optically active amino acid
WO2011068206A1 (en) Process for production of optically active amino acid or optically active amino acid amide
JP4730913B2 (en) Optically active tert-leucine and method for producing optically active tert-leucine amide
JP4596098B2 (en) Method for producing optically active α-amino acid
JP2011098934A (en) Method for removing impurity contained in l-carnitine
WO2011118450A1 (en) Method for manufacturing an optically active n-methyl amino acid and an optically active n-methyl amino acid amide
JP2009278914A (en) Method for producing optically active aromatic amino acid and optically active aromatic amino acid amide
JP5001631B2 (en) Industrial production method of 4-halo-3-hydroxybutyronitrile
JP5157997B2 (en) Method for producing DL-tert-leucinamide
JP2007254439A (en) Method for producing optically active amino acid
JP2012193135A (en) Method of manufacturing amino acid

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150128