JP2001322810A - Manufacturing method of polysilicic acid solution - Google Patents

Manufacturing method of polysilicic acid solution

Info

Publication number
JP2001322810A
JP2001322810A JP2000141271A JP2000141271A JP2001322810A JP 2001322810 A JP2001322810 A JP 2001322810A JP 2000141271 A JP2000141271 A JP 2000141271A JP 2000141271 A JP2000141271 A JP 2000141271A JP 2001322810 A JP2001322810 A JP 2001322810A
Authority
JP
Japan
Prior art keywords
silicic acid
solution
acid solution
polymerized
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000141271A
Other languages
Japanese (ja)
Inventor
Takashi Yamada
崇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2000141271A priority Critical patent/JP2001322810A/en
Publication of JP2001322810A publication Critical patent/JP2001322810A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a polysilicic acid solution, which hardly causes the gelation during the manufacturing and is capable of shortening the time necessary for the polymerization reaction. SOLUTION: A silicic acid solution having Si to an alkali metal X ratio Si/XC by mole of 10-40 is mixed with an acidic solution at a stretch, polymerization-reacted at pH 5-9 and adjusted to pH 1-4 by further adding the acidic solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種用排水の水処
理用凝集剤として用いられる重合ケイ酸溶液の製造方法
に関するものであり、さらに詳しくは製造中のゲル化が
起こりにくく、重合反応に要する時間を短くすることが
できる重合ケイ酸溶液の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymerized silicic acid solution used as a flocculant for water treatment of various wastewaters. The present invention relates to a method for producing a polymerized silicic acid solution that can shorten the required time.

【0002】[0002]

【従来の技術】従来、各種用排水中の懸濁質、溶存有機
物、リン酸イオンを除去するために広く水の凝集処理が
行われている。これらの水の凝集処理においては、凝集
剤として、硫酸アルミニウム、ポリ塩化アルミニウム、
硫酸第二鉄、ポリ硫酸第二鉄、塩化第二鉄などのアルミ
ニウム系もしくは鉄系の無機金属塩凝集剤が利用されて
いる。一方、これらの無機金属塩凝集剤を単独で使用す
ると十分な凝集力が得られないため、高分子凝集剤が用
いられることも多く、特に上水処理の分野においては安
全性の高い高分子凝集剤として重合ケイ酸溶液を使用す
ることが検討されているが、重合ケイ酸溶液を用いた凝
集剤は極めてゲル化しやすいという欠点があり実用化に
は至っていない。そこで、こうしたゲル化の問題を解消
し、長時間の保存を可能とするための種々の試みがなさ
れている。
2. Description of the Related Art Conventionally, agglomeration of water has been widely performed in order to remove suspended solids, dissolved organic substances, and phosphate ions in various wastewaters. In these water coagulation treatments, aluminum sulfate, polyaluminum chloride,
Aluminum-based or iron-based inorganic metal salt coagulants such as ferric sulfate, polyferric sulfate, and ferric chloride are used. On the other hand, if these inorganic metal salt coagulants are used alone, sufficient cohesive strength cannot be obtained, and polymer coagulants are often used. Use of a polymerized silicic acid solution as an agent has been studied, but a flocculant using a polymerized silicic acid solution has a drawback that it is extremely easy to gel, and has not been put to practical use. Therefore, various attempts have been made to solve the problem of gelation and enable long-term storage.

【0003】例えば、特許第2732067号公報に
は、第二鉄イオンを安定剤として含有し、かつpH1.
5以下であるケイ酸溶液からなる水処理用凝集剤が開示
されている。この公報において開示されている凝集剤
は、水ガラスを酸性溶液に溶解させて得られるケイ酸溶
液を重合させた後、塩化第二鉄をはじめとする鉄塩を添
加することによって安定化を図るものである。
[0003] For example, Japanese Patent No. 2,732,067 discloses that ferric ion is contained as a stabilizer and pH 1.
A coagulant for water treatment comprising a silicic acid solution of 5 or less is disclosed. The coagulant disclosed in this publication aims to stabilize by polymerizing a silicic acid solution obtained by dissolving water glass in an acidic solution, and then adding an iron salt such as ferric chloride. Things.

【0004】また、特許第2759853号公報には、
アルカリ金属ケイ酸塩の水溶液に脱アルカリ金属処理を
施した後、これを意図的にゲル化させ、再び液状化させ
て得られる凝集剤が開示されている。ここで明らかにさ
れている凝集剤は、アルカリ金属濃度を低減させたケイ
酸溶液のpHをいったん中性付近にすることによりゲル
化させ、再び液状化させることで長期保存を可能にした
ものである。
[0004] Also, Japanese Patent No. 2759853 discloses that
An aggregating agent obtained by subjecting an aqueous solution of an alkali metal silicate to a de-alkali metal treatment, and then intentionally gelling and liquefying the aqueous solution is disclosed. The coagulant disclosed here enables long-term storage by allowing the silicic acid solution with reduced alkali metal concentration to gel once by bringing the pH to near neutrality and then liquefying again. is there.

【0005】[0005]

【発明が解決しようとする課題】しかし本発明者がこれ
らの技術を詳細に検討したところ、以下のような問題点
があることが判明した。
However, when the present inventor studied these techniques in detail, it was found that there were the following problems.

【0006】特許第2732067号において開示され
ている重合ケイ酸溶液の製造方法は、アルカリ金属ケイ
酸溶液を酸性溶液中に滴下するというものであるが、ア
ルカリ金属ケイ酸溶液中に多量にアルカリ金属を含有し
ているため、SiO2濃度、温度、pHなどに細心の注
意を払わなければ製造中にゲル化しやすいという問題点
がある。またアルカリ金属ケイ酸溶液をゲル化しないよ
うにゆっくりと滴下しなければならないので、重合反応
に長時間要するという問題点もある。
[0006] The method for producing a polymerized silicic acid solution disclosed in Japanese Patent No. 273,067 is to drop an alkali metal silicic acid solution into an acidic solution. Therefore, there is a problem that the gelation is apt to occur during the production unless careful attention is paid to the SiO 2 concentration, temperature, pH and the like. Further, since the alkali metal silicic acid solution must be slowly dropped so as not to gel, there is also a problem that the polymerization reaction requires a long time.

【0007】一方、特許第2759853号において開
示されている重合ケイ酸溶液の製造方法は、脱アルカリ
金属処理を施した水ガラスを重合させいったんゲル化さ
せた後、加熱することによって再溶解させ安定状態の重
合ケイ酸溶液を得るものであるが、三段階にわたる製造
工程を必要とすることから、操作が非常に煩雑であり製
造コストも高くなる。また、重合装置内でいったんゲル
化させる工程を経るとなると、機器の取り扱い上の問題
があり、工業的に生産することは困難である。
On the other hand, in the method for producing a polymerized silicic acid solution disclosed in Japanese Patent No. 2759853, water glass subjected to a dealkalized metal treatment is polymerized, gelled once, and then redissolved by heating to stabilize it. Although a polymerized silicic acid solution in a state is obtained, the operation is very complicated and the production cost is high because three stages of production steps are required. Further, once the gelation step is performed in the polymerization apparatus, there is a problem in handling the equipment, and it is difficult to industrially produce the equipment.

【0008】本発明は、以上の様な問題点に鑑みなされ
たものであり、その目的は、製造中のゲル化が起こりに
くく、さらに重合反応に要する時間を短くすることがで
きる重合ケイ酸溶液の製造方法を提供するものである。
[0008] The present invention has been made in view of the above problems, and an object of the present invention is to provide a polymerized silicic acid solution capable of hardly causing gelation during production and shortening the time required for the polymerization reaction. Is provided.

【0009】[0009]

【課題を解決するための手段】以上のような従来技術の
状況に鑑み、種々研究を重ねた結果、本発明者は下記の
手段により前記の問題を解決し、本発明を完成させた。
In view of the state of the prior art as described above, as a result of various studies, the present inventor has solved the above-mentioned problems by the following means and completed the present invention.

【0010】すなわち、本発明は、Siとアルカリ金属
Xのモル比Si/Xが10〜40であるケイ酸水溶液と
酸性溶液を一気に混合し、pH5〜9の領域で重合反応
を行い、さらに酸性溶液を添加しpHを1〜4に調整す
ることを第一の特徴とする重合ケイ酸溶液の製造方法で
あり、前記ケイ酸水溶液のSiO2濃度が2〜20重量
%であることを第二の特徴とし、前記重合ケイ酸溶液の
SiO2濃度が1〜10重量%であることを第三の特徴
とする。
That is, according to the present invention, an aqueous solution of silicic acid having a molar ratio of Si to alkali metal X of 10 to 40 and an acidic solution are mixed at once, and a polymerization reaction is carried out in a pH range of 5 to 9; A method for producing a polymerized silicic acid solution characterized by adding a solution to adjust the pH to 1 to 4, wherein the SiO 2 concentration of the aqueous solution of silicic acid is 2 to 20% by weight. The third feature is that the SiO 2 concentration of the polymerized silicic acid solution is 1 to 10% by weight.

【0011】[0011]

【発明の実施の形態】以下、本発明における重合ケイ酸
溶液の製造方法を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a polymerized silicic acid solution according to the present invention will be described in detail.

【0012】本発明で使用されるケイ酸水溶液は、水ガ
ラス原液を水で希釈したものであり、好適にはSiO2
濃度2〜20重量%となるように調整したものを用い
る。SiO2濃度が2重量%より小さくなると重合に長
時間必要となる傾向があり、20重量%を越えると重合
中にゲル化しやすくなり、製造が困難になりやすいから
である。
[0012] silicate aqueous solution used in the present invention, the water glass stock is obtained by dilution with water, preferably SiO 2
The one adjusted to have a concentration of 2 to 20% by weight is used. If the SiO 2 concentration is less than 2% by weight, the polymerization tends to be required for a long time, and if it exceeds 20% by weight, gelation is apt to occur during the polymerization, and the production becomes difficult.

【0013】ケイ酸水溶液におけるSiとアルカリ金属
Xのモル比Si/Xは10〜40とすることが必要であ
る。ここで、Xとはケイ酸水溶液中に含まれるアルカリ
金属を指し、Na,K等が挙げられる。このモル比Si
/Xが10より小さい領域では、アルカリ金属の含有量
が多いため重合ケイ酸の製造中にゲル化しやすくなり、
また、40を越える領域まで脱アルカリ金属処理を施す
と、製造中のゲル化を抑える効果はあるものの、重合ケ
イ酸製造時における反応時間が長くなりコストアップに
つながるからである。
The molar ratio Si / X of Si and alkali metal X in the aqueous solution of silicic acid must be 10 to 40. Here, X indicates an alkali metal contained in the aqueous solution of silicic acid, such as Na or K. This molar ratio Si
In a region where / X is smaller than 10, the alkali metal content is large, so that gelation is likely to occur during the production of the polymerized silicic acid,
Further, if the alkali metal treatment is performed up to a region exceeding 40, although there is an effect of suppressing gelation during the production, the reaction time during the production of the polymerized silicic acid becomes longer, which leads to an increase in cost.

【0014】また、ケイ酸水溶液のpHは特に限定され
ないが、pH9以上のものを用いることが好ましい。
Although the pH of the aqueous solution of silicic acid is not particularly limited, it is preferable to use one having a pH of 9 or more.

【0015】前記モル比を10〜40にする方法すなわ
ち脱アルカリ金属処理の方法としては、特に限定されな
いが、電気透析法が好適であり、この方法によればケイ
酸水溶液のpHを9以上とすることができる。電気透析
法については、陽極と陰極の間に陽イオン交換膜と陰イ
オン交換膜を交互にならべて構成される電気透析装置を
用いる。脱塩室にケイ酸溶液を、濃縮室に電解質水溶液
をそれぞれ供給する。さらに、両極に直流電流を通電す
ると、脱塩室中のアルカリ金属イオンは陽イオン交換膜
を介して隣接する濃縮室へ透過し、脱アルカリ金属処理
されたケイ酸水溶液が得られる。
The method for adjusting the molar ratio to 10 to 40, that is, the method for removing alkali metals, is not particularly limited, but electrodialysis is preferred. According to this method, the pH of the aqueous solution of silicic acid is adjusted to 9 or more. can do. For the electrodialysis method, an electrodialysis apparatus is used in which a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode and a cathode. The silicic acid solution is supplied to the desalting chamber, and the aqueous electrolyte solution is supplied to the concentrating chamber. Further, when a direct current is applied to both electrodes, the alkali metal ions in the desalting chamber permeate through the cation exchange membrane to the adjacent concentrating chamber, and a silicic acid aqueous solution treated with the alkali metal is obtained.

【0016】本発明に使用される酸性溶液は特に限定さ
れないが、塩酸、硫酸等のpH1以下の強酸を使用する
のが好ましい。
The acidic solution used in the present invention is not particularly limited, but it is preferable to use a strong acid having a pH of 1 or less, such as hydrochloric acid or sulfuric acid.

【0017】本発明における重合ケイ酸溶液は、ケイ酸
水溶液と前記酸性溶液を最初に一括(一気に)混合し、
pH5〜9の領域で、かつ通常は室温中で重合反応行う
ことによって製造される。pHが9より大きいかもしく
は5より小さい領域になると、ケイ酸の反応性が低く、
重合反応が進行しにくい傾向がある。理由は定かではな
いが、pH5〜9という領域においてケイ酸の重合反応
が促進され、前記従来技術の製法に比較して極めて短い
重合時間で重合ケイ酸溶液を得ることができる。
In the present invention, the polymerized silicic acid solution is prepared by mixing the aqueous solution of silicic acid and the acidic solution at once (at once).
It is produced by conducting a polymerization reaction in a pH range of 5 to 9 and usually at room temperature. When the pH is in the range of greater than 9 or less than 5, the reactivity of silicic acid is low,
There is a tendency that the polymerization reaction does not easily proceed. Although the reason is not clear, the polymerization reaction of silicic acid is accelerated in the pH range of 5 to 9, and a polymerized silicic acid solution can be obtained in a very short polymerization time as compared with the above-mentioned conventional production method.

【0018】こうして得られた重合ケイ酸溶液に酸性溶
液を添加し、pHを1〜4に調整する。pHを酸性領域
にすることによって、ケイ酸の重合反応の進行を抑制す
るためである。pHが1より小さいかもしくは4より大
きい領域では、徐々に重合反応が進行し保存安定性が悪
化する。
An acidic solution is added to the polymerized silicic acid solution thus obtained, and the pH is adjusted to 1 to 4. This is because the progress of the polymerization reaction of silicic acid is suppressed by setting the pH to an acidic range. In the range where the pH is lower than 1 or higher than 4, the polymerization reaction progresses gradually and storage stability deteriorates.

【0019】本発明に使用されるpH調整用の酸性溶液
は特に限定されないが、塩酸、硫酸等のpH1以下の強
酸を使用するのが好ましい。
The acidic solution for pH adjustment used in the present invention is not particularly limited, but it is preferable to use a strong acid having a pH of 1 or less such as hydrochloric acid and sulfuric acid.

【0020】本発明によって製造される重合ケイ酸溶液
のSiO2濃度は、1〜10重量%とすることが好まし
い。SiO2濃度が1重量%より小さくなると水の凝集
処理における凝集力が小さすぎて実用に供さないし、1
0重量%を超えるとゲル化しやすくなり、長期間の保存
が困難となる。
The SiO 2 concentration of the polymerized silicic acid solution produced according to the present invention is preferably 1 to 10% by weight. If the SiO 2 concentration is less than 1% by weight, the cohesive force in the coagulation treatment of water is too small to be practical.
If the content exceeds 0% by weight, gelation is likely to occur, and long-term storage becomes difficult.

【0021】[0021]

【実施例】以下に本発明の実施例を説明するが、本発明
はこれらの実施例に限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0022】尚、本実施例における極限粘度の値は、ウ
ベローデ粘度計を用いて測定した比粘度からHuggi
ns式を用いて算出した。
The value of the intrinsic viscosity in the present embodiment is obtained from the specific viscosity measured by using an Ubbelohde viscometer based on the Huggi value.
It was calculated using the ns formula.

【0023】(実施例1)SiO2濃度7重量%のケイ
酸ソーダ水溶液を脱ナトリウム処理して得られたSiO
2濃度5.26重量%、Si/Naのモル比11.3、
pH11.5のケイ酸水溶液をビーカーに200ml分
取し、1.3N−HCl19.5mlを一気に加えpH
を7.5とし、室温中で6分間撹拌混合した。さらに
1.3N−HCl19.5ml、水道水239mlを添
加し、SiO2濃度2.35重量%、Si/Naのモル
比11.3、pH1.3、極限粘度0.1の重合ケイ酸
溶液478mlを得た。
Example 1 A sodium silicate aqueous solution having a SiO 2 concentration of 7% by weight was subjected to sodium removal treatment to obtain a SiO 2 solution.
2 concentration 5.26 wt%, Si / Na mole ratio 11.3,
200 ml of an aqueous solution of silicic acid having a pH of 11.5 was dispensed into a beaker, and 19.5 ml of 1.3N HCl was added at a stretch to adjust the pH.
Was adjusted to 7.5, and the mixture was stirred and mixed at room temperature for 6 minutes. Further, 19.5 ml of 1.3N HCl and 239 ml of tap water were added, and 478 ml of a polymerized silicic acid solution having an SiO 2 concentration of 2.35% by weight, a molar ratio of Si / Na of 11.3, a pH of 1.3, and an intrinsic viscosity of 0.1 were added. I got

【0024】(実施例2)SiO2濃度7重量%のケイ
酸ソーダ水溶液を脱ナトリウム処理して得られたSiO
2濃度4.87重量%、Si/Naのモル比35.3、
pH11.3のケイ酸溶液をビーカーに200ml分取
し、1.3N−HCl10mlを一気に加え、pH7.
5とした溶液を室温中で17分間撹拌混合した。さらに
1.3N−HCl10ml、水道水194mlを添加
し、SiO2濃度2.35重量%、Si/Naのモル比
35.3、pH1.5、極限粘度0.1の重合ケイ酸溶
液414mlを得た。
(Example 2) A sodium silicate aqueous solution having an SiO 2 concentration of 7% by weight was subjected to sodium removal treatment to obtain a SiO 2 solution.
2 concentration 4.87% by weight, molar ratio of Si / Na 35.3,
200 ml of the pH 11.3 silicic acid solution was placed in a beaker, and 10 ml of 1.3N HCl was added at a time to give a pH of 7.5.
The solution prepared as No. 5 was stirred and mixed at room temperature for 17 minutes. Further, 10 ml of 1.3 N HCl and 194 ml of tap water were added to obtain 414 ml of a polymerized silicic acid solution having a SiO 2 concentration of 2.35% by weight, a molar ratio of Si / Na of 35.3, a pH of 1.5, and an intrinsic viscosity of 0.1. Was.

【0025】(比較例1)水ガラス原液4号品(日本化
学工業製)を水道水で希釈し、SiO2濃度5.26重
量%、Si/Naのモル比4.7、pH11.5のケイ
酸水溶液200mlを作成し、このケイ酸水溶液を1.
3N−HCl100ml中に一気に加え、室温下で撹拌
混合したところ、直後にpHが9.5になった時点でゲ
ル化した。
(Comparative Example 1) Water glass stock solution No. 4 (manufactured by Nippon Chemical Industry) was diluted with tap water to obtain an SiO 2 concentration of 5.26% by weight, a molar ratio of Si / Na of 4.7, and a pH of 11.5. 200 ml of a silicic acid aqueous solution was prepared, and this silicic acid aqueous solution was used for 1.
When the mixture was added to 100 ml of 3N-HCl at a stretch and stirred and mixed at room temperature, the mixture was gelled immediately after the pH reached 9.5.

【0026】(比較例2)実施例1と同様の方法で得ら
れたSiO2濃度5.26重量%、Si/Naのモル比
11.3、pH11.5のケイ酸水溶液200mlを、
1.3N−HCl200ml中に30分間かけてゆっく
りと滴下し、さらに室温下で30分間撹拌混合した後、
水78.2mlを加え、SiO2濃度2.35重量%、
Si/Naのモル比11.3、pH1.3、極限粘度
0.04の重合ケイ酸溶液478mlを得た。
Comparative Example 2 200 ml of a silicic acid aqueous solution having a SiO 2 concentration of 5.26% by weight, a molar ratio of Si / Na of 11.3, and a pH of 11.5, obtained in the same manner as in Example 1, was prepared.
1.3N-HCl was slowly dropped in 200 ml over 30 minutes, and further stirred and mixed at room temperature for 30 minutes.
78.2 ml of water was added, and the SiO 2 concentration was 2.35% by weight.
478 ml of a polymerized silicic acid solution having a Si / Na molar ratio of 11.3, a pH of 1.3, and an intrinsic viscosity of 0.04 were obtained.

【0027】(安定性試験)重合ケイ酸溶液の保存安定
性を評価するために、実施例1、2および比較例2で得
た各重合ケイ酸溶液を25℃の恒温槽中に保存し、ゲル
化時間及び一定時間毎の極限粘度を測定した。尚、ゲル
化時間は重合ケイ酸溶液がゼリー状に固まり流動性を失
った時点までの時間とした。この結果を表1に示し、さ
らに図1にグラフ化した。
(Stability test) In order to evaluate the storage stability of the polymerized silicic acid solution, each of the polymerized silicic acid solutions obtained in Examples 1 and 2 and Comparative Example 2 was stored in a thermostat at 25 ° C. The gelation time and the intrinsic viscosity at regular intervals were measured. The gelation time was a time until the polymerized silicic acid solution solidified in a jelly state and lost the fluidity. The results are shown in Table 1 and further graphed in FIG.

【0028】[0028]

【表1】 [Table 1]

【0029】表1および図1で示されるように、実施例
1および2で得られた重合ケイ酸溶液は、比較例2と同
等以上の優れた保存安定性を示した。
As shown in Table 1 and FIG. 1, the polymerized silicic acid solutions obtained in Examples 1 and 2 exhibited excellent storage stability equal to or higher than Comparative Example 2.

【0030】(凝集力試験)実施例1、2および比較例
2で得られた各重合ケイ酸溶液100mlにそれぞれ塩
化第二鉄3.53gを添加して凝集剤を調製し、参考ま
でに凝集力をジャーテストにより評価した。水道水にカ
オリンを添加して原水濁度100度としたものを処理対
象原水とし、凝集剤添加率0.5ml/L、水温21
℃、120rpm3分の条件で攪拌し、フロック出現時
間、フロック粒径及び上澄み液濁度を測定した。これら
の試験の結果を表2に示す。
(Coagulation test) 3.53 g of ferric chloride was added to 100 ml of each of the polymerized silicic acid solutions obtained in Examples 1 and 2 and Comparative Example 2 to prepare a coagulant, which was coagulated for reference. Force was assessed by jar test. Raw water having a turbidity of 100 degrees by adding kaolin to tap water is used as raw water to be treated, a coagulant addition rate of 0.5 ml / L, and a water temperature of 21.
The mixture was stirred at a temperature of 120 ° C. for 3 minutes, and the floc appearance time, floc particle size, and supernatant turbidity were measured. Table 2 shows the results of these tests.

【0031】[0031]

【表2】 [Table 2]

【0032】表2より、本発明で得られた重合ケイ酸溶
液を凝集剤として使用した場合、フロック出現時間、フ
ロック粒径および上澄液濁度の各項目について、優れた
凝集力を有することも確認された。
From Table 2, it can be seen that when the polymerized silicic acid solution obtained in the present invention is used as a flocculant, the floc appearance time, floc particle size and supernatant turbidity have excellent flocculating power. Was also confirmed.

【0033】[0033]

【発明の効果】本発明によると、重合ケイ酸溶液の製造
過程におけるゲル化が起こりにくく、しかも極めて短時
間で重合ケイ酸溶液を得ることができる。また、中性領
域付近で重合反応を行うことによって製造中の安全性も
確保され、保存安定性に優れた重合ケイ酸溶液を容易に
量産化することが可能となり、工業的にも非常に有益な
方法である。
According to the present invention, gelation hardly occurs in the production process of the polymerized silicic acid solution, and the polymerized silicic acid solution can be obtained in a very short time. In addition, by performing a polymerization reaction near the neutral region, safety during production is secured, and it is possible to easily mass-produce a polymerized silicic acid solution having excellent storage stability, which is very useful industrially. It is a way.

【図面の簡単な説明】[Brief description of the drawings]

【図1】重合ケイ酸溶液の経過時間と極限粘度の関係を
示したグラフである。
FIG. 1 is a graph showing the relationship between elapsed time and intrinsic viscosity of a polymerized silicic acid solution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Siとアルカリ金属Xのモル比Si/X
が10〜40であるケイ酸水溶液と酸性溶液を一気に混
合し、pH5〜9の領域で重合反応を行い、さらに酸性
溶液を添加しpHを1〜4に調整することを特徴とする
重合ケイ酸溶液の製造方法。
1. The molar ratio of Si to alkali metal X, Si / X.
A polymerized silicic acid characterized in that an aqueous solution of silicic acid having a pH of 10 to 40 and an acidic solution are mixed at once, and a polymerization reaction is carried out in a pH range of 5 to 9, and the pH is adjusted to 1 to 4 by further adding an acidic solution. Method for producing a solution.
【請求項2】 前記ケイ酸水溶液のSiO2濃度が2〜
20重量%であることを特徴とする請求項1記載の重合
ケイ酸溶液の製造方法。
2. The aqueous solution of silicic acid has a SiO 2 concentration of 2 to 2.
The method according to claim 1, wherein the amount is 20% by weight.
【請求項3】 前記重合ケイ酸溶液のSiO2濃度が1
〜10重量%であることを特徴とする請求項1又は2記
載の重合ケイ酸溶液の製造方法。
3. The polymerized silicic acid solution has an SiO 2 concentration of 1
The method for producing a polymerized silicic acid solution according to claim 1 or 2, wherein the amount is 10 to 10% by weight.
JP2000141271A 2000-05-15 2000-05-15 Manufacturing method of polysilicic acid solution Withdrawn JP2001322810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000141271A JP2001322810A (en) 2000-05-15 2000-05-15 Manufacturing method of polysilicic acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000141271A JP2001322810A (en) 2000-05-15 2000-05-15 Manufacturing method of polysilicic acid solution

Publications (1)

Publication Number Publication Date
JP2001322810A true JP2001322810A (en) 2001-11-20

Family

ID=18648408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000141271A Withdrawn JP2001322810A (en) 2000-05-15 2000-05-15 Manufacturing method of polysilicic acid solution

Country Status (1)

Country Link
JP (1) JP2001322810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009586A1 (en) * 2003-07-25 2005-02-03 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009586A1 (en) * 2003-07-25 2005-02-03 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
KR100741157B1 (en) * 2003-07-25 2007-07-20 케이이치로 아사오카 Coagulant, process for producing the same, and method of coagulation with the coagulant
US7666916B2 (en) 2003-07-25 2010-02-23 Keiichiro Asaoka Flocculant, manufacturing method therefor, and flocculation method using the flocculant

Similar Documents

Publication Publication Date Title
JPS63130189A (en) Water treatment method and flocculating agent used therefor
JP2003038908A (en) Method for manufacturing flocculating agent for water treatment
KR0142224B1 (en) Flocculant for water treatment and method for producing it
CN112794420A (en) Efficient low-cost fluorine removal agent and deep fluorine removal method
CN109292936B (en) Polyaluminium titanium chloride inorganic composite coagulant, and preparation method and application thereof
JP6860196B2 (en) Method for producing basic aluminum chloride solution
JP2001322810A (en) Manufacturing method of polysilicic acid solution
JP4375880B2 (en) Flocculant for water treatment
JP4030729B2 (en) Method for producing flocculant
JP3700892B2 (en) Method for producing flocculant
JP2732067B2 (en) Coagulant for water treatment
JP2000154013A (en) Production of activated silica
JP4234288B2 (en) Flocculant for water treatment
JP2000202207A (en) Coagulant for water treatment and production thereof
CN106587300A (en) Preparation method of polysilicate aluminum and titanium-starch composite flocculant
JPH11216478A (en) Flocculation treatment of water and inorganic flocculant
JP6814462B2 (en) Method for Producing Sulfate-Containing Basic Aluminum Chloride Solution
JP3569731B2 (en) Method for removing fluorine ions and remover
JP2000308803A (en) Flocculant for water treatment and its production and flocculating method for water
JP4353983B2 (en) Water treatment flocculant manufacturing equipment
JP2003251104A (en) Inorganic flocculant for water treatment and usage therefor
JPS62237993A (en) Method for flocculating and sedimenting silver halide photographic photosensitive emulsion
JPS60251119A (en) Manufacture of silica sol of large particle size
KR102301288B1 (en) Method for producing Poly aluminum magnesium sulfate based flocculant for water treatment and aqueous solution for Poly aluminum magnesium sulfate based flocculant
WO2019051743A1 (en) Method for preparing polyaluminum chloride-chitosan composite flocculant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807