JP2001316774A - Heat resistant ferritic stainless steel - Google Patents

Heat resistant ferritic stainless steel

Info

Publication number
JP2001316774A
JP2001316774A JP2000136359A JP2000136359A JP2001316774A JP 2001316774 A JP2001316774 A JP 2001316774A JP 2000136359 A JP2000136359 A JP 2000136359A JP 2000136359 A JP2000136359 A JP 2000136359A JP 2001316774 A JP2001316774 A JP 2001316774A
Authority
JP
Japan
Prior art keywords
steel
temperature
mass
content
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000136359A
Other languages
Japanese (ja)
Other versions
JP4369596B2 (en
Inventor
Manabu Oku
学 奥
Yoshiyuki Fujimura
佳幸 藤村
Toshiro Nagoshi
敏郎 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2000136359A priority Critical patent/JP4369596B2/en
Publication of JP2001316774A publication Critical patent/JP2001316774A/en
Application granted granted Critical
Publication of JP4369596B2 publication Critical patent/JP4369596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide heat resistant steel suitable for the exhaust gas pipe of a gas turbine in a class of the combustion temperature of 1,400 to 1,500 deg.C. SOLUTION: This heat resistant ferritic stainless steel excellent in high temperature strength, low temperature toughness and workability has a chemical composition containing, by mass, <=0.03% C, <=1.5% Si, <=1.5% Mn, <=0.6% Ni, 11 to 19% Cr, <=0.3% Nb, 0.1 to 0.5% V and 0.02 to 0.07% N and further containing, at need, one or more kinds selected from Cu, Mo, Ti, W and Zr in the range of <=3% in total, and the balance Fe with inevitable impurities, has a metallic structure in which the ratio of a martensitic phase is 0 to 30 vol.% and particularly suitable for the exhaust gas passage member of a gas turbine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発電プラントなど
の事業用ガスタービンや産業用の小型ガスタービンなど
の出側以降の排気ガス経路部材、例えば排気ディフュー
ザー、排気ダクト、サイレンサー、脱硝装置などの耐熱
部位に適する、耐熱性フェライト系ステンレス鋼材に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas path member such as an exhaust diffuser, an exhaust duct, a silencer, a denitration device, etc., provided on an outlet side of an industrial gas turbine such as a power plant or a small gas turbine for industrial use. The present invention relates to a heat-resistant ferritic stainless steel material suitable for a heat-resistant part.

【0002】[0002]

【従来の技術】発電プラントは、高い熱効率と優れた環
境特性およびプラント運用性が要求されており、LNG
コンバインドサイクル発電プラントがこれらを満足する
システムとして、各国で建設が進められている。近年、
プラントの発電効率をさらに向上させるため、ガスター
ビンの燃焼温度を従来の1300℃級から1400〜1500℃級ま
で上昇させる計画が推進されつつある。
2. Description of the Related Art Power plants are required to have high thermal efficiency, excellent environmental characteristics and plant operability.
Construction is being promoted in various countries as a system in which a combined cycle power plant satisfies these requirements. recent years,
In order to further improve the power generation efficiency of the plant, a plan to raise the combustion temperature of the gas turbine from the conventional 1300 ° C class to the 1400 to 1500 ° C class is being promoted.

【0003】ガスタービンの出側以降の排気ガス経路部
材、例えば、排気ガスダクト部や排気サイレンサー部の
ガス温度は、従来の1300℃級プラントでは、最高でも60
0〜700℃程度であった。これらの部材のうち、600℃以
下の比較的温度の低い部分にはSUH409鋼が使用されてき
た。一方、温度の高い部分には特開平6−228715号公報
や特開平6−323108号公報に開示されているような、14C
r−Si−Nbを基本組成とするフェライト系ステンレス鋼
が使用されてきた。ところが、1400〜1500℃級の高温燃
焼型プラントでは、排気ガス経路部材の温度は650〜800
℃程度にまで上昇することが予想される。そうなると、
従来の材料および構造のままでは、長時間の使用によっ
て、熱疲労破壊,高温高サイクル疲労破壊,クリープ破
壊等の種々の破壊が生じ易くなる。また、長時間の加熱
によって組織が大きく変化すると、例えば脆性的な析出
物の生成等によって使用後の低温靭性が低下し、稼働時
に脆性破壊を起こし易くなるといったことも考えられ
る。
[0003] The gas temperature of the exhaust gas path members after the outlet side of the gas turbine, for example, the exhaust gas duct section and the exhaust silencer section, is at most 60 in a conventional 1300 ° C-class plant.
It was about 0 to 700 ° C. Among these members, SUH409 steel has been used for a relatively low temperature portion of 600 ° C. or lower. On the other hand, the portion having a high temperature, such as disclosed in JP-A-6-228715 and JP-A-6-323108,
Ferritic stainless steels based on r-Si-Nb have been used. However, in a high-temperature combustion type plant of 1400-1500 ° C class, the temperature of the exhaust gas path member is 650-800
It is expected to rise to about ° C. When that happens,
If the conventional materials and structures are used, various types of fractures such as thermal fatigue fracture, high-temperature high-cycle fatigue fracture, and creep fracture are likely to occur over a long period of use. In addition, when the structure is significantly changed by heating for a long time, it is considered that low-temperature toughness after use is reduced due to, for example, generation of brittle precipitates, and brittle fracture is likely to occur during operation.

【0004】これらの各種破壊を防止する手段として、
i)排気ガス経路部の設計変更を行うこと、あるいは、i
i)材料をより耐熱性および組織安定性の優れたものに変
更することが考えられる。
[0004] As means for preventing these various destructions,
i) change the design of the exhaust gas path, or
i) It is conceivable to change the material to one having more excellent heat resistance and structural stability.

【0005】i)のような設計変更は、基本的には板厚を
厚くし、応力集中部には補強材を用いるよう対策を行う
ことになるが、その場合には材料総重量増加によるコス
ト増やダクト部組み立て時の溶接施工の負荷が大きくな
る。さらに使用材料の厚肉化は当該部位での熱損失の増
大を招くことから、高効率発電に支障をきたす要因とも
なり得る。
In the case of a design change such as i), a measure is basically taken to increase the thickness of the sheet and to use a reinforcing material in the stress concentration portion. And the load of welding work when assembling the duct section increases. Further, the increase in the thickness of the used material causes an increase in heat loss at the site, which may be a factor that hinders high-efficiency power generation.

【0006】一方、ii)のような材料面での改善として
は、従来の低Crフェライト系ステンレス鋼に代えてマル
テンサイト系ステンレス鋼やオーステナイト系ステンレ
ス鋼の適用が考えられる。しかし、マルテンサイト系ス
テンレス鋼は強度が高いものの加工性に劣るという欠点
がある。また、焼き戻しによって加工性を改善したとし
ても、650〜800℃という高温環境での使用は、フェライ
トと炭化物への分解を招き、さらにはオーステナイト相
の生成を招く恐れがある。前者の場合にはフェライト系
ステンレス鋼と同程度の強度しか期待できず、後者の場
合には相変態による膨張・収縮と熱による膨張・収縮が
重なって部材が局所的に大きく変形する危険性もある。
この点は、従来から高温高強度フェライト系耐熱鋼とし
て知られる2.25Cr系鋼,9Cr系鋼および12Cr系鋼を用い
ても同様である。また、オーステナイト系ステンレス鋼
は、フェライト系ステンレス鋼に比べて熱膨張係数が大
きいため、毎日稼働と停止を繰り返す発電プラントで
は、溶接部などの応力集中部で熱疲労破壊が懸念され、
結果として排気ガス経路部の設計変更も必要になると考
えられる。さらに、オーステナイト系ステンレス鋼は一
般に高価であるため、建設コストの増大を招くことにも
なる。
On the other hand, as an improvement in the material aspect as in ii), it is conceivable to use a martensitic stainless steel or an austenitic stainless steel instead of the conventional low Cr ferritic stainless steel. However, martensitic stainless steel has high strength but has a drawback of poor workability. Further, even if workability is improved by tempering, use in a high temperature environment of 650 to 800 ° C. may cause decomposition into ferrite and carbide, and may further cause formation of an austenite phase. In the former case, only the same strength as that of ferritic stainless steel can be expected, and in the latter case, there is the danger that the expansion and contraction due to phase transformation and the expansion and contraction due to heat will overlap and the member will be locally deformed significantly. is there.
The same applies to the use of 2.25Cr-based steel, 9Cr-based steel, and 12Cr-based steel conventionally known as high-temperature, high-strength ferritic heat-resistant steel. In addition, austenitic stainless steel has a larger thermal expansion coefficient than ferritic stainless steel, so in power plants that repeatedly start and stop operation every day, there is a concern that thermal fatigue fracture may occur in stress-concentrated parts such as welds.
As a result, it is considered that the design of the exhaust gas path must be changed. Further, austenitic stainless steels are generally expensive, which leads to an increase in construction costs.

【0007】[0007]

【発明が解決しようとする課題】以上のように、現状で
は1400〜1500℃級コンバインド発電プラントの建設に
は、排気ガス経路部において従来の1300℃級からの設計
変更、すなわち、部材の肉厚をより厚くすることを基本
とした設計変更の必要が十分に考えられる。その際、材
料面での改善としては、既存の鋼種の中から耐熱性,加
工性等の特性ができるだけ優れたものを選択すること
で、発電効率の低下,建設コストの上昇および現場施工
性の悪化を最小限とすることにとどまるものである。
As described above, at present, the construction of a 1400 to 1500 ° C-class combined power generation plant requires a change in the design of the exhaust gas path section from the conventional 1300 ° C-class, It is sufficiently considered that a design change based on making the thickness larger is necessary. At that time, in terms of materials, the selection of existing steel grades with the best properties such as heat resistance, workability, etc. as much as possible reduces the power generation efficiency, raises construction costs, and improves on-site workability. It is only about minimizing deterioration.

【0008】従来の1300℃級の排気ガス経路部材と同程
度の肉厚の材料によって、1400〜1500℃級プラントの排
気ガス経路部を構成することが可能になれば、部材の重
量増加や溶接施工の負荷増大によるコスト増を軽減で
き、発電効率向上の阻害要因となることも解消されるで
あろう。しかし、650〜800℃という高温に曝され、かつ
機関休止時には常温に戻されるという、厳しい繰り返し
環境下での使用に耐えるだけの性能を安定して発揮し得
る信頼性の高い材料は、多くの耐熱鋼が開発されている
中にあっても、未だ特定されていないのが現状である。
すなわち、1400〜1500℃級コンバインド発電プラントの
ガスタービン排気ガス経路部材用途に適した耐熱材料に
関しては、未だ検討の余地が残っていると言える。
If it becomes possible to construct an exhaust gas path section of a 1400-1500 ° C. plant by using a material having the same thickness as that of a conventional exhaust gas path member of 1300 ° C. class, it would be necessary to increase the weight of the member and to increase welding. The increase in cost due to the increase in construction load can be reduced, and the obstacle to improving the power generation efficiency will be eliminated. However, there are many reliable materials that are exposed to high temperatures of 650 to 800 ° C and returned to room temperature when the engine is stopped, and can exhibit stable performance enough to withstand use under severe repetitive environments. Even though heat-resistant steel is being developed, it has not yet been identified.
That is, it can be said that there is still room for study on heat-resistant materials suitable for use in gas turbine exhaust gas path members of 1400-1500 ° C. combined power plants.

【0009】発電プラントに限らず、産業用小型ガスタ
ービン等、他のガスタービン用途においても上と同じこ
とが言える。つまり、ガスタービンの燃焼温度上昇に伴
い、排気ガス経路部材に要求される特性は厳しいものと
なりつつある。発明者らの検討の結果、このようなガス
タービン排ガス用途に適用し得る耐熱材料の開発におい
ては、一般的な耐熱性,加工性,溶接性等の特性を具備
させることに加え、特に高温長時間使用時のクリープ破
断強度を向上させること、および、長時間加熱後に常温
に戻した際の靱性を十分に確保することが極めて重要で
あることがわかってきた。しかも、熱膨張係数の小さい
フェライト系鋼種でこれを実現させる必要がある。
The same applies to other gas turbine applications, such as industrial small gas turbines, as well as power plants. That is, as the combustion temperature of the gas turbine rises, the characteristics required for the exhaust gas path member are becoming severe. As a result of studies by the inventors, in developing a heat-resistant material applicable to such gas turbine exhaust gas applications, in addition to having general properties such as heat resistance, workability, weldability, etc., in particular, high-temperature long It has been found that it is extremely important to improve the creep rupture strength when used for a long time and to sufficiently secure the toughness when the temperature is returned to room temperature after heating for a long time. Moreover, it is necessary to realize this with a ferritic steel type having a small coefficient of thermal expansion.

【0010】本発明は、このような要望を満足するガス
タービンの排気ガス経路部材に適用可能なフェライト系
ステンレス鋼材を提供することを目的とする。より具体
的には、現状材14Cr−Si−Nb鋼との比較において、700
℃のクリープ特性(破断強度)は1.5倍以上、加工性お
よび長時間加熱後の低温靱性は同等以上であるフェライ
ト系ステンレス鋼材の開発を目的とする。
An object of the present invention is to provide a ferritic stainless steel material applicable to an exhaust gas path member of a gas turbine satisfying such a demand. More specifically, in comparison with the current material 14Cr-Si-Nb steel, 700
The purpose is to develop a ferritic stainless steel material that has a creep characteristic (rupture strength) of 1.5 ° C or more and a workability and low-temperature toughness after long-time heating are equal to or more than that.

【0011】[0011]

【課題を解決するための手段】発明者らは、1300℃級コ
ンバインドサイクル発電プラントの排気ガスダクト材に
適するとされる14Cr−0.8〜1.2Si−0.4〜0.6Nb鋼を用い
て、6OO〜8OO℃における時効処理後の析出形態を詳細に
調査した。その結果、Nb−Si添加鋼は、時効前にはNbが
固溶状態にあり固溶強化により高温強度が改善されるこ
と、時効初期には一部のNbは金属間化合物として析出
し、析出強化により高温強度が保たれること、長時間時
効後には析出強化による強度上昇分が消失していき高温
強度が低下することが明らかになった。さらに発明者ら
は、フェライト系ステンレス鋼の長時間時効後の高温強
度に及ぼす合金元素の影響を調査・研究した結果、Nと
Vを所定の量だけ添加することにより、Nb−Si添加鋼よ
りも析出強化の消失による高温強度の低下が少なく、優
れた高温特性を維持するようになることがわかった。ま
た、Nの上限値を厳密に規定することにより、優れた高
温強度を有しながら、なおかつ加工性・靭性をも具備し
た鋼材が得られることを知った。本発明はこれらの知見
に基づいて完成したものである。
Means for Solving the Problems The inventors of the present invention used 14Cr-0.8-1.2Si-0.4-0.6Nb steel, which is considered to be suitable for an exhaust gas duct material of a 1300 ° C-class combined cycle power plant. The precipitation morphology after aging treatment in was investigated in detail. As a result, Nb-Si-added steel shows that Nb is in a solid solution state before aging and the high-temperature strength is improved by solid solution strengthening.In the early stage of aging, some Nb precipitates as an intermetallic compound and precipitates. It was clarified that the high-temperature strength was maintained by the strengthening, and that after the long-term aging, the strength increase due to the precipitation strengthening disappeared and the high-temperature strength decreased. Furthermore, the present inventors have investigated and studied the effects of alloying elements on the high-temperature strength of ferritic stainless steel after long-term aging, and as a result, by adding a predetermined amount of N and V, the Nb-Si-added steel Also, it was found that the high-temperature strength was hardly reduced due to the disappearance of the precipitation strengthening, and excellent high-temperature characteristics were maintained. In addition, it has been found that by strictly defining the upper limit of N, a steel material having excellent high-temperature strength and also having workability and toughness can be obtained. The present invention has been completed based on these findings.

【0012】すなわち前記目的は、質量%で、C:0.03
%以下,Si:1.5%以下,Mn:1.5%以下,Ni:0.6%以
下,Cr:11〜19%,Nb:0.3%以下,V:0.1〜0.5%,
N:0.02〜0.07%を含み、さらに必要に応じてCu,Mo,
Ti,W,Zrの1種または2種以上を合計3質量%以下の
範囲で含み、残部がFeおよび不可避的不純物からなる化
学組成を有し、マルテンサイト相が0〜30体積%である
金属組織を有する、高温強度,低温靱性および加工性に
優れた耐熱性フェライト系ステンレス鋼材、特にガスタ
ービンの排気ガス経路部材用鋼材によって達成される。
[0012] That is, the above-mentioned object is, in mass%, C: 0.03
%, Si: 1.5% or less, Mn: 1.5% or less, Ni: 0.6% or less, Cr: 11 to 19%, Nb: 0.3% or less, V: 0.1 to 0.5%,
N: 0.02 to 0.07%, and if necessary, Cu, Mo,
A metal containing one or more of Ti, W, and Zr in a total range of 3% by mass or less, a balance having a chemical composition of Fe and unavoidable impurities, and a martensite phase of 0 to 30% by volume. This is achieved by a heat-resistant ferritic stainless steel material having a structure and excellent in high-temperature strength, low-temperature toughness, and workability, particularly a steel material for an exhaust gas path member of a gas turbine.

【0013】[0013]

【発明の実施の形態】図1に、フェライト系ステンレス
鋼の高温強度特性およぴ靭性に及ぼすN量の影響を把握
するため、12〜15Cr−0.05Nb−0.25V鋼を基本組成とし
てN量を変えた場合の700℃×1000時間のクリープ破断
応力、および室温における伸びを示す。ここで、クリー
プ破断応力は、700℃で種々の応力でのクリープ破断試
験を行い、1000時間の破断強さを求めた結果を示したも
のである。また、室温における伸びは、板厚2.0mmの冷
延焼鈍板について室温で圧延方向に引張試験を行った場
合の伸び(%)を示したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the basic composition of 12 to 15Cr-0.05Nb-0.25V steel in order to understand the effect of N content on the high-temperature strength characteristics and toughness of ferritic stainless steel. The creep rupture stress at 700 ° C. × 1000 hours and the elongation at room temperature are shown when the temperature is changed. Here, the creep rupture stress is a value obtained by performing a creep rupture test at 700 ° C. under various stresses and obtaining a rupture strength for 1000 hours. The elongation at room temperature shows the elongation (%) when a tensile test was performed in the rolling direction at room temperature on a cold-rolled annealed sheet having a thickness of 2.0 mm.

【0014】図1からわかるように、700℃×1000時間
のクリープ破断応力は、N含有量の増加にともない急激
に上昇し、N:0.02質量%で約25N/mm2、同0.025質量%
で約27N/mm2となる。この27N/mm2の値は、上述した現状
の1300℃級発電プラント排気ガス経路の高温部で使用さ
れている14Cr−Si−Nb鋼の約1.5倍、低温部で使用され
ているSUH409鋼の3倍以上の破断応力に相当する。
As can be seen from FIG. 1, the creep rupture stress at 700 ° C. for 1000 hours sharply increases with an increase in the N content, and is about 25 N / mm 2 at 0.02 mass% and 0.025 mass% for the same.
Is about 27 N / mm 2 . The value of the 27N / mm 2 is about 1.5 times the 14Cr-Si-Nb steel used in high-temperature portion of 1300 ° C. class power plant exhaust gas path of the current situation described above, the SUH409 steel is used in a low temperature portion Corresponding to more than 3 times the breaking stress.

【0015】一方、室温での伸びは、N含有量の増加に
ともなって低下する。特にN含有量が0.07質量%を超え
ると、その低下は著しくなる。これは、N含有量の増加
に伴い鋼が硬質化し延性が劣化するのに加え、本成分系
においてはN含有量の増加とともにマルテンサイト量が
増加するためであると考えられる。フェライト系ステン
レス鋼として十分な加工性を得るためには、少なくとも
30%以上の伸びが必要であり、この点から、N含有量は
0.07質量%以下に制限される。
On the other hand, the elongation at room temperature decreases as the N content increases. In particular, when the N content exceeds 0.07% by mass, the decrease becomes remarkable. This is considered to be due to the fact that, in addition to the increase in the N content, the steel becomes hard and the ductility deteriorates, and in this component system, the martensite content increases with the N content. In order to obtain sufficient workability as ferritic stainless steel, at least
The elongation of 30% or more is necessary. From this point, the N content is
It is limited to 0.07% by mass or less.

【0016】本発明鋼材の時効後(すなわち実際の使用
を想定した長時間加熱後)の靱性については実施例にて
詳述するが、600〜900℃で1000時間の時効を行っても、
板厚2.0mmの場合、0℃で100J/cm2以上のシャルピー衝撃
値を示しており、14Cr−Si−Nb鋼と同等以上の低温靱性
を有することを確認している。
The toughness of the steel material of the present invention after aging (that is, after prolonged heating assuming actual use) will be described in detail in Examples, but even after aging at 600 to 900 ° C. for 1000 hours,
In the case of a plate thickness of 2.0 mm, a Charpy impact value of 100 J / cm 2 or more was shown at 0 ° C., and it was confirmed that the steel had low-temperature toughness equivalent to or higher than that of 14Cr-Si-Nb steel.

【0017】発明者らの詳細な調査によると、Nは、V
と結合して窒化物を形成し、高温強度の上昇に有効に寄
与する。その効果はN含有量:0.02質量%以上で顕著と
なる。しかし、Nを過剰に添加すると鋼が硬質化すると
ともにマルテンサイト相の生成量が増加し、0.07質量%
を超えて多量に含有させると延性低下を招く。このた
め、N含有量は0.02〜0.07質量%の範囲にする必要があ
る。N含有量の下限については0.025質量%以上とする
ことがより好ましく、0.03質量%を超える量とすること
がさらに一層好ましい。また、N含有量の上限は0.06質
量%とすることがより好ましい。
According to our detailed investigation, N is equal to V
To form nitrides, effectively contributing to an increase in high-temperature strength. The effect is remarkable when the N content is 0.02% by mass or more. However, if N is added excessively, the steel becomes harder and the amount of martensitic phase increases, and the content of N increases by 0.07% by mass.
If it is contained in a large amount exceeding the above, ductility is reduced. Therefore, the N content needs to be in the range of 0.02 to 0.07% by mass. The lower limit of the N content is more preferably 0.025% by mass or more, and even more preferably an amount exceeding 0.03% by mass. Further, the upper limit of the N content is more preferably set to 0.06% by mass.

【0018】Cは、一般的にはクリープ強度などの高温
強度に対して有効な元素とされている。しかし反面、含
有量が多くなると、酸化特性,加工性および靭性が低下
する。また、本発明では後述のように固溶Nbによる高温
強度の向上作用を利用するので、Cが多いとNbはこれら
を固定する分として多くが消費されてしまうため好まし
くない。このため、本発明ではCの含有量は低い方が望
ましく、上限を0.03質量%に制限している。より好まし
いC含有量上限は、0.02質量%である。
C is generally considered to be an effective element for high-temperature strength such as creep strength. However, on the other hand, as the content increases, the oxidation characteristics, workability and toughness decrease. Further, in the present invention, since the effect of improving the high-temperature strength due to solid-solution Nb is used as described later, if the amount of C is large, Nb is undesirably consumed for fixing the Nb. Therefore, in the present invention, the content of C is desirably low, and the upper limit is limited to 0.03% by mass. A more preferred upper limit of the C content is 0.02% by mass.

【0019】Siは、高温酸化特性の改善に非常に有効な
元素である。しかし、Siを過剰に添加すると硬さが上昇
し、加工性および靱性が低下することから、Si含有量は
1.5質量%以下に制限する。より好ましいSi含有量の上
限は1.0質量%である。
Si is a very effective element for improving high-temperature oxidation characteristics. However, when Si is added excessively, the hardness increases, and the workability and toughness decrease.
Limit to 1.5 mass% or less. A more preferable upper limit of the Si content is 1.0% by mass.

【0020】Mnは、フェライト系ステンレス鋼の高温酸
化特性、特に耐スケール剥離性を改善する作用を有する
が、過剰の添加は加工性および溶接性を劣化させる。ま
た、Mnはオーステナイト相安定化元素であるため、過剰
な添加はマルテンサイト相の生成量増加を招いて加工性
を劣化させる。このため、Mn含有量のは1.5質量%以下
に規定する。好ましいMn含有量範囲は1.0質量%以下で
ある。
Mn has the effect of improving the high-temperature oxidation properties of ferritic stainless steel, especially the resistance to scale peeling, but excessive addition deteriorates workability and weldability. Further, since Mn is an austenite phase stabilizing element, excessive addition causes an increase in the amount of martensite phase formed, thereby deteriorating workability. For this reason, the Mn content is specified to be 1.5% by mass or less. A preferred Mn content range is 1.0% by mass or less.

【0021】Niは、オーステナイト相安定化元素である
ため、フェライト系ステンレス鋼に過剰に添加すると、
Mnと同様にマルテンサイト相の増加を招き、加工性が劣
化する。また、原料価格も高いため、過剰なNi添加は避
けるべきである。そこで本発明では、Ni含有量を0.6質
量%以下に規定する。より好ましいNi含有量の範囲は0.
5質量%以下である。
Since Ni is an austenite phase stabilizing element, when Ni is excessively added to ferritic stainless steel,
Like Mn, it causes an increase in the martensite phase, and the workability deteriorates. Also, since the raw material price is high, excessive addition of Ni should be avoided. Therefore, in the present invention, the Ni content is specified to be 0.6% by mass or less. A more preferable range of the Ni content is 0.1.
5 mass% or less.

【0022】Crは、フェライト相を安定化するととも
に、高温材料に重要視される耐酸化性の改善に不可欠な
元素である。耐酸化性の面からはCr含有量は多いほど好
ましいが、過剰に添加すると鋼の脆化を招き、また硬さ
の上昇によって加工性も劣化する。本発明ではCrのこの
ような特性を考慮して、Cr含有量を11〜19質量%に規定
している。特に好ましいCr含有量の範囲は12〜15質量%
である。
Cr is an element that stabilizes the ferrite phase and is indispensable for improving the oxidation resistance, which is regarded as important for high-temperature materials. From the viewpoint of oxidation resistance, the Cr content is preferably as large as possible, but if added excessively, it causes brittleness of the steel, and the workability is also deteriorated due to the increase in hardness. In the present invention, considering such characteristics of Cr, the Cr content is specified to be 11 to 19% by mass. A particularly preferred range of the Cr content is 12 to 15% by mass.
It is.

【0023】Nbは、CおよびNを炭窒化物として固定す
る作用をもつ。また、C,Nを固定した残りの固溶状態
にあるNbは、材料の高温強度の上昇に有効に作用する。
しかし、本発明ではNを添加しているため、Nbを過剰に
添加すると炭窒化物を多く生成し、その結果、靱性が劣
化する。また、鋼材の製造コスト上昇にもつながる。し
たがって、Nbの過剰な添加は好ましくなく、Nb含有量範
囲は0.3質量%以下とする。Nb含有量の下限は0.02質量
%とすることがより好ましく、また上限は0.20質量%未
満とすることがより好ましい。
Nb has the effect of fixing C and N as carbonitrides. In addition, Nb in the solid solution state where C and N are fixed effectively acts to increase the high-temperature strength of the material.
However, since N is added in the present invention, if Nb is added excessively, a large amount of carbonitride is generated, and as a result, toughness is deteriorated. In addition, it leads to an increase in the production cost of steel materials. Therefore, excessive addition of Nb is not preferable, and the Nb content range is set to 0.3% by mass or less. The lower limit of the Nb content is more preferably 0.02% by mass, and the upper limit is more preferably less than 0.20% by mass.

【0024】Vは、本発明において高温強度の改善のた
めに必要な元素である。本発明鋼材の使用時に想定され
る600〜800℃の温度範囲では、Vは主に窒化物として微
細に分散析出している。このV窒化物はNb−Si添加鋼の
場合よりも遅く析出し、なおかつ成長も遅いことから、
特に長時間側の高温強度をより一層改善するものと考え
られる。高温強度の観点から本発明の目的を達成するに
は、0.1質量%以上のV含有が必要となる。一方、V含
有量の増加に伴い加工性・靱性が低下するため、V含有
量の上限は0.5質量%以下に制限する。V含有量のより
好ましい下限は0.2質量%、より好ましい上限は0.4質量
%である。
V is an element necessary for improving the high-temperature strength in the present invention. In the temperature range of 600 to 800 ° C. assumed when using the steel material of the present invention, V is finely dispersed and precipitated mainly as nitride. Since this V nitride precipitates later and grows more slowly than in the case of Nb-Si added steel,
In particular, it is considered that the high-temperature strength on the long-time side is further improved. To achieve the object of the present invention from the viewpoint of high-temperature strength, V content of 0.1% by mass or more is required. On the other hand, since the workability and toughness decrease with an increase in the V content, the upper limit of the V content is limited to 0.5% by mass or less. A more preferred lower limit of the V content is 0.2% by mass, and a more preferred upper limit is 0.4% by mass.

【0025】Cu,Mo,Ti,WおよびZrは、高温強度の改
善に有効な元素であり、その効果を十分に発揮させるた
めには、添加量は多いほど好ましい。これらの元素は、
単独で用いてもよく、また2種以上を複合で添加しても
よい。一方、あまり多量に添加すると鋼が硬質になり、
また原料コストも高くなる。このため、Cu,Mo,Ti,W
またはZrを添加する場合は、これらの合計量が3質量%
以下となるようにする。より好ましいCu,Mo,Ti,Wお
よびZrの合計含有量範囲は0.1〜2質量%である。
Cu, Mo, Ti, W and Zr are effective elements for improving the high-temperature strength, and in order to sufficiently exert their effects, the larger the amount of addition, the better. These elements are
They may be used alone or in combination of two or more. On the other hand, adding too much will make the steel harder,
Also, the raw material cost increases. Therefore, Cu, Mo, Ti, W
Or when adding Zr, the total amount of these is 3% by mass.
Make sure that: More preferably, the total content range of Cu, Mo, Ti, W and Zr is 0.1 to 2% by mass.

【0026】一般的な不純物元素であるP,S,Oなど
は可能な限り低減することが好ましい。例えば、Pは0.
04質量%以下、Sは0.03質量%以下、Oは0.02質量%以
下に低減するのが良く、上述した加工性や靭性をさらに
高いレベルで確保するためには、これらの不純物元素の
上限をさらに厳密に規定しても構わない。また、一般に
耐熱性を改善する元素として知られるAl,Y,REMや、
熱間加工性や靭性を改善する元素として知られるCa,M
g,B,Co等の元素についても、必要に応じて適宜添加
することによってそれぞれの効果を得ることができる。
It is preferable to reduce P, S, O, etc., which are general impurity elements, as much as possible. For example, P is 0.
It is preferable to reduce the content of S to 0.04% by mass or less and the content of O to 0.02% by mass or less. In order to ensure the above-mentioned workability and toughness at a higher level, the upper limits of these impurity elements are further increased. It may be strictly defined. Al, Y, REM, which are generally known as elements for improving heat resistance,
Ca, M known as elements that improve hot workability and toughness
Elements such as g, B, Co, etc. can also obtain their respective effects by appropriately adding them as needed.

【0027】マルテンサイト相は、使用温度650℃以下
の範囲であれば高温強度の改善に非常に有効であること
が知られており、マルテンサイト相の比率を高くするこ
とによって高温強度を改善する試みは古くから行われて
きた。しかし、本発明鋼材のように700℃以上の高温に
曝されて使用される場合を想定すると、マルテンサイト
相は焼き戻されるため高温強度の上昇にはさほど有効で
はない。また、Ac1点が低い場合、マルテンサイト相は
使用中にオーステナイト相へ変態するため、変態ひずみ
や鋼材の熱膨張係数が大きくなり、熱疲労特性の劣化原
因にもなり得る。さらに、室温でマルテンサイト相が多
いとフェライト単相鋼よりも延性が著しく低くなり、加
工性に劣る。このため、本発明ではマルテンサイト相は
少ないほど良い。発明者らの検討の結果、本発明では、
使用前(焼鈍後の状態)において、鋼材中のマルテンサ
イト量は30体積%以下に制限すべきであることがわかっ
た。フェライト単相である場合など、マルテンサイト相
が全く存在しない状態(0体積%)であっても構わな
い。より好ましいマルテンサイト量は0〜20体積%であ
る。
It is known that the martensite phase is very effective in improving the high-temperature strength when the operating temperature is in the range of 650 ° C. or lower, and the high-temperature strength is improved by increasing the ratio of the martensite phase. Attempts have been made since ancient times. However, assuming a case where the steel material of the present invention is used by being exposed to a high temperature of 700 ° C. or more, the martensite phase is tempered and thus is not very effective in increasing the high temperature strength. Further, when the Ac 1 point is low, the martensite phase is transformed into an austenite phase during use, so that the transformation strain and the thermal expansion coefficient of the steel material increase, which may cause deterioration of the thermal fatigue properties. Furthermore, when the martensite phase is large at room temperature, the ductility becomes significantly lower than that of a ferritic single-phase steel, resulting in poor workability. Therefore, in the present invention, the smaller the martensite phase, the better. As a result of the study by the inventors, in the present invention,
Before use (state after annealing), it was found that the amount of martensite in the steel material should be limited to 30% by volume or less. A state in which no martensite phase is present (0% by volume), such as a ferrite single phase, may be used. A more preferred amount of martensite is 0 to 20% by volume.

【0028】ここでいうマルテンサイト相には、焼入れ
ままのマルテンサイト相の他、焼戻しマルテンサイト相
も含む。鋼材中のマルテンサイト相は、鋼材断面のエッ
チングされた金属組織を例えば光学顕微鏡を用いて観察
することによって同定できる。鋼材中に占めるマルテン
サイト相の割合(体積%)は、上記のような金属組織観
察においてマルテンサイト相の面積率を測定することで
求まる。その測定には例えばコンピューターを用いた画
像解析の手法が利用できる他、JIS G 0552(鋼のフェラ
イト結晶粒度試験方法)におけるフェライトとパーライ
トの目測による面積百分率の判定法を応用することも可
能である。
The martensite phase mentioned here includes a tempered martensite phase as well as a martensite phase as-quenched. The martensite phase in the steel material can be identified by observing the etched metal structure of the steel material cross section using, for example, an optical microscope. The ratio (volume%) of the martensite phase in the steel material can be determined by measuring the area ratio of the martensite phase in the above-described metallographic observation. For the measurement, for example, a method of image analysis using a computer can be used, and it is also possible to apply a method of determining the area percentage by visual measurement of ferrite and pearlite in JIS G 0552 (test method of ferrite crystal grain size of steel). .

【0029】本発明鋼材の製造方法については、特に規
定しないが、フェライト単相組織の場合は、熱延焼鈍状
態のままで優れた耐熱性,加工性および靱性を呈する本
発明の鋼材を得ることが可能である。マルテンサイト相
を含有する場合は、フェライト単相鋼よりも延性が低く
なるため、必要に応じて焼戻し処理をしても構わない。
また、熱延のみによって所望の板厚の鋼板が製造できな
い場合は、冷延および焼鈍を1回または複数回繰り返す
ことによって熱延焼鈍板と同等の耐熱性を有する鋼板を
得ることができる。さらに、このような鋼板を所望の形
状に加工あるいは溶接(管の成形等も含む)しても本発
明の目的とする特性を確保することができ、本発明の鋼
材とすることができる。
The method for producing the steel material of the present invention is not particularly limited. However, in the case of a ferrite single phase structure, it is necessary to obtain the steel material of the present invention which exhibits excellent heat resistance, workability and toughness in a hot-rolled and annealed state. Is possible. When the steel contains a martensite phase, the ductility is lower than that of a ferritic single-phase steel, so that a tempering treatment may be performed if necessary.
When a steel sheet having a desired thickness cannot be produced only by hot rolling, cold rolling and annealing are repeated once or a plurality of times to obtain a steel sheet having heat resistance equivalent to that of a hot rolled annealed sheet. Furthermore, even if such a steel sheet is processed or welded (including forming a pipe, etc.) into a desired shape, the characteristics intended by the present invention can be secured, and the steel material of the present invention can be obtained.

【0030】[0030]

【実施例】表1に供試材の化学組成を示す。表1中、N
o.1〜14は本発明鋼材、No.15〜22は比較鋼材である。こ
のうちNo.21はSUH409相当鋼、No.22は14Cr−Si−Nb鋼で
あり、これらは従来の1100〜1300℃級LNGコンバイン
ドサイクル発電プラントの排気ガスダクト材に適すると
される鋼である。
EXAMPLES Table 1 shows the chemical compositions of the test materials. In Table 1, N
o.1 to 14 are steel materials of the present invention, and No.15 to 22 are comparative steel materials. Among them, No. 21 is a SUH409 equivalent steel and No. 22 is a 14Cr-Si-Nb steel, which is a steel suitable for an exhaust gas duct material of a conventional LNG combined cycle power plant of 1100 to 1300 ° C class.

【0031】[0031]

【表1】 [Table 1]

【0032】真空溶解炉にて上記各鋼を溶製し、30kgの
インゴットに鋳造した。その後、鋼塊を丸棒に鍛造し、
焼鈍を行い、クリープ破断試験に供した。また、一部の
鋼塊を板に鍛造し、熱間圧延、焼鈍、冷間圧延、仕上焼
鈍を施し、得られた板厚2.0mmの冷延焼鈍板を金属組織
観察,酸化試験および室温での引張試験に供した。さら
に、冷延焼鈍板を700℃で1000時間加熱した後、シャル
ピー衝撃試験に供した。
Each of the above steels was melted in a vacuum melting furnace and cast into a 30 kg ingot. After that, the steel ingot is forged into a round bar,
After annealing, it was subjected to a creep rupture test. In addition, a part of the steel ingot was forged into a plate, subjected to hot rolling, annealing, cold rolling, and finish annealing, and the resulting cold-rolled annealed plate having a thickness of 2.0 mm was observed for metallographic structure, oxidation test and room temperature. Was subjected to a tensile test. Further, after the cold-rolled annealed plate was heated at 700 ° C. for 1000 hours, it was subjected to a Charpy impact test.

【0033】金属組織観察は、鋼材断面をフッ酸と硝酸
の混合液でエッチングした後、光学顕微鏡で観察し、JI
S G 0052(鋼のフェライト結晶粒度試験方法)における
フェライトとパーライトの目測による面積百分率の判定
法に準拠して、マルテンサイト相の面積率を測定した。
測定値は、表1に「マルテンサイト量(体積%)」とし
て記載してある。
The metallographic structure was observed by etching the cross section of the steel material with a mixed solution of hydrofluoric acid and nitric acid and then observing it with an optical microscope.
The area ratio of the martensite phase was measured according to the method for determining the area percentage by visual measurement of ferrite and pearlite in SG0052 (test method for ferrite crystal grain size of steel).
The measured values are shown in Table 1 as "amount of martensite (% by volume)".

【0034】クリープ破断試験は、JIS Z 2272に準拠
し、700℃で行った。試験中に付与する応カを試験ごと
に変化させ、最長破断時間が5000時間程度となるように
クリープ破断曲線を作成し、1000時間の破断強度、すな
わちクリープ破断曲線で破断時間が1000時間となるとき
の負荷応力を求めた。高温酸化試験は、JIS Z 2281に準
拠し、700℃×1000時間の連続加熱によって行った。試
験後に異常酸化の発生、すなわち板厚方向に貫通するこ
ぶ状の厚い酸化物の発生の有無を目視にて観察した。シ
ャルピー衝撃試験は、JIS Z 2242に準拠し、700℃×100
0時間の時効を行った冷延焼鈍板を板厚2.0mmのサブサイ
ズ試験片に加工して、0℃で試験を行い、シャルピー衝
撃値を求めた。なお、シャルピー衝撃試験片は長手方向
が圧延方向と垂直となるように採取した。室温での引張
試験は、JIS Z 2241に準拠し、板厚2.0mmの冷延焼鈍板
を13B号試験片に加工し、引張試験後の破断伸びを求め
た。なお、引張試験片は長手方向が圧延方向となるよう
に採取した。これらの結果を表2に示す。
The creep rupture test was performed at 700 ° C. in accordance with JIS Z 2272. The creep rupture curve was created so that the stress applied during the test was changed for each test and the longest rupture time was about 5000 hours, and the rupture strength of 1000 hours, that is, the rupture time was 1000 hours in the creep rupture curve The load stress at the time was determined. The high-temperature oxidation test was performed by continuous heating at 700 ° C. × 1000 hours in accordance with JIS Z 2281. After the test, the occurrence of abnormal oxidation, that is, the presence or absence of a thick oxide having a bump-like shape penetrating in the plate thickness direction was visually observed. Charpy impact test conforms to JIS Z 2242, 700 ° C x 100
The cold-rolled annealed plate that had been aged for 0 hours was processed into a 2.0 mm-thick sub-sized test piece, and a test was performed at 0 ° C. to determine the Charpy impact value. The Charpy impact test specimen was sampled so that the longitudinal direction was perpendicular to the rolling direction. In the tensile test at room temperature, a 2.0 mm-thick cold-rolled annealed plate was processed into a No. 13B test piece in accordance with JIS Z 2241, and the elongation at break after the tensile test was determined. In addition, the tensile test piece was sampled so that the longitudinal direction was the rolling direction. Table 2 shows the results.

【0035】[0035]

【表2】 [Table 2]

【0036】発明例であるNo.1〜14の鋼材は、いずれも
700℃×1000時間のクリープ破断強度がNo.21,22の現行
材よりも優れているとともに、700℃×1000時間連続加
熱後の外観(異常酸化の有無),700℃×1000時間時効
後の0℃のシャルピー衝撃値も現行材と同程度の特性を
有している。また、冷延焼鈍板の室温伸びも30%以上の
値が得られており、ガスタービンの排気ガス経路部材等
への加工は十分可能であると考えられる。
The steel materials of Nos. 1 to 14 of the invention are all
The creep rupture strength at 700 ° C for 1000 hours is superior to the current materials No. 21 and 22, and the appearance after continuous heating at 700 ° C for 1000 hours (absence of abnormal oxidation), after aging at 700 ° C for 1000 hours The Charpy impact value at 0 ° C. has the same properties as the current material. Further, the room temperature elongation of the cold-rolled annealed plate is 30% or more, and it is considered that the processing into the exhaust gas path member of the gas turbine is sufficiently possible.

【0037】これに対し、N含有量が少ないNo.15,2
1,22はクリープ破断特性に劣っている。N含有量が多
いNo.16は700℃×1000時間時効後の0℃のシャルピー衝
撃値および冷延焼鈍板の室温伸びが劣るため、製品加工
が十分にできなかったり使用中に靱性不足によって不具
合を生じる恐れがある。Nb含有量が多いNo.18、および
V含有量が多いNo.20は時効後のシャルピー衝撃値が低
い。Vを含有するがその量が少ないNo.19はクリープ破
断特性に劣る。また、化学組成は本発明規定範囲にある
がマルテンサイト相の含有量が多すぎるNo.17は、室温
伸びが低い。
On the other hand, Nos. 15 and 2 having a small N content
1 and 22 are inferior in creep rupture characteristics. No.16, which has a high N content, has poor Charpy impact value at 0 ° C after aging at 700 ° C for 1000 hours and room temperature elongation of the cold-rolled annealed sheet, so it cannot be processed sufficiently or has insufficient toughness during use. May occur. No. 18 having a high Nb content and No. 20 having a high V content have low Charpy impact values after aging. No. 19 containing V but having a small amount thereof is inferior in creep rupture characteristics. Further, No. 17 having a chemical composition within the range specified in the present invention but having too much martensite phase has low room temperature elongation.

【0038】[0038]

【発明の効果】従来、多くの耐熱鋼が開発されているに
もかかわらず、燃焼温度1400〜1500℃級の高温燃焼型ガ
スタービンの排気ガス経路部材に適した特性を安定して
発揮し得る鋼種は存在しなかった。その理由として、こ
のような部材では材料温度が650〜800℃に達し、そのよ
うな高温に長時間曝され、その後常温まで戻されるとい
う厳しい熱サイクルを繰り返し受けることが挙げられ
る。すなわち、材料には、高温長時間加熱時のクリー
プ破断強度が高いこと,長時間加熱後の低温靱性が十
分確保されること、という厳しい特性が要求され、しか
もこれらの特性を熱膨張係数の小さいフェライト系鋼に
て実現しなくてはならない点が材料開発を難しくしてい
た。本発明は、この点を解決して、高温燃焼型ガスター
ビンの排気ガス経路部材に好適な新たな鋼種の開発を達
成したものである。
As described above, despite the fact that many heat-resistant steels have been developed, it is possible to stably exhibit characteristics suitable for exhaust gas path members of a high-temperature combustion type gas turbine having a combustion temperature of 1400 to 1500 ° C. No steel grade was present. The reason is that such a member repeatedly undergoes a severe thermal cycle in which the material temperature reaches 650 to 800 ° C., is exposed to such a high temperature for a long time, and then is returned to room temperature. In other words, the material is required to have strict characteristics such as high creep rupture strength during high-temperature long-time heating and sufficient low-temperature toughness after long-time heating, and these characteristics are required to have a small coefficient of thermal expansion. The fact that it must be realized with ferritic steel has made material development difficult. The present invention has solved this problem and has achieved the development of a new steel type suitable for an exhaust gas path member of a high-temperature combustion type gas turbine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Nb,V含有フェライト系ステンレス鋼における
N含有量と、700℃1000時間クリープ破断応力および冷
延焼鈍板の室温における伸びの関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between N content in Nb and V-containing ferritic stainless steel, creep rupture stress at 700 ° C. for 1000 hours, and elongation at room temperature of a cold-rolled annealed sheet.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 7/00 F02C 7/00 C B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 7/00 F02C 7/00 CB

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.03%以下,Si:1.5%
以下,Mn:1.5%以下,Ni:0.6%以下,Cr:11〜19%,
Nb:0.3%以下,V:0.1〜0.5%,N:0.02〜0.07%を
含み、残部がFeおよび不可避的不純物からなる化学組成
を有し、マルテンサイト相が0〜30体積%である金属組
織を有する、高温強度,低温靱性および加工性に優れた
耐熱性フェライト系ステンレス鋼材。
1. In mass%, C: 0.03% or less, Si: 1.5%
Mn: 1.5% or less, Ni: 0.6% or less, Cr: 11 to 19%,
Metal structure containing Nb: 0.3% or less, V: 0.1-0.5%, N: 0.02-0.07%, the balance being a chemical composition comprising Fe and unavoidable impurities, and a martensite phase of 0-30% by volume. A heat-resistant ferritic stainless steel with excellent high-temperature strength, low-temperature toughness and workability.
【請求項2】 さらに、Cu,Mo,Ti,W,Zrの1種また
は2種以上を合計3質量%以下含む請求項1に記載の鋼
材。
2. The steel material according to claim 1, further comprising one or more of Cu, Mo, Ti, W, and Zr in a total amount of 3% by mass or less.
【請求項3】 ガスタービンの排気ガス経路部材用であ
る請求項1または2に記載の鋼材。
3. The steel material according to claim 1, which is used for an exhaust gas path member of a gas turbine.
JP2000136359A 2000-05-09 2000-05-09 Heat resistant ferritic stainless steel Expired - Lifetime JP4369596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136359A JP4369596B2 (en) 2000-05-09 2000-05-09 Heat resistant ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136359A JP4369596B2 (en) 2000-05-09 2000-05-09 Heat resistant ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2001316774A true JP2001316774A (en) 2001-11-16
JP4369596B2 JP4369596B2 (en) 2009-11-25

Family

ID=18644312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136359A Expired - Lifetime JP4369596B2 (en) 2000-05-09 2000-05-09 Heat resistant ferritic stainless steel

Country Status (1)

Country Link
JP (1) JP4369596B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043326A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics, oxidation resistance and toughness
JP2010043327A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics, oxidation resistance and high-temperature salt-corrosion resistance
JP2010043324A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics and oxidation resistance
JP2010156008A (en) * 2008-12-26 2010-07-15 Jfe Steel Corp Precipitation strengthened type ferritic stainless steel, and method for producing the same
JP2012107312A (en) * 2010-10-26 2012-06-07 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue characteristics and workability
CN103764985A (en) * 2011-08-12 2014-04-30 埃尔塞乐公司 Exhaust plug for an aircraft turbojet engine
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605262A (en) * 2011-01-25 2012-07-25 宝山钢铁股份有限公司 Ferritic stainless steel and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043326A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics, oxidation resistance and toughness
JP2010043327A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics, oxidation resistance and high-temperature salt-corrosion resistance
JP2010043324A (en) * 2008-08-13 2010-02-25 Jfe Steel Corp Ferritic stainless steel superior in thermal fatigue characteristics and oxidation resistance
JP2010156008A (en) * 2008-12-26 2010-07-15 Jfe Steel Corp Precipitation strengthened type ferritic stainless steel, and method for producing the same
JP2012107312A (en) * 2010-10-26 2012-06-07 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue characteristics and workability
CN103764985A (en) * 2011-08-12 2014-04-30 埃尔塞乐公司 Exhaust plug for an aircraft turbojet engine
US20140165574A1 (en) * 2011-08-12 2014-06-19 Aircelle Exhaust plug for an aircraft turbojet engine
JP5900717B1 (en) * 2014-12-11 2016-04-06 Jfeスチール株式会社 Stainless steel sheet and manufacturing method thereof
WO2016092713A1 (en) * 2014-12-11 2016-06-16 Jfeスチール株式会社 Stainless steel and production method therefor
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor

Also Published As

Publication number Publication date
JP4369596B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
US4799972A (en) Process for producing a high strength high-Cr ferritic heat-resistant steel
EP2832886A1 (en) Heat-resistant austenitic stainless steel sheet
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP4816642B2 (en) Low alloy steel
JP2002146470A (en) Low quenching or normalizing type low alloy steel sheet for boiler steel tube having excellent toughness and method for producing steel tube using the steel sheet
JP4369596B2 (en) Heat resistant ferritic stainless steel
JP4357694B2 (en) Ferritic stainless steel for exhaust gas path members of gas turbines
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP4390169B2 (en) Ferritic stainless steel for gas turbine exhaust gas path members
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP6459681B2 (en) High Cr ferritic heat resistant steel with excellent high temperature creep characteristics
JP2003166039A (en) Heat resistant austenitic steel excellent in characteristics for sensitization, high-temperature strength and corrosion resistance, and manufacturing method therefor
JP3196587B2 (en) High Cr ferritic heat resistant steel
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP5239645B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP3775371B2 (en) Low alloy steel
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JPH0885850A (en) High chromium ferritic heat resistant steel
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JPH1096038A (en) High cr austenitic heat resistant alloy
JP2003301242A (en) HIGH-Cr-Ni HEAT-RESISTANT STEEL AND PROCESS FOR MANUFACTURING MEMBER FOR ELEVATED TEMPERATURE SHOWING EXCELLENT CREEP RESISTANCE
JP2001152293A (en) HIGH Cr FERRITIC HEAT RESISTING STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4369596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term