JP2001316512A - Foamed polystyrene-based resin molding - Google Patents

Foamed polystyrene-based resin molding

Info

Publication number
JP2001316512A
JP2001316512A JP2000136236A JP2000136236A JP2001316512A JP 2001316512 A JP2001316512 A JP 2001316512A JP 2000136236 A JP2000136236 A JP 2000136236A JP 2000136236 A JP2000136236 A JP 2000136236A JP 2001316512 A JP2001316512 A JP 2001316512A
Authority
JP
Japan
Prior art keywords
particles
crushed
expanded
styrene
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136236A
Other languages
Japanese (ja)
Inventor
Tsukasa Ishikawa
宰 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2000136236A priority Critical patent/JP2001316512A/en
Publication of JP2001316512A publication Critical patent/JP2001316512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a recyclable foamed styrene-based resin molding. SOLUTION: The subject is solved by a foamed styrenic resin molding characterized in that the resin molding is obtained by subjecting pre-expanded particles obtained by expanding foamable styrenic-resin particles by 20-70 times in bulkiness and having 1.2-2.0 maximum foaming capacity to extrusion foaming and has 0-60% fusion ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家電製品等の梱包
材または家屋等の断熱材等に用いられる発泡スチレン系
樹脂成形体の再生利用に関するものであり、さらに詳細
には、使用後の破砕が容易で、しかも再生利用に適した
破砕粒が得られやすい発泡スチレン系樹脂成形体、なら
びに該破砕粒を混合して得られる発泡破砕粒混合成形体
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to recycling of a foamed styrene resin molded article used for a packing material for home electric appliances or the like or a heat insulating material for a house or the like, and more particularly to crushing after use. The present invention relates to a foamed styrene-based resin molded product which is easy to obtain and easily obtains crushed particles suitable for recycling, and a foamed crushed particle mixed molded product obtained by mixing the crushed particles.

【0002】[0002]

【従来の技術】発泡スチレン系樹脂成形体は、家電製品
等の梱包材や家屋等の断熱材等として広く使われてい
る。しかしながら、近年、環境問題の意識の高まりか
ら、資源保護や廃棄物処理等の点で、使用後に再生利用
できるよう、リサイクル性に優れたものが望まれてい
る。従来、発泡スチレン系樹脂成形体を再生利用する方
法として、種々の方法が提案されている。特に、発泡成
形体を裁断または破砕して小片にした上で、再利用する
方法として、以下のような手段が提案されている。
2. Description of the Related Art A foamed styrene resin molded article is widely used as a packing material for home electric appliances and the like and a heat insulating material for houses and the like. However, in recent years, from the viewpoint of increasing awareness of environmental issues, there is a demand for a material having excellent recyclability so that it can be recycled after use in terms of resource protection and waste disposal. Conventionally, various methods have been proposed as a method of recycling a foamed styrene resin molded article. In particular, the following means has been proposed as a method of reusing a foamed molded article after cutting or crushing it into small pieces.

【0003】裁断による方法としては、特開昭50−1
50769号公報、特開平4−108834号公報、特
開平4−108835号公報、特開平7−156181
号公報等が知られている。しかしながら、これらの方法
は鋭利な刃物あるいは熱線を用いて使用済み発泡スチレ
ン系樹脂成形体を角状細片に裁断する必要があり、複雑
な工程が増加して再生利用するのに大きなコストアップ
になってしまう。そこで、特開昭53−61658号公
報、特開平6−182890号公報には、発泡成形体を
破砕して小片にした上で、再利用する方法が提案されて
いる。このような方法によれば、使用済みの成形体を破
砕機で破砕して小片とし、該小片を未使用の予備発泡粒
子と混合したものを原料として、再度発泡して成形体を
製造することができるため、複雑な工程を経ずに破砕粒
混合成形体を再利用することができる。
[0003] Japanese Patent Application Laid-Open No. Sho 50-1 discloses a cutting method.
50769, JP-A-4-108834, JP-A-4-108835, JP-A-7-156181
No. 6,086,098 is known. However, in these methods, it is necessary to cut the used expanded styrene-based resin molded article into square strips using a sharp blade or a hot wire, and the number of complicated steps increases, resulting in a large increase in cost for recycling. turn into. Therefore, JP-A-53-61658 and JP-A-6-182890 propose a method of crushing a foamed molded product into small pieces and reusing them. According to such a method, a used compact is crushed by a crusher into small pieces, and the small pieces are mixed with unused pre-expanded particles as a raw material to foam again to produce a compact. Therefore, the crushed and mixed granulated product can be reused without going through a complicated process.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の方法においては、通常、破砕機として、ロータリーカ
ッター式破砕機や衝撃式破砕機(ハンマーミル)が使用
されるため、破砕の際に成形体が機械の剪断力や摩擦力
によって引きちぎられたり、押し潰されたりするため、
得られる破砕粒の独立気泡構造が破壊されて減少すると
いう問題がある。また、このような方法により得られる
破砕粒の形状は不揃いで、サイズにもばらつきがあり、
細かい粉状の破砕粒も多く存在する。このような破砕粒
は、独立気泡構造の残存率が低いため、ほとんど発泡力
を有さない。したがって、このような破砕粒を金型に充
填してスチームで加熱しても、粒子間の空隙を満たすに
十分な発泡が得られない。
However, in these methods, a rotary cutter type crusher or an impact type crusher (hammer mill) is usually used as a crusher. Torn or crushed by the shear or frictional force of the machine,
There is a problem that the closed cell structure of the obtained crushed particles is broken and reduced. In addition, the shape of the crushed particles obtained by such a method is irregular, there is also a variation in size,
Many fine powdery crushed grains are also present. Such crushed particles have little foaming power because the residual ratio of the closed cell structure is low. Therefore, even if such a crushed particle is filled in a mold and heated by steam, foaming sufficient to fill voids between particles cannot be obtained.

【0005】また、一時的に発泡膨張したとしても、成
形後の収縮が激しく、得られる成形体は粗悪なものとな
る。また、上記の方法では、破砕粒に未使用の予備発泡
粒子が混合されるが、未使用の予備発泡粒子の発泡力が
強いため、たとえ破砕粒に少々の発泡力があっても押し
潰されてしまい、破砕粒が収縮した形状になるという問
題がある。また、予備発泡粒子はその分過剰に発泡する
ため、得られる成形体は部分的に高発泡になり、成形体
全体の強度が低下するという問題もある。また、破砕粒
は形状が不揃いでサイズにばらつきがあるため、予備発
泡粒子との混合状態が不均一になりやすく、充填不良や
部分的な収縮を起こすという問題もある。
[0005] Even if the foam is temporarily expanded and expanded, the shrinkage after molding is severe, and the molded article obtained is inferior. Also, in the above method, unused pre-expanded particles are mixed with the crushed particles, but since the unused pre-expanded particles have a strong foaming power, even if the crushed particles have a slight foaming power, they are crushed. Thus, there is a problem that the crushed particles have a contracted shape. Further, since the pre-expanded particles are excessively expanded, the obtained molded article partially has high foaming, and there is a problem that the strength of the entire molded article is reduced. In addition, since the crushed particles have irregular shapes and irregular sizes, the mixed state with the pre-expanded particles is likely to be non-uniform, and there is also a problem that poor filling or partial shrinkage occurs.

【0006】さらに、このような破砕粒の混合割合は、
破砕粒および予備発泡粒子の全体積に対して20%程度
が限度であり、それ以上の混合割合になると成形体の物
性強度が極端に低下し、成形体の外観も著しく低下す
る。このように、従来の技術では、成形体のリサイクル
を効率よく行なうことができず、実用化が困難であっ
た。
[0006] Furthermore, the mixing ratio of such crushed particles is as follows:
The limit is about 20% with respect to the total volume of the crushed particles and the pre-expanded particles, and if the mixing ratio is more than that, the physical strength of the molded product is extremely reduced, and the appearance of the molded product is also significantly reduced. As described above, with the conventional technique, it was not possible to efficiently recycle the molded body, and it was difficult to put it to practical use.

【0007】[0007]

【発明が解決しようとする課題】発泡プラスチック等の
廃棄物の回収やリサイクルに通常使用されている破砕機
を使っても、独立気泡構造をできるだけなくさないまま
均一な粒径に破砕できれば、再生利用する場合に破砕粒
の混合割合を高めることができ、リサイクル性を一層高
めることができる。したがって、本発明の目的は、発泡
スチレン系樹脂成形体として十分な機能を果たしなが
ら、使用済みになっても、破砕して得られる破砕粒を再
利用して、良質の成形体を得ることができる、発泡スチ
レン系樹脂成形体およびその破砕粒ならびに該破砕粒を
混合して得られる発泡破砕粒混合成形体を提供すること
にある。
Even if a crusher usually used for collecting and recycling waste such as foamed plastic can be crushed to a uniform particle size without losing the closed-cell structure as much as possible, it is regenerated. When used, the mixing ratio of the crushed particles can be increased, and the recyclability can be further improved. Therefore, an object of the present invention is to obtain a high-quality molded article by reusing crushed particles obtained by crushing even when used, while performing a sufficient function as a foamed styrene resin molded article. An object of the present invention is to provide a foamed styrene-based resin molded product, crushed particles thereof, and a foamed crushed particle mixed molded product obtained by mixing the crushed particles.

【0008】[0008]

【課題を解決するための手段】本発明者は、発泡スチレ
ン系樹脂成形体の融着率と物性との関係に着目し、鋭意
研究を重ねた結果、予備発泡粒子をある条件下に再発泡
させて得られる再発泡粒子の発泡能力と発泡成形時の加
熱条件を調節することによって、上記の問題を解決でき
ることを見出し、本発明を完成するに到った。かくし
て、本発明によれば、発泡性スチレン系樹脂粒子を嵩倍
数20〜70倍に発泡して得られた最大発泡能力が1.
2〜2.0である予備発泡粒子を、蒸気等で加熱し発泡
成形して得られる、融着率が0〜60%であることを特
徴とする発泡スチレン系樹脂成形体(以下、「発泡成形
体」という)が提供される。
Means for Solving the Problems The present inventor paid attention to the relationship between the fusion rate and the physical properties of a foamed styrenic resin molded article, and as a result of intensive research, found that the pre-expanded particles were re-foamed under certain conditions. The inventors have found that the above problems can be solved by adjusting the foaming ability of the re-expanded particles obtained and the heating conditions during foam molding, and have completed the present invention. Thus, according to the present invention, the maximum foaming ability obtained by foaming the expandable styrene-based resin particles by a factor of 20 to 70 times is 1.
A foamed styrenic resin molded article (hereinafter referred to as “foamed foam”) obtained by subjecting pre-expanded particles of 2 to 2.0 to foam molding by heating with steam or the like and having a fusion rate of 0 to 60%. Molded article) is provided.

【0009】また、本発明によれば、発泡成形体を破砕
機で破砕することにより得られた最大発泡能力が1.2
〜1.6である発泡スチレン系樹脂破砕粒(以下、「破
砕粒」という)が提供される。さらに、本発明によれ
ば、上記の破砕粒と、発泡性スチレン系樹脂粒子を所定
の倍数に発泡して得られる予備発泡粒子とを混合した前
記破砕粒の含有割合が体積比で10〜60%である混合
粒子を、蒸気等で発泡成形した発泡スチレン系樹脂破砕
粒混合成形体(以下、「混合成形体」という)が提供さ
れる。
Further, according to the present invention, the maximum foaming ability obtained by crushing the foam molded article with a crusher is 1.2.
A styrene foam resin crushed particle (hereinafter referred to as a “crushed particle”) having a particle size of from 1.6 to 1.6 is provided. Furthermore, according to the present invention, the content ratio of the crushed particles obtained by mixing the crushed particles and the pre-expanded particles obtained by expanding the expandable styrene resin particles to a predetermined multiple is 10 to 60 in volume ratio. % Of the mixed particles (hereinafter, referred to as “mixed molded body”).

【0010】本発明の発泡成形体は、圧縮強度、曲げ強
度といった発泡樹脂成形体の特性を十分に備えており、
家電製品等の梱包材や家屋等の断熱材などの用途に好適
に用いることができる。また、破砕機で破砕する際に、
予備発泡粒子の界面で割れやすく、剪断と摩擦によって
引きちぎられたり、押し潰されたりし難いため、独立気
泡構造が保たれたままの破砕粒を得ることができる。し
たがって、本発明の破砕粒は、予備発泡粒子の単位に近
い状態に解砕されるものが多く、形状もサイズも揃って
おり、しかも細かい粉状の破砕物がほとんど発生しな
い。したがって、破砕粒を分級して粒径を揃えることも
容易であり、廃棄すべき破砕物がほとんど発生しない。
このように本発明の破砕粒は独立気泡構造を高い次元で
保持しているため、予備発泡粒子と高い比率で混合する
ことができ、良好な物性のを発現できる混合成形体を得
ることができる。
[0010] The foamed molded article of the present invention has sufficient properties of the foamed resin molded article such as compressive strength and bending strength.
It can be suitably used for applications such as packing materials for home appliances and heat insulating materials for houses and the like. Also, when crushing with a crusher,
Since the pre-expanded particles are easily broken at the interface and are hardly torn or crushed by shearing and friction, it is possible to obtain crushed particles while maintaining the closed cell structure. Therefore, the crushed particles of the present invention are often crushed into a state close to the unit of the pre-expanded particles, are uniform in shape and size, and hardly generate fine powdery crushed materials. Therefore, it is easy to classify the crushed particles to make the particle size uniform, and almost no crushed material to be discarded is generated.
As described above, since the crushed particles of the present invention maintain the closed-cell structure at a high dimension, they can be mixed with the pre-expanded particles at a high ratio, and a mixed molded body that can exhibit good physical properties can be obtained. .

【0011】[0011]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明の発泡成形体は、発泡性スチレン系樹脂粒
子を嵩倍数20〜70倍に発泡して得られた最大発泡能
力が1.2〜2.0である予備発泡粒子を加熱蒸気で発
泡成形して得られ、融着率が0〜60%であることを特
徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The foamed molded article of the present invention is obtained by foaming prefoamed particles having a maximum foaming ability of 1.2 to 2.0, obtained by foaming expandable styrene-based resin particles by a factor of 20 to 70 times, with heated steam. And a fusion rate of 0 to 60%.

【0012】(発泡性スチレン系樹脂粒子)本発明に用
いられる発泡性スチレン系樹脂粒子は、通常スチレン系
単量体を水中に懸濁させ、重合開始剤の存在下で懸濁重
合し、重合の完了前ないし完了後に発泡剤等を添加・含
浸することにより製造するか、特開昭49−2994号
公報に示されるように、スチレン系重合体粒子を水中に
懸濁させ、これにスチレン系単量体を連続的もしくは断
続的に供給して、重合開始剤の存在下でシード重合し、
重合の完了前ないし完了後に発泡剤等を添加・含浸する
ことにより製造される。スチレン系単量体としては、ス
チレン単独、またはスチレンおよびスチレンと重合可能
な単量体の組み合わせが挙げられる。
(Expandable Styrene Resin Particles) The expandable styrene resin particles used in the present invention are usually prepared by suspending a styrene monomer in water and subjecting it to suspension polymerization in the presence of a polymerization initiator. Before or after the completion of the styrene-based polymer particles, or by impregnating with a foaming agent or the like, or as disclosed in JP-A-49-2994, by suspending styrene-based polymer particles in water, Seed polymerization in the presence of a polymerization initiator by supplying the monomer continuously or intermittently,
It is manufactured by adding and impregnating a foaming agent or the like before or after completion of the polymerization. Examples of the styrene-based monomer include styrene alone or a combination of styrene and a monomer polymerizable with styrene.

【0013】スチレンと重合可能な単量体としては、例
えばα−メチルスチレン等のスチレン誘導体、アクリル
酸、メタクリル酸、メタクリル酸エステル類、アクリル
エステル類、ジビニルベンゼンなどが挙げられる。発泡
剤としては、例えばプロパン、n−ブタン、イソブタ
ン、n−ペンタン、イソペンタン、シクロペンタン等の
脂肪族炭化水素、HCFC−141b等のハロゲン化炭
素が挙げられ、これらは単独でまたは2種以上を組合わ
せて用いることができる。発泡剤の使用量は、目的とす
る発泡倍数によって適宜調整され、特に限定されない
が、通常、得られる発泡性スチレン系樹脂粒子の1〜2
0重量%程度が好ましく、3〜12重量%程度がさらに
好ましい。また、スチレン系単量体を重合させる際に、
所望により、各種添加剤を添加してもよい。そのような
添加剤としては、例えば酸化防止剤、滑剤、難燃剤、難
燃助剤、帯電防止剤等が挙げられる。
Examples of monomers polymerizable with styrene include styrene derivatives such as α-methylstyrene, acrylic acid, methacrylic acid, methacrylic esters, acrylic esters, and divinylbenzene. Examples of the blowing agent include aliphatic hydrocarbons such as propane, n-butane, isobutane, n-pentane, isopentane, and cyclopentane; and halogenated carbons such as HCFC-141b. These may be used alone or in combination of two or more. They can be used in combination. The amount of the foaming agent used is appropriately adjusted depending on the desired foaming multiple, and is not particularly limited.
It is preferably about 0% by weight, more preferably about 3 to 12% by weight. Also, when polymerizing the styrene monomer,
If desired, various additives may be added. Examples of such additives include an antioxidant, a lubricant, a flame retardant, a flame retardant auxiliary, and an antistatic agent.

【0014】(予備発泡粒子)本発明に用いられる予備
発泡粒子は、上記のようにして得られる発泡性スチレン
系樹脂粒子を水蒸気等で加熱して予備発泡することによ
り得られる。加熱温度は95〜100℃程度が好まし
い。また、水蒸気の圧力は0.03〜0.08kgf/
cm2程度が好ましい。本発明に用いられる予備発泡粒
子は、嵩倍数20〜70倍に発泡させて得られるもので
あり、好ましくは30〜60倍である。なお、予備発泡
粒子の嵩倍数は、所定重量の予備発泡粒子をメスシリン
ダー等の計測容器に入れて、嵩容量を計測し、その容量
を重量で除した値である。
(Pre-expanded Particles) The pre-expanded particles used in the present invention can be obtained by pre-expanding the expandable styrene resin particles obtained as described above by heating them with steam or the like. The heating temperature is preferably about 95 to 100 ° C. The pressure of the steam is 0.03 to 0.08 kgf /
cm 2 is preferable. The pre-expanded particles used in the present invention are obtained by expanding the bulk number 20 to 70 times, preferably 30 to 60 times. The bulk multiple of the pre-expanded particles is a value obtained by placing a predetermined weight of the pre-expanded particles in a measuring container such as a measuring cylinder, measuring the bulk capacity, and dividing the volume by the weight.

【0015】(発泡能力)本発明の発泡成形体に使用す
る予備発泡粒子の発泡能力は、予備発泡粒子を、多量の
沸騰水中に水没させて所定の時間加熱して後述する測定
法にて測定する。所定時間毎に加熱して測定した発泡能
力の最大のものを最大発泡能力とする。前記予備発泡粒
子の最大発泡能力は、1.2〜2.0であり、好ましく
は1.3〜1.8である。最大発泡能力が1.2より低
いと、加熱蒸気圧を0.4kgf/cm2以上に上げて
予備発泡粒子を発泡成形しても、強度の弱いザクロ状の
発泡成形体しか得られず、特に曲げ強度が著しく低下す
る。また、逆に最大発泡能力が2.0を超えると、融着
率が60%を超える発泡成形体が得られやすく、成形時
に微妙な加熱蒸気圧の変化で発泡成形体の融着率が変動
しやすいため、安定した融着率の一次成形体を得るのが
困難となる。また、発泡能力は、発泡性スチレン系樹脂
粒子における発泡剤の使用量、スチレン系樹脂の重合
度、架橋度、予備発泡粒子の熟成時間などを変えること
により調整できる。例えば、目的とする予備発泡粒子の
発泡倍数が50倍である場合、発泡剤の使用量を3〜8
重量%に減らすことによって、最大発泡能力を1.2〜
2.0に調整することができる。
(Expansion ability) The expansion ability of the pre-expanded particles used in the expanded molded article of the present invention is measured by immersing the pre-expanded particles in a large amount of boiling water, heating the pre-expanded particles for a predetermined period of time, and measuring by the measurement method described later. I do. The maximum foaming capacity measured by heating every predetermined time is defined as the maximum foaming capacity. The maximum foaming ability of the pre-expanded particles is from 1.2 to 2.0, preferably from 1.3 to 1.8. When the maximum foaming capacity is lower than 1.2, even if the pre-expanded particles are foamed by raising the heating steam pressure to 0.4 kgf / cm 2 or more, only a pomegranate-like foamed article having a low strength is obtained. Flexural strength is significantly reduced. Conversely, if the maximum foaming ability exceeds 2.0, a foamed molded article having a fusion rate exceeding 60% is easily obtained, and the fusion rate of the foamed molded article fluctuates due to a slight change in the heating steam pressure during molding. Therefore, it is difficult to obtain a primary molded body having a stable fusion rate. The foaming ability can be adjusted by changing the amount of the foaming agent used in the expandable styrene resin particles, the degree of polymerization of the styrene resin, the degree of crosslinking, the aging time of the pre-expanded particles, and the like. For example, when the expansion ratio of the target pre-expanded particles is 50 times, the usage amount of the blowing agent is 3 to 8
The maximum foaming capacity is reduced to 1.2 to
It can be adjusted to 2.0.

【0016】(発泡スチレン系樹脂成形体、発泡成形
体)本発明の発泡成形体は、予備発泡粒子を多数の小孔
を有する発泡成形体用金型に充填し、蒸気等で発泡成形
して、発泡粒子を相互に融着させた後、冷却して金型か
ら取り出すことにより製造できる。発泡成形工程におい
て、加熱蒸気の圧力は通常0.4〜1.2kgf/cm
2程度であり、0.6〜0.9kgf/cm2程度が好ま
しい。
(Expanded Styrenic Resin Molded Article, Expanded Molded Article) The expanded molded article of the present invention is obtained by filling pre-expanded particles into a mold for an expanded molded article having a large number of small holes, and foam-forming with steam or the like. It can be manufactured by fusing the foamed particles to each other, cooling, and taking out from the mold. In the foam molding process, the pressure of the heating steam is usually 0.4 to 1.2 kgf / cm.
About 2 and preferably about 0.6 to 0.9 kgf / cm 2 .

【0017】(融着率)本発明の発泡成形体の融着率
は、0〜60%であり、0〜40%がより好ましい。発
泡成形体の融着率の測定は、発泡成形体の表面にナイフ
で約5mmの深さのクラックを入れた後、このクラック
に沿って成形体を割り、破断面を観察し、粒子の全個数
に対する粒子自体が破壊した粒子数の割合を求めること
により得られる。一般に、発泡成形体の融着率が60%
を下回ると、成形体として不良品であるという評価がな
されていた。しかしながら、実際に融着率0〜60%の
成形体の物性強度を測ってみると、本発明の発泡成形体
は、融着率が低いにも関わらず、十分な物性を有し、省
エネルギーやリサイクルの観点ですばらしい特長を備え
ていることが見出された。中でも、圧縮強度に関して
は、全く低下せず、むしろ融着率が60%を超える成形
体よりも圧縮強度の上がる場合のあることがわかった。
このことは、従来の知見とはまったく逆である。
(Fusion rate) The fusion rate of the foam molded article of the present invention is from 0 to 60%, more preferably from 0 to 40%. The measurement of the fusion ratio of the foamed molded article was performed by placing a crack having a depth of about 5 mm on the surface of the foamed molded article with a knife, breaking the molded article along the crack, observing the fracture surface, and measuring the total particle size. It can be obtained by calculating the ratio of the number of broken particles to the number of particles themselves. Generally, the fusion ratio of the foam molded article is 60%.
When the value was lower than the above, it was evaluated that the molded product was defective. However, when the physical property strength of the molded article having a fusion rate of 0 to 60% is actually measured, the foam molded article of the present invention has sufficient physical properties, despite the low fusion rate, and has an energy-saving property. It has been found to have excellent features in terms of recycling. Among them, it was found that the compressive strength did not decrease at all, but rather the compressive strength was sometimes higher than that of a molded article having a fusion ratio exceeding 60%.
This is completely opposite to the conventional knowledge.

【0018】この理由としては、融着率を上げるときに
は加熱圧を高めに設定することがしばしば行なわれる
が、そのため内圧の高まりによりセル破壊や比重ムラが
生じたり、発泡粒の部分的な扁平が生じているためと考
えられる。一般に、発泡成形体の物性のうち、曲げ強度
は融着率が低下するに従って低下する傾向にある。しか
しながら、再発泡粒子の最大発泡能力が1.2〜2.0
の範囲では、たとえ融着率が0%であっても曲げ強度の
低下は少なく、融着率100%の曲げ強度よりも15%
程度しか低下していないことが分かった。曲げ強度が1
5%ほど低下する程度であれば、成形体の密度を上げた
り、成形体の使用量を増やしたりすることで対応できる
ので、再生利用が容易というメリットを考慮すれば、大
した問題ではない。
The reason for this is that when the fusion rate is increased, the heating pressure is often set to a higher value. For this reason, an increase in the internal pressure may cause cell destruction or specific gravity unevenness, or a partial flattening of the foamed particles may occur. It is considered that it has occurred. In general, among the physical properties of a foam molded article, the bending strength tends to decrease as the fusion rate decreases. However, the maximum foaming capacity of the re-expanded particles is 1.2 to 2.0.
In the range, even if the fusion rate is 0%, the decrease in bending strength is small, and is 15% less than the bending strength at a fusion rate of 100%.
It was found that the degree had only decreased. Flexural strength is 1
If the decrease is about 5%, it can be dealt with by increasing the density of the molded body or increasing the amount of the molded body used. Therefore, it is not a serious problem in view of the merit that recycling is easy.

【0019】なお、融着率が0%でも曲げ強度が極端に
低下しないのは、予備発泡粒子間の空隙がなく、クラッ
クが生じにくいため割れにくいこと、特に表皮付きの場
合はより割れにくいことがその理由として考えられる。
また、融着率が0%でも、各発泡粒子は界面の一部分で
点状に融着しているため割れにくいとも推測される。ま
た、発泡粒子界面で融着していても、融着強度が予備発
泡粒子が破断するよりも強力ではないから、破砕時に発
泡粒子の界面に沿って離れても、割れにくい場合もあ
る。発泡成形体における融着率は、発泡成形時の条件
や、発泡予備発泡粒子の表面処理を行なうことによって
調節してもよい。発泡成形体の融着率を調節するための
成形条件として、例えば融着率を下げるには、加熱蒸気
の圧力を下げるとか、両面加熱などの加熱時間を短くす
ることが挙げられる。
The reason why the bending strength is not extremely reduced even when the fusion rate is 0% is that there is no void between the pre-expanded particles and cracks are hardly generated, so that the particles are hardly broken. Is considered as the reason.
Further, even if the fusion rate is 0%, it is presumed that each foamed particle is less likely to be broken because it is fused in a dotted manner at a part of the interface. Also, even if the fusion is performed at the interface of the expanded particles, the fusion strength is not as strong as that of the pre-expanded particles. The fusion ratio in the foam molded article may be adjusted by the conditions at the time of foam molding or by performing a surface treatment on the foamed pre-expanded particles. Molding conditions for adjusting the fusion rate of the foam molded article include, for example, lowering the fusion rate by lowering the pressure of the heated steam or shortening the heating time such as double-sided heating.

【0020】また、予備発泡粒子の粒子同志の合着を防
ぐため、例えばジンクステアレート、マグネシウムステ
アレート、炭酸カルシウム等や、その他有機系の表面処
理剤を用いてもよい。表面処理剤の使用量は、予備発泡
粒子の重量に対して0.3重量%程度以下であり、これ
より多く使用しても効果に差がないばかりか、充填ホー
スや発泡成形装置内の小孔に表面処理剤の詰まりが生じ
やすくなって好ましくない。本発明の発泡成形体の発泡
倍数は、20〜70倍程度が好ましく、30〜60倍程
度がより好ましい。発泡倍数が70倍を超えると気泡膜
が薄くなるため、破泡により独立気泡率が低下し、発泡
成形体の耐衝撃性などの物性が低下するので好ましくな
い。また、逆に発泡倍数が20倍より低いと、発泡成形
体の重量が増加して輸送コストがかさむので好ましくな
い。
Further, in order to prevent the particles of the pre-expanded particles from coalescing with each other, for example, zinc stearate, magnesium stearate, calcium carbonate or the like, or other organic surface treating agents may be used. The amount of the surface treatment agent used is about 0.3% by weight or less based on the weight of the pre-expanded particles. Clogging of the pores with the surface treatment agent is likely to occur, which is not preferable. The expansion multiple of the foamed molded article of the present invention is preferably about 20 to 70 times, and more preferably about 30 to 60 times. If the foaming multiple exceeds 70 times, the cell membrane becomes thin, so that the closed cell ratio is reduced due to foam breakage, and the physical properties such as impact resistance of the foamed molded product are undesirably reduced. Conversely, if the foaming multiple is lower than 20, the weight of the foamed molded article increases and the transportation cost increases, which is not preferable.

【0021】(破砕粒)発泡成形体の破砕には、公知の
破砕手段を用いることができ、具体的には、乾式破砕機
として衝撃式破砕機やせん断式破砕機等が用いられる。
さらに、破砕粒を一定の寸法範囲のものにするには、分
級等の手段を用いてふるい分けることが好ましい。特に
1mm以下の微粉砕片を除去することは、混合成形体の
表面の粉浮きや、外観不良を防ぐために、また製造に際
して金型の小孔詰まりを防止するためにも好ましい。本
発明の粉砕片の粒径は、短径の長さが2〜7mmが好ま
しく、さらに好ましいのは2〜5mmである。なお、短
径の長さとは、種々の大きさの破砕粒の中で最も大きな
破砕粒の縦、横、高さのうち、最も短い部分を測定した
値である。破砕粒の短径が7mmを超えると、成形機の
充填口が詰まりやすくなり、充填性が悪くなる。また、
短径が2mm未満になると、微粉砕片が増えて金型の小
孔詰まり等の起きやすくなる。
(Crushed Granules) Known crushing means can be used for crushing the foam molded article. Specifically, an impact crusher, a shear crusher, or the like is used as a dry crusher.
Further, in order to make the crushed particles have a certain size range, it is preferable to sieve using a means such as classification. In particular, it is preferable to remove finely crushed pieces of 1 mm or less in order to prevent the floating of powder on the surface of the mixed molded product and poor appearance, and also to prevent clogging of small holes in the mold during production. As for the particle size of the crushed pieces of the present invention, the length of the minor axis is preferably 2 to 7 mm, more preferably 2 to 5 mm. The length of the minor axis is a value obtained by measuring the shortest part among the vertical, horizontal, and height of the largest crushed particle among various sizes of crushed particles. If the short diameter of the crushed particles exceeds 7 mm, the filling port of the molding machine is easily clogged, and the filling property is deteriorated. Also,
When the minor axis is less than 2 mm, finely crushed pieces are increased, and clogging of small holes in a mold is liable to occur.

【0022】(独立気泡率)本発明の破砕粒の独立気泡
率は、50〜100%であるのが好ましく、60〜10
0%であるのがより好ましい。独立気泡率は、破砕粒の
保水率を変えることにより適宜調節できる。例えば、破
砕粒の保水率が0.04〜0.10であるときは、独立
気泡率が約50〜100%の範囲にある。独立気泡率の
測定は、ASTM D−2856(Standard Method fo
r MEASURING THE OPEN CELL CONTENT OF RIGID CELLULA
R PLASTICS BY THE AIR PYCNOMETER)に準拠して行なっ
た。 装置 :空気比較式比重計930型 [東芝ベックマン
(株)製] 方法 :1−1/2−1気圧法 試験片:発泡粒 0.50g(見かけ体積は、アルキメ
デス法により測定)
(Closed cell rate) The closed cell rate of the crushed granules of the present invention is preferably 50 to 100%, and is preferably 60 to 10%.
More preferably, it is 0%. The closed cell rate can be appropriately adjusted by changing the water retention of the crushed particles. For example, when the water retention of the crushed particles is 0.04 to 0.10. The closed cell rate is in the range of about 50 to 100%. The measurement of the closed cell rate is performed according to ASTM D-2856 (Standard Method fo).
r MEASURING THE OPEN CELL CONTENT OF RIGID CELLULA
R PLASTICS BY THE AIR PYCNOMETER). Apparatus: Air comparison specific gravity meter 930 type [manufactured by Toshiba Beckman Co., Ltd.] Method: 1-1 / 2-1 atmospheric pressure method Test piece: foamed particles 0.50 g (apparent volume is measured by Archimedes method)

【0023】(保水率)破砕粒の独立気泡率が高いこと
を表すものとして、破砕粒の保水率がある。発泡粒子が
破断されたり、独立気泡構造が破壊されたりすると、非
独立気泡構造、すなわち連続気泡構造を有する形状(ス
ポンジ状)になり、保水性が増す。したがって、保水率
が低いほど独立気泡率は高いことになる。本発明の破砕
粒の保水率は0.04〜0.10であり、0.04〜
0.08がより好ましい。保水率が0.10を超える
と、破砕粒の独立気泡率が低くなり、良好な混合成形品
を得られ難い。なお、独立気泡率が100%でも保水率
が0.04である場合があるが、これは残留粒間水と考
えられる。
(Water Retention) The high water retentivity of the crushed granules indicates that the closed cell ratio of the crushed granules is high. When the foamed particles are broken or the closed cell structure is broken, a non-closed cell structure, that is, a shape (sponge-like) having an open cell structure is obtained, and water retention is increased. Therefore, the lower the water retention, the higher the closed cell rate. The water retention of the crushed granules of the present invention is 0.04 to 0.10.
0.08 is more preferred. If the water retention exceeds 0.10, the closed cell ratio of the crushed particles becomes low, and it is difficult to obtain a good mixed molded product. Although the water retention rate may be 0.04 even when the closed cell rate is 100%, this is considered to be residual intergranular water.

【0024】保水率が0.04〜0.10である破砕粒
は、体積比で10〜60%の比率で、予備発泡粒子と混
合しても良好な混合成形体とすることができる。なお、
保水率の測定は、先ず、短径の長さを2〜5mmに分級
して揃えた破砕粒3gの重量(乾燥試料重量)および嵩
倍数を測定する。この破砕粒を、目開きが1mm以下の
水切り用の不織布またはネットに詰め、水面下15cm
のところに水没させて24時間放置する。次いで、目開
きが0.5〜1.5mm角の金網に破砕粒を載せ、金網
を30度に傾けて、30秒間放置した後、破砕粒の重量
(吸水試料重量)を測定する。最初に測定した破砕粒の
重量および嵩倍数ならびに吸水後の破砕粒の重量を次の
式に代入して保水率を算出する。
The crushed granules having a water retention of 0.04 to 0.10 can be mixed with the pre-expanded particles at a volume ratio of 10 to 60% to form a favorable mixed molded article. In addition,
In the measurement of the water retention, first, the weight (dry sample weight) and the bulk factor of 3 g of the crushed granules obtained by classifying the minor axis length into 2 to 5 mm and arranging them are measured. The crushed granules are packed in a non-woven cloth or net for draining with an opening of 1 mm or less, and 15 cm below the water surface
And left for 24 hours. Next, the crushed particles are placed on a wire mesh having an opening of 0.5 to 1.5 mm square, the wire mesh is tilted at 30 degrees and left for 30 seconds, and then the weight of the crushed particles (weight of a water-absorbing sample) is measured. The water retention rate is calculated by substituting the weight and bulk factor of the crushed particles measured first and the weight of the crushed particles after water absorption into the following formula.

【0025】 なお、水切り袋は、後記の実施例で使用した日本サンパ
ック(株)製の不織布およびポリエチレン製の三角コー
ナー水切り袋(270×250mm)のように、目開き
0.5〜1.5mmのPE、PP、PET製の不織布ま
たはネットであるのが好ましい。
[0025] The draining bag is made of a nonwoven fabric manufactured by Nippon Sunpac Co., Ltd. and a triangular corner draining bag made of polyethylene (270 × 250 mm) used in the examples described later. , PP, PET, or a non-woven fabric or net.

【0026】(破砕粒の発泡能力)本発明における破砕
粒の発泡能力は、上記の破砕粒を前述した発泡能力の測
定と同様に、多量の沸騰水に水没させて加熱して測定す
る。このようにして得られる破砕粒の最大発泡能力は
1.2〜1.6であり、1.3〜1.6がより好まし
い。破砕粒の最大発泡能力が1.2を下回ると、発泡成
形時に破砕粒が予備発泡粒子に押し潰されて、混合成形
品の強度が極端に低下する。また、逆に最大発泡能力が
1.6を上回ると混合成形体内部に破砕粒が収縮してで
きる空隙が発生しやすい。
(Foaming ability of crushed grains) The foaming ability of crushed grains in the present invention is measured by immersing the crushed grains in a large amount of boiling water and heating them in the same manner as in the measurement of the foaming ability described above. The maximum foaming ability of the crushed granules thus obtained is 1.2 to 1.6, and more preferably 1.3 to 1.6. If the maximum foaming capacity of the crushed particles is less than 1.2, the crushed particles are crushed by the pre-expanded particles during foam molding, and the strength of the mixed molded product is extremely reduced. Conversely, if the maximum foaming ability exceeds 1.6, voids formed by shattering of crushed particles are likely to be generated inside the mixed molded product.

【0027】(破砕粒混合成形体)本発明の破砕粒混合
成形体は、破砕粒と、発泡性スチレン系樹脂粒子を所定
の嵩倍数に発泡して得られる予備発泡粒子とを混合し
て、型内発泡成形して製造することができる。混合粒子
中の破砕粒の割合は、体積比で10〜60%程度が好ま
しく、20〜50%程度がより好ましい。従来の融着率
の高い発泡成形体を破砕した従来の破砕粒では、混合で
きる割合が体積比で20%が限度であり、それ以上の混
合比になると、混合成形体の物性強度が極端に低下し、
成形体の外観も著しく低下する傾向があった。混合成形
体の物性強度が低下するのは、予備発泡粒子の発泡力が
強いのに対し、破砕粒の発泡能力が弱いため、破砕粒が
押し潰されて、収縮した形状になるからである。その
上、予備発泡粒子が過剰に発泡して、部分的に高発泡と
なり、混合成形体全体の強度が低下するものと考えられ
る。
(Crushed particle mixed molded article) The crushed particle mixed molded article of the present invention is obtained by mixing crushed particles and pre-expanded particles obtained by expanding expandable styrene resin particles to a predetermined bulk multiple. It can be manufactured by in-mold foam molding. The ratio of the crushed particles in the mixed particles is preferably about 10 to 60% by volume, more preferably about 20 to 50%. In the conventional crushed granules obtained by crushing the conventional foam molded product having a high fusion rate, the mixing ratio is limited to 20% by volume, and if the mixing ratio is higher, the physical strength of the mixed molded product is extremely high. Drop,
The appearance of the molded article also tended to be significantly reduced. The reason why the physical strength of the mixed molded article is reduced is that the foaming power of the pre-expanded particles is strong, whereas the foaming ability of the crushed particles is weak, so that the crushed particles are crushed into a shrunk shape. In addition, it is considered that the pre-expanded particles are excessively expanded, partially become highly expanded, and the strength of the whole mixed molded article is reduced.

【0028】(混合成形体に使用する予備発泡粒子の最
大発泡能力)さらに良好な二次成形体を得るためには、
予備発泡粒子の最大発泡能力も調整する必要がある。予
備発泡粒子の最大発泡能力が高すぎると、破砕粒の独立
気泡率が高くても、破砕粒が予備発泡粒子に押し潰され
て、予備発泡粒子がその分過剰に発泡するため、部分的
に高発泡になり二次成形体全体の強度が低下する。その
解決方法として、本発明では、予備発泡粒子が最大発泡
能力を示す加熱条件と同じ条件で、発泡スチレン系樹脂
破砕粒を加熱したときの発泡能力と予備発泡粒子の最大
発泡能力との差が1.0以下であるときに、物性の低下
が少ない良好な二次成形体を得ることができる。したが
って、混合成形体に使用する予備発泡粒子の最大発泡能
力は1.4〜2.1程度であるのが好ましい。上記の混
合粒子を成形して得られた混合成形体の融着率を60%
以下に調節することにより、この混合成形体をさらに再
利用することもできる。
(Maximum Foaming Ability of Pre-Expanded Particles Used in Mixed Molded Article) To obtain a better secondary molded article,
The maximum foaming capacity of the pre-expanded particles also needs to be adjusted. If the maximum foaming capacity of the pre-expanded particles is too high, even if the closed cell ratio of the crushed particles is high, the crushed particles are crushed by the pre-expanded particles, and the pre-expanded particles are excessively foamed by that much, so that the High foaming results in a decrease in the strength of the entire secondary molded body. As a solution to this, in the present invention, the difference between the foaming ability when the crushed expanded styrene resin particles are heated and the maximum foaming ability of the pre-expanded particles is the same under the same heating conditions as the pre-expanded particles exhibit the maximum foaming ability. When it is 1.0 or less, a good secondary molded body with little deterioration in physical properties can be obtained. Therefore, the maximum foaming ability of the pre-expanded particles used in the mixed molded product is preferably about 1.4 to 2.1. The fusion ratio of the mixed molded product obtained by molding the mixed particles is 60%.
By adjusting below, the mixed molded product can be further reused.

【0029】[0029]

【実施例】以下、本発明を実施例によりさらに詳しく説
明するが、本発明はこれらの実施例により限定されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0030】[実施例1〜3、比較例1および2] [発泡性スチレン樹脂粒子の製造] [合成例1]内容積100リットルの、攪拌機を備えた
重合槽に、水40.0リットル、ピロリン酸マグネシウ
ム100g、ドデシルベンゼンスルホン酸ナトリウム
1.8gを入れ、次いでスチレン40.0kg、ベンゾ
イルパーオキサイド96.0gおよびt−ブチルパーオ
キシベンゾエート29.0gを添加し、攪拌下に、90
℃に昇温して重合温度とした。次に、この温度で6時間
保持し、さらに125℃に昇温してから2時間後、冷却
してスチレン樹脂粒子を得た。得られた樹脂粒子を分級
し、1.0〜1.2mmのスチレン樹脂粒子を得た。次
に、内容積5リットルの、攪拌機を備えた重合槽に、上
で得られたスチレン樹脂粒子1800g、水2200
g、ピロリン酸マグネシウム6.0g、ドデシルベンゼ
ンスルホン酸ナトリウム0.3g、トルエン18gを入
れ、攪拌しながら90℃に昇温した後、n−ブタン18
0g(使用率10%)を圧入し、5時間保持した。次い
で、30℃以下まで冷却し、発泡性スチレン樹脂粒子
を得た。取り出した発泡性スチレン樹脂粒子を乾燥
し、15℃の恒温室で5日間熟成した。
[Examples 1 to 3, Comparative Examples 1 and 2] [Production of expandable styrene resin particles] [Synthesis Example 1] In a polymerization tank having an internal volume of 100 liters and provided with a stirrer, 40.0 liters of water were added. 100 g of magnesium pyrophosphate and 1.8 g of sodium dodecylbenzenesulfonate were added, and then 40.0 kg of styrene, 96.0 g of benzoyl peroxide and 29.0 g of t-butylperoxybenzoate were added, and 90 g of the mixture was stirred.
The temperature was raised to ° C. to obtain the polymerization temperature. Next, the temperature was maintained at this temperature for 6 hours, and after further raising the temperature to 125 ° C., 2 hours later, cooling was performed to obtain styrene resin particles. The obtained resin particles were classified to obtain styrene resin particles of 1.0 to 1.2 mm. Next, 1800 g of the styrene resin particles obtained above and 2200 water were placed in a polymerization tank having an internal volume of 5 liters and equipped with a stirrer.
g, 6.0 g of magnesium pyrophosphate, 0.3 g of sodium dodecylbenzenesulfonate, and 18 g of toluene. The mixture was heated to 90 ° C. while stirring, and then n-butane 18 was added.
0 g (10% use rate) was injected and held for 5 hours. Next, the mixture was cooled to 30 ° C. or lower to obtain expandable styrene resin particles. The extracted expandable styrene resin particles were dried and aged in a thermostatic chamber at 15 ° C. for 5 days.

【0031】[合成例2]ブタンの使用量を144g
(使用率8%)に変えた以外は、上記と同様にして発泡
性スチレン樹脂粒子を得た。 [合成例3]ブタンの使用量を54g(使用率3%)に
変えた以外は、上記と同様にして発泡性スチレン系樹脂
粒子を得た。 [合成例4]ブタンの使用量を108g(使用率6%)
に変えた以外は、上記と同様にして発泡性スチレン系樹
脂粒子を得た。
[Synthesis Example 2] 144 g of butane was used
(Utilization rate: 8%), except that foamable styrene resin particles were obtained in the same manner as above. [Synthesis Example 3] Expandable styrene resin particles were obtained in the same manner as described above except that the amount of butane used was changed to 54 g (3% use rate). [Synthesis Example 4] The amount of butane used was 108 g (use rate 6%)
Was obtained in the same manner as described above, except that styrene-based resin particles were obtained.

【0032】[予備発泡と予備発泡粒子の発泡能力測
定]内容積33L(有効容積25L)のバッチ発泡機
に、合成例1〜3で得られた発泡性スチレン系樹脂粒子
〜各500gをそれぞれ投入し、蒸気温度99℃の
吹込蒸気を圧力0.05kgf/cm2で圧入して表1
に示す予備発泡粒子〜を得た。また同様に発泡性ス
チレン系樹脂粒子を830g投入して、30倍に発泡
させた予備発泡粒子を得た。得られた各予備発泡粒子
〜を1日熟成放置した後、下記の方法にて最大発泡
能力を測定した。
[Prefoaming and Measurement of Foaming Ability of Prefoamed Particles] Into a batch foaming machine having an internal volume of 33 L (effective volume 25 L), 500 g each of the expandable styrene resin particles obtained in Synthesis Examples 1 to 3 were charged. Then, the injected steam at a steam temperature of 99 ° C. was injected at a pressure of 0.05 kgf / cm 2 , and the pressure was adjusted as shown in Table 1.
The following pre-expanded particles were obtained. Similarly, 830 g of expandable styrene-based resin particles were added to obtain pre-expanded particles which were expanded 30 times. After each of the obtained pre-expanded particles was aged for 1 day, the maximum foaming ability was measured by the following method.

【0033】[0033]

【表1】 [Table 1]

【0034】[発泡能力の測定と最大発泡能力]発泡能
力の測定方法は、予め予備発泡粒子の嵩倍数を測定して
おき、この予備発泡粒子を、例えば容量1リットルで目
開きが1mmの金網製蓋付き籠容器に入れて蓋をする。
次いで、直径20cmの円筒型容器に容量10リットル
以上の水を入れ、大気下において1キロワットの電熱器
で加熱して沸騰させる。次いで、加熱して沸騰させなが
ら沸騰水中に予備発泡粒子が入った籠容器を素早く水没
し、所定の時間加熱発泡した後、籠容器ごと素早く取り
出す。取り出した後、室温で3時間放置し、その後、こ
の発泡粒子の嵩倍数を測定する。沸騰水中で加熱した発
泡粒子の嵩倍数を加熱する前の予備発泡粒子の嵩倍数で
除した値を発泡能力とした。この操作を所定時間経過毎
に繰り返して、それぞれの時点での値を求め、最も高い
値を最大発泡能力とした。
[Measurement of foaming capacity and maximum foaming capacity] The foaming capacity is measured by measuring the bulk multiple of the pre-expanded particles in advance, and using the pre-expanded particles as a wire mesh having a capacity of 1 liter and an opening of 1 mm, for example. Put in a basket with a lid and make a lid.
Next, water having a capacity of 10 liters or more is put into a cylindrical container having a diameter of 20 cm, and heated by an electric heater of 1 kilowatt in the atmosphere to boil. Next, the basket container containing the pre-expanded particles is quickly submerged in boiling water while being heated and boiled, and after being heated and foamed for a predetermined time, the basket container is quickly taken out. After being taken out, it is left at room temperature for 3 hours, and then the bulk multiple of the expanded particles is measured. The value obtained by dividing the bulk multiple of the expanded beads heated in the boiling water by the bulk multiple of the pre-expanded particles before heating was defined as the expansion capacity. This operation was repeated every predetermined time, and the value at each time was determined, and the highest value was defined as the maximum foaming ability.

【0035】[発泡成形体]上で得られた各予備発泡粒
子〜を、ACE−3SP成形機[積水工機(株)
製]の金型(金型寸法:300×400×100mm)
内に充填し、以下の成形条件で発泡成形を行った。 蒸気成形圧力 表2参照 金型加熱時間 8秒 一方加熱時間 15秒 両面加熱時間 15秒 水冷時間 30秒 得られた発泡成形体〜の発泡倍数はそれぞれ50倍
であり、その他の物性(最大発泡能力、融着率、曲げ強
度、曲げ強度低下率、圧縮強度および圧縮強度低下率)
を表2に示す。なお、曲げ濃度低下率および圧縮強度低
下率は発泡成形体の曲げ強度および圧縮強度を100
として、求めた値を%表示した。発泡成形体の外観
は、表面発泡粒の伸びが不十分であったが、それ以外の
成形体の外観は良好であった。
Each of the pre-expanded particles obtained on the [expanded molded article] is converted into an ACE-3SP molding machine [Sekisui Koki Co., Ltd.]
(Mold size: 300 × 400 × 100mm)
And foamed under the following molding conditions. Steam forming pressure See Table 2 Mold heating time 8 seconds On the other hand heating time 15 seconds Double-sided heating time 15 seconds Water cooling time 30 seconds Each of the obtained foamed moldings has a foaming multiple of 50 times, and other physical properties (maximum foaming capacity) , Fusion rate, bending strength, bending strength reduction rate, compression strength and compression strength reduction rate)
Are shown in Table 2. In addition, the bending strength reduction rate and the compression strength reduction rate are determined by setting the bending strength and the compression strength of the foamed molded article to 100%.
The calculated value was expressed in%. As for the appearance of the foamed molded article, the elongation of the foamed surface particles was insufficient, but the appearance of the other molded articles was good.

【0036】[0036]

【表2】 [Table 2]

【0037】[実施例4]上記の予備発泡粒子(最大
発泡能力1.4)を、実施例2と同じ条件で発泡成形
し、発泡倍数30倍の発泡成形体を得た。 発泡成形体は、融着率10%、曲げ強度3.7kgf
/cm2 、圧縮強度1.90kgf/cm2であった。なお、曲
げ強度および圧縮強度の測定方法は、以下の通りであ
る。 [曲げ強度測定]JIS−9511に準じて行った。試
験試料を支持台の上に置き、支点間の中央部に毎分10
mmの荷重速度で荷重を加え、最大荷重を測定し、計算
式に代入して曲げ強度(kgf/cm2)を求めた。
Example 4 The above-mentioned pre-expanded particles (maximum foaming capacity: 1.4) were subjected to foam molding under the same conditions as in Example 2 to obtain a foam molded article having a foaming factor of 30 times. The foam molding has a fusion rate of 10% and a flexural strength of 3.7 kgf.
/ Cm 2 , and the compressive strength was 1.90 kgf / cm 2 . In addition, the measuring method of bending strength and compressive strength is as follows. [Measurement of bending strength] This was performed according to JIS-9511. The test sample is placed on a support and the center between the fulcrums is
A load was applied at a load speed of mm, the maximum load was measured, and substituted into a calculation formula to determine the bending strength (kgf / cm 2 ).

【0038】[圧縮強度測定]JIS−9511に準じ
て行った。すなわち、試験試料を毎分10mmの速度で
圧縮し、5%の圧縮歪みが生じた時の応力(kgf/c
2)を求めた。
[Measurement of Compressive Strength] Measured according to JIS-9511. That is, the test sample is compressed at a rate of 10 mm per minute, and the stress (kgf / c) when a compressive strain of 5% occurs.
m 2 ) was determined.

【0039】[実施例5〜9、比較例3および4] [破砕と混合成形]上記の発泡成形体、、および
を、発泡プラスチックのリサイクルに使用されている
衝撃式破砕機を用いてそれぞれ破砕した。破砕は、粗破
砕と細破砕との2段階に分けて行なった。粗破砕は、せ
ん断破砕機[(株)名濃製 商品名:FSC−310]
を用いて40mmに破砕した。また、細破砕は、衝撃式
破砕機[(株)名濃製 商品名:MC−1]を用いて破
砕した。得られた破砕粒〜を篩機で上限7mmおよ
び下限2mmで分級した。分級した破砕粒の収率は、破
砕粒では、重量比で75%であり、2mm以下の微粒
が多く発生したのに対し、破砕粒では89%、破砕粒
では96%、破砕粒では93%であり、2mm以下
の微粒の発生が少ないことが確認できた。したがって、
融着率が低い発泡成形体を破砕して得られる本発明に係
る破砕粒は、破砕し易く微粒の発生が少ない。 次い
で、得られた破砕粒〜の残ガス量を一定にするた
め、40℃の恒温槽で7日間放置した。
[Examples 5 to 9 and Comparative Examples 3 and 4] [Crushing and Mixing Molding] The above foamed molded article and the above foamed article were crushed using an impact crusher used for recycling of foamed plastic. did. Crushing was performed in two stages, coarse crushing and fine crushing. Coarse crushing is performed by a shear crusher [trade name: FSC-310, manufactured by Nao Corporation].
And crushed to 40 mm. The fine crushing was performed using an impact crusher [trade name: MC-1 manufactured by Nano Corporation]. The obtained crushed granules were classified with a sieve at an upper limit of 7 mm and a lower limit of 2 mm. The yield of the classified crushed granules was 75% by weight in the crushed granules, and many fine particles of 2 mm or less were generated, whereas 89% of the crushed granules, 96% of the crushed granules, and 93% of the crushed granules. It was confirmed that generation of fine particles of 2 mm or less was small. Therefore,
The crushed granules according to the present invention obtained by crushing a foam molded article having a low fusion rate are easily crushed and generate few fine particles. Next, in order to keep the residual gas amount of the obtained crushed particles to constant, it was left in a constant temperature bath at 40 ° C. for 7 days.

【0040】[0040]

【表3】 [Table 3]

【0041】表3に記載の各破砕粒〜と、表1に記
載の予備発泡粒子とを、表4に示す混合比率で均一に混
合し、蒸気成形圧力を0.7kgf/cm2とした以外
は、発泡成形体の成形と同様にして発泡成形を行なっ
た。
Each of the crushed particles shown in Table 3 and the pre-expanded particles shown in Table 1 were uniformly mixed at a mixing ratio shown in Table 4, and the steam forming pressure was set to 0.7 kgf / cm 2. Was subjected to foam molding in the same manner as the molding of the foam molded article.

【0042】[0042]

【表4】 [Table 4]

【0043】得られた破砕粒混合成形体〜の曲げ強
度、曲げ強度低下率、圧縮強度、圧縮強度低下率および
融着率をそれぞれ測定した。その結果を表4に示した。
なお、曲げ濃度低下率および圧縮強度低下率は発泡成形
体の曲げ強度および圧縮強度を100として、これか
ら求めた値を%表示した。また、混合粒子を発泡成形し
ても二次成形体の物性低下が少ない。そのため、破砕粒
の混合比率を従来よりも高めることができる。
The bending strength, the reduction rate of the bending strength, the compression strength, the reduction rate of the compression strength and the fusion rate of the obtained crushed and mixed granules were measured. Table 4 shows the results.
In addition, the bending density reduction rate and the compression strength reduction rate are represented by%, with the bending strength and the compression strength of the foamed molded article taken as 100. In addition, even if the mixed particles are subjected to foam molding, the physical properties of the secondary molded body are not significantly reduced. Therefore, the mixing ratio of the crushed particles can be increased as compared with the conventional case.

【0044】[実施例7]表3の破砕粒と表1の予備
発泡粒子とを体積比で70%と30%の割合で均一に
混合し、上記と同様に発泡成形した。得られた破砕粒混
合成形体の曲げ強度は3.26kgf/cm2、融着
率は50%であった。また、予備発泡粒子が最大発泡
能力を示す沸騰水中での加熱時間60秒と同じ条件で加
熱した時の破砕粒の発泡能力は1.04であり、発泡
能力の差は0.56であった。
Example 7 The crushed particles shown in Table 3 and the pre-expanded particles shown in Table 1 were uniformly mixed at a volume ratio of 70% and 30%, and foamed in the same manner as described above. The bending strength of the obtained crushed grain mixed molded product was 3.26 kgf / cm 2 , and the fusion rate was 50%. When the pre-expanded particles were heated under the same conditions as the heating time of 60 seconds in boiling water showing the maximum foaming ability, the foaming ability of the crushed granules was 1.04, and the difference in the foaming ability was 0.56. .

【0045】[0045]

【発明の効果】本発明の発泡成形体は、物性強度がほと
んど低下せず、また融着率が0〜60%であるから、破
砕機で容易に破砕することができる。また、本発明に係
る破砕粒には独立気泡構造が十分に保たれているため、
予備発泡粒子と混合して発泡成形することにより、良質
の発泡成形体を得ることができる。しかも、破砕粒の混
合割合を高めることができるから、発泡成形体の再生利
用を効率よく行なうことができる。
The foam molded article of the present invention can be easily crushed by a crusher since the physical strength is hardly reduced and the fusion ratio is 0 to 60%. Further, since the closed cells structure is sufficiently maintained in the crushed granules according to the present invention,
By mixing with the pre-expanded particles and subjecting to foam molding, a high-quality foam molded article can be obtained. In addition, since the mixing ratio of the crushed particles can be increased, the foam molded article can be efficiently recycled.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発泡性スチレン系樹脂粒子を嵩倍数20
〜70倍に発泡して得られた最大発泡能力が1.2〜
2.0である予備発泡粒子を、発泡成形して得られる、
融着率が0〜60%であることを特徴とする発泡スチレ
ン系樹脂成形体。
1. The method according to claim 1, wherein the expandable styrene resin particles have a bulk factor of 20.
The maximum foaming ability obtained by foaming up to 70 times is 1.2 to
2.0 pre-expanded particles are obtained by foam molding.
A foamed styrene-based resin molded product having a fusion rate of 0 to 60%.
【請求項2】 請求項1に記載の発泡スチレン系樹脂成
形体を破砕して得られた最大発泡能力が1.2〜1.6
である発泡スチレン系樹脂破砕粒。
2. The maximum foaming ability obtained by crushing the foamed styrenic resin molded product according to claim 1 is 1.2 to 1.6.
Styrene resin crushed particles.
【請求項3】 単位体積当たりの保水率が、0.04〜
0.10である請求項2に記載の発泡スチレン系樹脂破
砕粒。
3. The water retention rate per unit volume is from 0.04 to
The styrene resin foam crushed particles according to claim 2, wherein the particle diameter is 0.10.
【請求項4】 独立気泡率が50〜100%である請求
項2または3に記載の発泡スチレン系樹脂破砕粒。
4. The crushed styrene resin particles according to claim 2, wherein the closed cell ratio is 50 to 100%.
【請求項5】 短径の長さが2〜7mmである請求項2
〜4のいずれか1つに記載の発泡スチレン系樹脂破砕
粒。
5. The length of the minor axis is 2 to 7 mm.
5. The crushed granules of expanded styrene resin according to any one of items 4 to 4.
【請求項6】 請求項2〜5のいずれか1つに記載の発
泡スチレン系樹脂破砕粒と、発泡性スチレン系樹脂粒子
を発泡して得られた予備発泡粒子とを混合した、前記発
泡スチレン系樹脂破砕粒の含量が体積比で10〜60%
である混合粒子を、発泡成形して得られる発泡スチレン
系樹脂破砕粒混合成形体。
6. The expanded styrene obtained by mixing the crushed expanded styrene resin particles according to claim 2 and pre-expanded particles obtained by expanding the expandable styrene resin particles. 10-60% by volume of crushed resin particles
A foamed styrene-based resin crushed particle mixed molded product obtained by subjecting the mixed particles to foam molding.
【請求項7】 予備発泡粒子の最大発泡能力が1.4〜
2.1である請求項6に記載の発泡スチレン系樹脂破砕
粒混合成形体。
7. The maximum foaming ability of the pre-expanded particles is from 1.4 to 1.4.
The foamed styrene-based resin crushed particle mixed molded article according to claim 6, which is 2.1.
【請求項8】 予備発泡粒子が最大発泡能力を示す加熱
条件と同じ条件で、発泡スチレン系樹脂破砕粒を加熱し
たときの発泡能力と予備発泡粒子の最大発泡能力との差
が1.0以下である請求項6または7に記載の発泡スチ
レン系樹脂破砕粒混合成形体。
8. The difference between the foaming capacity when the crushed styrene resin particles are heated and the maximum foaming capacity of the pre-expanded particles is 1.0 or less under the same heating conditions as those under which the pre-expanded particles exhibit the maximum foaming ability. The foamed styrene-based resin crushed granule mixed molded product according to claim 6 or 7.
JP2000136236A 2000-05-09 2000-05-09 Foamed polystyrene-based resin molding Pending JP2001316512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136236A JP2001316512A (en) 2000-05-09 2000-05-09 Foamed polystyrene-based resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136236A JP2001316512A (en) 2000-05-09 2000-05-09 Foamed polystyrene-based resin molding

Publications (1)

Publication Number Publication Date
JP2001316512A true JP2001316512A (en) 2001-11-16

Family

ID=18644214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136236A Pending JP2001316512A (en) 2000-05-09 2000-05-09 Foamed polystyrene-based resin molding

Country Status (1)

Country Link
JP (1) JP2001316512A (en)

Similar Documents

Publication Publication Date Title
JP5372783B2 (en) Expandable polystyrene resin particles, method for producing the same, and foam molded article
KR101477124B1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
JPH0313057B2 (en)
WO2012043439A1 (en) Expandable polystyrene resin particles and process for producing same, pre-expanded polystyrene resin beads, molded polystyrene resin foam and process for producing same, heat insulator, and cushioning medium
JP5603629B2 (en) Method for producing thermoplastic resin pre-expanded particles, method for producing thermoplastic resin foam molding
JP6130700B2 (en) Expandable thermoplastic resin particles, thermoplastic resin foam particles, and foamed molded article
JP2007283576A (en) Manufacturing process of foamed polyolefinic resin molding utilizing compression volume-reduced waste foamed polyolefinic resin molding
JP5603628B2 (en) Expandable polystyrene resin particles and method for producing the same, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP2011068776A (en) Foam-molded article
JPH0598062A (en) Foamable styrene resin granule and production thereof
JP2001316512A (en) Foamed polystyrene-based resin molding
JP2007203559A (en) Manufacturing process of foamed polyolefin based resin molding using lump obtained from waste foamed polyolefin based resin molding
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
US7456227B2 (en) Polymer particles and related articles
JP5425654B2 (en) Expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and polystyrene resin foam molded article
JP2013072003A (en) Foamable polystyrene-based resin particles and method for producing the same, polystyrene-based resin prefoamed particles, and polystyrene-based resin foamed molding
JP2006116818A (en) Method for producing foamed polyolefin resin molding using waste foamed polyolefin resin molding and its molding
JP2798572B2 (en) Method for producing recycled expanded polystyrene resin molded article
JP3310886B2 (en) Regenerated foamable styrene resin particles, method for producing the same, and regenerated foamed styrene resin molded article
JP2004292489A (en) Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product
JP2002012692A (en) Foaming rubber-modified styrene-based resin particle, method for producing the same and foamed molded material
JP2001040132A (en) Production of resin foamed product
JP5734611B2 (en) Expandable polystyrene resin particles and production method thereof, polystyrene resin pre-expanded particles, polystyrene resin foam molding
JP2023147765A (en) Production method of expandable styrenic resin particle, expandable styrenic resin particle, pre-expanded styrenic resin particle, styrenic resin expanded molding, and cleaning method of expandable particle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050607