JP2001314986A - Laser beam cutting method - Google Patents

Laser beam cutting method

Info

Publication number
JP2001314986A
JP2001314986A JP2000133274A JP2000133274A JP2001314986A JP 2001314986 A JP2001314986 A JP 2001314986A JP 2000133274 A JP2000133274 A JP 2000133274A JP 2000133274 A JP2000133274 A JP 2000133274A JP 2001314986 A JP2001314986 A JP 2001314986A
Authority
JP
Japan
Prior art keywords
groove
laser
cutting
laser beam
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000133274A
Other languages
Japanese (ja)
Inventor
Hirofumi Imai
浩文 今井
Naoya Hamada
直也 浜田
Hiroyuki Yamamoto
博之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000133274A priority Critical patent/JP2001314986A/en
Publication of JP2001314986A publication Critical patent/JP2001314986A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P25/00Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress
    • B23P25/003Auxiliary treatment of workpieces, before or during machining operations, to facilitate the action of the tool or the attainment of a desired final condition of the work, e.g. relief of internal stress immediately preceding a cutting tool
    • B23P25/006Heating the workpiece by laser during machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an absorption coefficient improving effect at a groove by a relatively small output laser power even in the case of a fast cutting speed. SOLUTION: A separate preceding laser beam 2 is arranged in front of a main laser beam 7 for cutting a steel plate 5. The steel plate is cut along a groove by the main laser beam 7 while forming the groove 1 on the surface of the steel plate. The steel plate has a washboard-shape having irregularities crossing across the cutting line in the bottom shape of the groove formed by the preceding laser beam 2. Pitch of the irregularities is made larger than the wave length of the main cutting laser or the pitch of the irreguralities of the groove bottom is controlled by the pulse repetition frequency control while using pulse modulation of a pulse laser or a continuous wave laser as the preceding laser beam, or pulse of an asist gas stream is used when grooving by the preceding laser beam to control the pitch of the irregularities of the groove bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザビームの照射
によって、厚鋼板等一般に表面に酸化物層や異物付着を
有する金属材料を切断するレーザ切断方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser cutting method for cutting a metal material, such as a thick steel plate, generally having an oxide layer or a foreign matter adhered to the surface thereof by irradiating a laser beam.

【0002】[0002]

【従来の技術】一般に、厚鋼板では表面に酸化物層(ス
ケール)が生成している。これは高温での仕上げ圧延後
に冷却床にて放置されている間に表面の酸化が進むため
生成するものである。このスケールは大気と鋼板を遮断
し、厚板本体のさらなる酸化を防止する役割を果たすた
め、通常、厚板はスケール付きで取引されている。
2. Description of the Related Art Generally, an oxide layer (scale) is formed on the surface of a thick steel plate. This is generated because oxidation of the surface proceeds while being left on the cooling floor after finish rolling at a high temperature. Plates are usually traded with scales, since they serve to block the atmosphere and the steel plate and prevent further oxidation of the plate body.

【0003】一方、厚鋼板は平板状の成品であり、生産
者側で需要家の要求寸法に精整して出荷する。この際の
寸法精整のための切断手段は、従来、シャー切断、ガス
切断などがある。近年、切断速度の高速性からレーザ切
断、プラズマ切断などが注目されている。中でも、レー
ザ切断は切断の精度、切断しろ(カーフ幅)の狭さ、ド
ロスフリーなどの好ましい特徴を有しており、レーザの
高出力化に伴い、厚板分野にても広まりつつある。
On the other hand, a thick steel plate is a plate-shaped product, and the producer adjusts to the dimensions required by the customer before shipping. Conventionally, cutting means for dimension adjustment include shear cutting and gas cutting. In recent years, laser cutting, plasma cutting, and the like have attracted attention due to the high cutting speed. Above all, laser cutting has preferable features such as cutting accuracy, narrow cutting margin (kerf width), and dross-free, and has been spreading in the field of thick plates with the increase in laser output.

【0004】従来、レーザ切断は比較的表面性状のきれ
いな薄板分野にて効果を発揮してきた。特に、自動運転
や後工程省略による省力化効果が大きいとされていた。
しかしながら、厚板においては表面性状が必ずしもきれ
いとか均一とは言えないことから、断面のえぐれやドロ
ス付着などの切断不良を発生して、その優位性が著しく
損なわれているのが現状である。
[0004] Conventionally, laser cutting has been effective in the field of thin sheets having relatively clean surface properties. In particular, it was described that the power saving effect by the automatic operation and the omission of the post-process was great.
However, since the surface properties of a thick plate are not always clean or uniform, poor cutting properties such as scrambled cross-sections and dross adhesion have occurred, and the superiority thereof has been significantly impaired.

【0005】これらの切断不良を装置的に抑制する方法
として、特開平10−277763号公報のような手段
が開示されている。これは発明者らの考案によるもので
あるが、鋼板を切断するための主レーザビームの前方
に、別途、小出力の先行レーザビームを配し、オンライ
ンで鋼板表面に溝を付与しつつ、直後に該溝に沿って後
行の主切断ビームにて切断するレーザ切断方法である。
溝内壁での主切断ビームの多重反射による吸収率の増加
が断面品質向上のポイントとなっている。上記方法は、
確かに厚板の表面性状の不均一に起因する切断不良に対
して非常に高い耐性を有することがわかっている。
[0005] As a method for suppressing such a cutting failure in terms of a device, means as disclosed in Japanese Patent Application Laid-Open No. Hei 10-277773 is disclosed. This is due to the inventors' invention, but in front of the main laser beam for cutting the steel sheet, separately, a small output preceding laser beam is arranged, and while the groove is provided on the steel sheet surface online, First, there is a laser cutting method for cutting along a groove with a succeeding main cutting beam.
An increase in the absorptance due to multiple reflections of the main cutting beam on the inner wall of the groove is a point of improving the cross-sectional quality. The above method
Certainly, it has been found that the sheet has extremely high resistance to cutting defects caused by uneven surface properties of the thick plate.

【0006】しかし、その後の発明者らの実験により、
意外な事実が判明した。それによれば、吸収係数の増加
は溝深さ100μm程度から見られており、そのときの
溝幅は実用上700μm程度であることを考慮すると、
溝の断面形状はV字ではなく、ごく浅いU字形である。
これでは、溝側壁での多重反射は起こり得ず、溝底部の
形状に吸収増大の原因を求めざるを得ない。この事実が
そもそも本発明の着眼点となった。
However, following experiments by the inventors,
An unexpected fact turned out. According to this, the increase in the absorption coefficient is observed from the groove depth of about 100 μm, and considering that the groove width at that time is about 700 μm in practical use,
The cross-sectional shape of the groove is not a V-shape but a very shallow U-shape.
In this case, multiple reflections on the groove side wall cannot occur, and the shape of the groove bottom has to be determined for the cause of increased absorption. This fact was the focus of the present invention.

【0007】また、発明者らは、溝加工の速度依存性に
ついても検討した。切断対象材の板厚が比較的厚く、切
断速度が1m/分以下程度の低い領域では、平均出力2
00W程度の小出力の先行レーザにて、吸収率増大効果
の発現する深さ100μm、幅700μm程度の溝を形
成することが可能であるが、板厚20mm以下程度の中厚
板領域では、良好切断面を得るための適正切断速度がよ
り速くなるため、上記のような小出力では十分な溝深さ
を得ることが困難であることも確認した。もちろん、溝
付与用レーザの出力を増大すればそのような状況にても
溝深さは深くできる。しかしながら、それでは、単に設
備投資額の増大につながり、工業的には望ましくない。
[0007] The inventors have also studied the speed dependence of groove processing. In a region where the material to be cut is relatively thick and the cutting speed is as low as 1 m / min or less, the average output 2
It is possible to form a groove having a depth of about 100 μm and a width of about 700 μm at which an absorptivity increasing effect is exhibited with a low power laser of about 00 W, but it is good in a medium thickness area of about 20 mm or less. It was also confirmed that it was difficult to obtain a sufficient groove depth with the above small output because the appropriate cutting speed for obtaining the cut surface was faster. Of course, if the output of the groove providing laser is increased, the groove depth can be increased even in such a situation. However, this simply leads to an increase in capital investment, which is not industrially desirable.

【0008】[0008]

【発明が解決しようとする課題】本発明の課題とすると
ころは、切断速度が速い場合でも比較的小出力のレーザ
パワーにて浅い溝でも十分な吸収率向上効果を得ること
である。すなわち、工業的に有利なることを狙いとし
て、少ないレーザパワーにて再現性良く微細なV溝列を
形成することを課題とするものである。
An object of the present invention is to obtain a sufficient effect of improving the absorptivity even in a shallow groove with a relatively small output laser power even when the cutting speed is high. That is, it is an object of the present invention to form a fine V-groove array with low laser power and good reproducibility with the aim of industrial advantage.

【0009】[0009]

【課題を解決するための手段】そこで、発明者らは、少
ないパワーの溝形成用レーザにより不良抑制効果を発現
させる可能性を調査すべく、様々な条件下で作成した溝
の底部形状を表面粗度計にて測定したところ、吸収係数
の増加が良く見られた溝の底部は滑らかでなく、特徴的
な凹凸を有することを見い出した。この凹凸のピッチは
切断用レーザの波長である10.6μmよりも大きく、
V溝に近い形状をしていることがわかった。つまり、こ
の場合、ビームの多重反射は溝の側壁でなく、溝底部の
微細な洗濯板状のV溝列にて起こり、切断用レーザに対
する実効的な吸収係数を増加させると考えられるのであ
る。実用的な結論として、発明者らは、吸収係数の増加
は単に溝の深さだけに依存するものではなく、溝が浅く
とも、溝底部に洗濯板状の微細V溝が適当な条件下で付
与されていさえすれば起こり得ることを知見したのであ
る。
In order to investigate the possibility of using a low power groove forming laser to exert a defect suppressing effect, the inventors of the present invention applied the groove bottom formed under various conditions to the surface. As a result of measurement using a roughness meter, it was found that the bottom of the groove where the increase of the absorption coefficient was well observed was not smooth but had characteristic irregularities. The pitch of the irregularities is larger than 10.6 μm, which is the wavelength of the cutting laser,
It turned out that it has a shape close to a V groove. In other words, in this case, it is considered that the multiple reflection of the beam occurs not in the side wall of the groove but in the row of V-shaped grooves in the form of a small washing plate at the bottom of the groove, thereby increasing the effective absorption coefficient for the cutting laser. As a practical conclusion, the inventors have found that the increase in absorption coefficient does not depend solely on the depth of the groove, but even if the groove is shallow, a washing plate-shaped fine V-groove at the bottom of the groove can be obtained under appropriate conditions. They found that it could happen as long as it was granted.

【0010】したがって、前記課題は以下の本発明の構
成、すなわち (1)レーザを用いた鋼材の切断において、鋼板を切断
するための主レーザビームの前方に、別の先行レーザビ
ームを配し、鋼板表面に溝を付与しつつ、該溝に沿って
主切断ビームにて切断するレーザ切断方法において、該
先行レーザビームが形成する溝の底部形状が切断線方向
に対して横切る凹凸部を有する洗濯板状の形状であるこ
とを特徴とするレーザ切断方法。 (2)上記レーザ切断方法において、溝底部の凹凸のピ
ッチが主切断レーザの波長より大きいことを特徴とする
レーザ切断方法。 (3)上記レーザ切断方法において、先行レーザビーム
としてパルスレーザまたは連続波レーザのパルス変調を
用い、パルス繰り返し周波数の制御によって該溝底部の
凹凸のピッチを制御することを特徴とするレーザ切断方
法。 (4)上記レーザ切断方法において、先行ビームによる
溝つけの際に、アシストガス流の脈動を利用して、該溝
底部の凹凸のピッチを制御することを特徴とするレーザ
切断方法。により解決できる。
[0010] Therefore, the above-mentioned problem is solved by the following constitution of the present invention: (1) In cutting a steel material by using a laser, another preceding laser beam is arranged in front of a main laser beam for cutting a steel plate; In a laser cutting method in which a groove is formed on a surface of a steel sheet and a main cutting beam is cut along the groove, a washing method having a concave and convex portion in which a bottom shape of a groove formed by the preceding laser beam crosses in a cutting line direction. A laser cutting method having a plate-like shape. (2) The laser cutting method, wherein the pitch of the concave and convex portions at the groove bottom is larger than the wavelength of the main cutting laser. (3) In the laser cutting method, a pulse modulation of a pulse laser or a continuous wave laser is used as the preceding laser beam, and the pitch of the concave and convex portions at the bottom of the groove is controlled by controlling a pulse repetition frequency. (4) The laser cutting method according to the above, wherein the pitch of the unevenness at the bottom of the groove is controlled by utilizing the pulsation of the assist gas flow when the groove is formed by the preceding beam. Can be solved.

【0011】[0011]

【発明の実施の形態】以下、本発明の本旨とするところ
をより詳らかとするために図面に基づき説明を行う。図
1は本発明の一実施例を示す図である。本実施例では、
溝1付与のためのレーザビーム源として、パルスレーザ
(図示せず)を用いることができる。フラッシュランプ
励起パルスYAGレーザを用いることができる。本レー
ザビーム2をコア径800μmのステップインデックス
型光ファイバー3に導光し、ファイバー出射端には1対
1の結像光学系を内蔵した集光ヘッド4を備えて、鋼板
5表面に集光、照射する。そして、照射点に対し、溝加
工の進行方向に向かってエアジェットノズル6よりエア
ジェットを吹き付け、溶けた鋼を除去する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, in order to clarify the gist of the present invention, description will be made with reference to the drawings. FIG. 1 shows an embodiment of the present invention. In this embodiment,
A pulse laser (not shown) can be used as a laser beam source for providing the groove 1. A flash lamp pumped pulse YAG laser can be used. The laser beam 2 is guided to a step index type optical fiber 3 having a core diameter of 800 μm, and a focusing head 4 having a one-to-one image forming optical system is provided at the fiber emitting end. Irradiate. Then, an air jet is blown from the air jet nozzle 6 to the irradiation point in the direction in which the groove processing proceeds, and the molten steel is removed.

【0012】溝1付与の条件設定は次のように一般化で
きる。すなわち、溝1加工用のレーザビーム2と鋼材5
の相対速度をv(m/s)、主切断レーザビーム7の波
長をλ(m)、溝加工用レーザのパルス繰り返し周波数
をf(Hz)、同レーザの集光ビーム径をd(m)、溝底
部の凹凸ピッチをp(m)とすると、p=v/fで、d
>p>λとなるように、パルス繰り返し周波数fを選ぶ
べきであるということになる。つまり、主切断レーザの
波長λより狭い幅の溝には同レーザ光が入り込めないた
めと、パルス化された溝加工用ビームには前後のパルス
との照射点の重なり合いが必要であるからである。上式
を書き換えれば、v/λ>f>v/dである。このと
き、雪の上を小股で足跡を重ねながら歩くとき踵の痕跡
が残って洗濯板上の溝のように、レーザによる溝加工の
進行方向と直角な向きに溝加工用レーザビームによる適
度に微細なV溝パターンが付いていく。
The condition setting for providing the groove 1 can be generalized as follows. That is, the laser beam 2 for machining the groove 1 and the steel material 5
Is the relative speed of v (m / s), the wavelength of the main cutting laser beam 7 is λ (m), the pulse repetition frequency of the groove processing laser is f (Hz), and the focused beam diameter of the laser is d (m). When the pitch of the concave and convex portions at the bottom of the groove is p (m), p = v / f and d
This means that the pulse repetition frequency f should be selected so that>p> λ. In other words, the laser beam cannot enter the groove having a width smaller than the wavelength λ of the main cutting laser, and the pulsed groove processing beam needs to overlap the irradiation points with the preceding and succeeding pulses. is there. By rewriting the above equation, v / λ>f> v / d. At this time, when walking while straddling the footprints on the snow, the traces of the heels remain, and like a groove on the washing board, the laser beam for groove processing in a direction perpendicular to the direction of the groove processing by the laser , A fine V-groove pattern follows.

【0013】例えば、エアジェットノズル6の開口径は
2.5mm、元圧は0.5MPa 、吹き付け角度は45°、
照射点とノズル開口部までの距離は10mmとした。この
際、集光ヘッド4は固定で、鋼材5を移動させた。鋼材
5の移動速度は1.0m/分とした。YAGレーザのパ
ルス繰り返し周波数は550Hzとした。鋼材5上でのY
AGレーザパワーは120Wであった。このとき、溝底
部の凹凸のピッチは33μmとなった。波長10.6μ
mの炭酸ガスレーザにて吸収率測定を行ったところ、ス
ケール面では65%、溝部では98%となった。
For example, the opening diameter of the air jet nozzle 6 is 2.5 mm, the original pressure is 0.5 MPa, the spray angle is 45 °,
The distance between the irradiation point and the nozzle opening was 10 mm. At this time, the light collecting head 4 was fixed and the steel material 5 was moved. The moving speed of the steel material 5 was 1.0 m / min. The pulse repetition frequency of the YAG laser was 550 Hz. Y on steel 5
The AG laser power was 120W. At this time, the pitch of the unevenness at the bottom of the groove was 33 μm. Wavelength 10.6μ
When the absorption rate was measured with a carbon dioxide laser of m, it was 65% on the scale surface and 98% on the groove.

【0014】なお、本実施例においては、底部に凹凸を
有する溝付与のためのレーザとしてフラッシュランプ励
起パルスYAGレーザを用いたが、連続波レーザに変調
をかけるなど他の方法を用いることもできる。実際に
は、市販のレーザ装置の能力による制約がある。例え
ば、溝加工用のYAGレーザの集光径が700μmとす
るとき、パルス繰り返し周波数を30Hzとすることがで
きるが、この繰り返しにて平均出力を120Wとするに
はパルス当たり4Jとなり、かなり大型のフラッシュラ
ンプ励起YAGレーザが相当する。従って、本発明の本
旨である経済性を活かすには比較的早い繰り返しの可能
な連続波励起レーザにて変調をかける方がより好適であ
る。このことを発明者らは指摘しておく。
In this embodiment, a flash lamp excitation pulse YAG laser is used as a laser for forming grooves having irregularities at the bottom, but other methods such as modulating a continuous wave laser may be used. . In practice, there are limitations due to the capabilities of commercially available laser devices. For example, when the converging diameter of a YAG laser for groove processing is 700 μm, the pulse repetition frequency can be 30 Hz. A flashlamp pumped YAG laser corresponds. Therefore, in order to make use of the economics of the present invention, it is more preferable to apply modulation by a continuous wave pump laser that can be repeated relatively quickly. The inventors point out this fact.

【0015】図2は本発明の別の実施例を示す図であ
る。本実施例では、溝1付与のためのビーム源として、
連続波レーザ(図示せず)を用いることができる。より
具体的には、いわゆるアークランプ励起連続波YAGレ
ーザを用いることができる。本レーザビーム2をコア径
800μmのステップインデックス型光ファイバー3に
導光し、ファイバー出射端には1対1の結像光学系を内
蔵した集光ヘッド4を備えて、鋼板5表面に集光、照射
する。鋼材5上でのYAGレーザパワーは120W程度
とする。そして、照射点に対し、溝加工の進行方向に向
かってエアジェットノズル6よりエアジェットを吹き付
け、溶けた鋼を除去する。
FIG. 2 is a diagram showing another embodiment of the present invention. In this embodiment, as a beam source for providing the groove 1,
A continuous wave laser (not shown) can be used. More specifically, a so-called arc lamp pumped continuous wave YAG laser can be used. The laser beam 2 is guided to a step index type optical fiber 3 having a core diameter of 800 μm, and a focusing head 4 having a one-to-one image forming optical system is provided at the fiber emitting end. Irradiate. The YAG laser power on the steel 5 is about 120 W. Then, an air jet is blown from the air jet nozzle 6 to the irradiation point in the direction in which the groove processing proceeds, and the molten steel is removed.

【0016】エアジェットノズル6の開口径は2.5m
m、元圧は0.5MPa 、吹き付け角度は45°、照射点
とノズル開口部までの距離は10mmとした。この際、集
光ヘッド4は固定で、鋼材5を移動させた。鋼材5の移
動速度は1.0m/分とした。エアの供給管8に電磁バ
ルブ9を設け、周期的に同バルブ9の開閉を行うことに
より、エアジェットに時間的な脈動を発生させた。本実
施例では550Hzとした。このとき、溝底部の凹凸のピ
ッチは約30μmとなった。波長10.6μmの炭酸ガ
スレーザにて吸収率測定を行ったところ、スケール面で
は65%、溝部では98%となった。
The opening diameter of the air jet nozzle 6 is 2.5 m.
m, the original pressure was 0.5 MPa, the spray angle was 45 °, and the distance between the irradiation point and the nozzle opening was 10 mm. At this time, the light collecting head 4 was fixed and the steel material 5 was moved. The moving speed of the steel material 5 was 1.0 m / min. An electromagnetic valve 9 was provided in the air supply pipe 8, and the valve 9 was opened and closed periodically to generate a temporal pulsation in the air jet. In this embodiment, the frequency is set to 550 Hz. At this time, the pitch of the unevenness at the groove bottom was about 30 μm. When the absorptance was measured by a carbon dioxide gas laser having a wavelength of 10.6 μm, it was 65% on the scale surface and 98% on the groove.

【0017】溝1付与の条件設定は次のように一般化で
きる。すなわち、集光ヘッド4と鋼材5の相対速度をv
(m/s)、レーザの波長をλ(m)、エアジェットの
脈動周波数をf(Hz)、溝底部の凹凸ピッチをp(m)
とすると、p=v/f>λとなるように、エアジェット
の脈動周波数fを選ぶべきである。また、風圧の影響径
をd(m)、溝底部の凹凸ピッチをp(m)とすると
き、d>p=v/fとなるように、パルス繰り返し周波
数fを選ぶべきである。まとめると、v/λ>f>v/
dとなる。なお、本実施例においては、エアジェットの
脈動を作り出す方法として、電磁バルブを用いたが、エ
アジェットノズル自体を偏向させるなど他の方法を用い
ても良い。
The condition setting for providing the groove 1 can be generalized as follows. That is, the relative speed between the light collecting head 4 and the steel material 5
(M / s), the wavelength of the laser is λ (m), the pulsation frequency of the air jet is f (Hz), and the uneven pitch at the groove bottom is p (m).
Then, the pulsation frequency f of the air jet should be selected so that p = v / f> λ. When the diameter of the influence of the wind pressure is d (m) and the pitch of the grooves at the bottom of the groove is p (m), the pulse repetition frequency f should be selected so that d> p = v / f. In summary, v / λ>f> v /
d. In the present embodiment, the electromagnetic valve is used as a method for generating the pulsation of the air jet. However, other methods such as deflecting the air jet nozzle itself may be used.

【0018】上記のようなレーザ切断方法では、溝の側
壁での多重反射効果を得るために溝自体の深さを深くす
る必要性がなく、浅い溝で済む。したがって、切断速度
が速い場合でも対応できる。つまり、上記と同じ120
Wで定常的なレーザ出力および定常的なエアジェットに
て溝加工を実施した場合は、1.0m/分の速度では溝
深さが50μm程度しかいかず、溝側壁での多重反射に
よる吸収増大効果が得られない。従来の引用例(特開平
10−277763号公報)において同効果発現の溝深
さとされる底部凹凸無しの溝にて深さ100μmを確保
するには速度を0.6m/分程度まで落とす必要があ
る。
In the laser cutting method as described above, there is no need to increase the depth of the groove itself in order to obtain the multiple reflection effect on the side wall of the groove, and a shallow groove is sufficient. Therefore, it is possible to cope with a case where the cutting speed is high. That is, the same as the above 120
When groove processing is performed with a constant laser output and a constant air jet at W, the groove depth is only about 50 μm at a speed of 1.0 m / min, and absorption increases due to multiple reflection on the groove side wall. No effect. In order to secure a depth of 100 μm in a groove having no bottom irregularity, which is a groove depth of achieving the same effect in the conventional cited example (Japanese Patent Application Laid-Open No. 10-277663), it is necessary to reduce the speed to about 0.6 m / min. is there.

【0019】[0019]

【発明の効果】以上のように本発明によるレーザ切断方
法では、効果的に溝底部の形状をコントロールすること
により、少ない先行レーザパワーで浅い溝にても主切断
レーザに対する十分な吸収率向上効果を得ることがで
き、結果としてより高速の切断速度にも対応できる。
As described above, in the laser cutting method according to the present invention, by effectively controlling the shape of the groove bottom, a sufficient absorptance improvement effect on the main cutting laser can be obtained even in a shallow groove with a small leading laser power. And a higher cutting speed can be accommodated as a result.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の概念を示す図面。FIG. 1 is a view showing the concept of a first embodiment of the present invention.

【図2】本発明の第2の実施例の概念を示す図面。FIG. 2 is a view showing the concept of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼板表面に形成された溝 2 溝形成用のレーザビーム 3 光ファイバー 4 集光ヘッド 5 鋼板 6 エアジェットノズル 7 主切断ビーム 8 エア配管 9 電磁バルブ 10 ドロス 11 エアボンベ DESCRIPTION OF SYMBOLS 1 Groove formed in steel plate surface 2 Laser beam for groove formation 3 Optical fiber 4 Condensing head 5 Steel plate 6 Air jet nozzle 7 Main cutting beam 8 Air piping 9 Electromagnetic valve 10 Dross 11 Air cylinder

フロントページの続き (72)発明者 山本 博之 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E068 AA05 AD01 AE01 AJ01 CA03 CA08 CD02 CH01 CH08 CJ01 DA14 DB01 Continuation of the front page (72) Inventor Hiroyuki Yamamoto 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 4E068 AA05 AD01 AE01 AJ01 CA03 CA08 CD02 CH01 CH08 CJ01 DA14 DB01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 レーザを用いた鋼材の切断において、鋼
板を切断するための主レーザビームの前方に、別の先行
レーザビームを配し、鋼板表面に溝を付与しつつ、該溝
に沿って主切断ビームにて切断するレーザ切断方法にお
いて、該先行レーザビームが形成する溝の底部形状が切
断線方向に対して横切る凹凸部を有する洗濯板状の形状
であることを特徴とするレーザ切断方法。
In cutting a steel material using a laser, another preceding laser beam is arranged in front of a main laser beam for cutting a steel sheet, and a groove is formed on the surface of the steel sheet along the groove. A laser cutting method for cutting with a main cutting beam, wherein the shape of the bottom of the groove formed by the preceding laser beam is a washing plate-like shape having irregularities crossing the cutting line direction. .
【請求項2】 溝底部の凹凸のピッチが主切断レーザの
波長より大きいことを特徴とする請求項1記載のレーザ
切断方法。
2. The laser cutting method according to claim 1, wherein the pitch of the unevenness at the bottom of the groove is larger than the wavelength of the main cutting laser.
【請求項3】 先行レーザビームとしてパルスレーザま
たは連続波レーザのパルス変調を用い、パルス繰り返し
周波数の制御によって該溝底部の凹凸のピッチを制御す
ることを特徴とする請求項1又は2記載のレーザ切断方
法。
3. The laser according to claim 1, wherein a pulse modulation of a pulse laser or a continuous wave laser is used as the preceding laser beam, and the pitch of the unevenness at the bottom of the groove is controlled by controlling a pulse repetition frequency. Cutting method.
【請求項4】 先行ビームによる溝つけの際に、アシス
トガス流の脈動を利用して、該溝底部の凹凸のピッチを
制御することを特徴とする請求項1又は2記載のレーザ
切断方法。
4. The laser cutting method according to claim 1, wherein the pitch of the unevenness at the bottom of the groove is controlled by using the pulsation of the assist gas flow when the groove is formed by the preceding beam.
JP2000133274A 2000-05-02 2000-05-02 Laser beam cutting method Withdrawn JP2001314986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133274A JP2001314986A (en) 2000-05-02 2000-05-02 Laser beam cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133274A JP2001314986A (en) 2000-05-02 2000-05-02 Laser beam cutting method

Publications (1)

Publication Number Publication Date
JP2001314986A true JP2001314986A (en) 2001-11-13

Family

ID=18641800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133274A Withdrawn JP2001314986A (en) 2000-05-02 2000-05-02 Laser beam cutting method

Country Status (1)

Country Link
JP (1) JP2001314986A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001463A (en) * 2001-06-08 2003-01-08 Husky Injection Molding Syst Ltd Method and device of cutting plastic by using laser beam
JP2004337983A (en) * 2003-05-13 2004-12-02 Lasag Ag Method and equipment for spot welding using laser beam
WO2009120585A2 (en) * 2008-03-27 2009-10-01 Electro Scientific Industries, Inc. Method and apparatus for laser drilling holes with gaussian pulses
WO2010131298A1 (en) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 Method of laser-welding and method of manufacturig battery including the same
CN102699536A (en) * 2012-05-11 2012-10-03 东莞光谷茂和激光技术有限公司 Laser cutting process for metal thick plate
EP2444512A4 (en) * 2009-06-19 2016-10-19 Nissan Motor Thermal spraying preprocessing geometry, thermal spraying preprocessing method, and thermal spraying preprocessing device
CN107457485A (en) * 2017-06-09 2017-12-12 西安交通大学 Improve the method for red copper laser-arc hybrid welding process stability based on algorithm for power modulation
WO2019021641A1 (en) * 2017-07-28 2019-01-31 株式会社アマダホールディングス Laser cutting method, laser cutting nozzle, and laser cutting nozzle manufacturing method
WO2019156220A1 (en) * 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
JPWO2020261537A1 (en) * 2019-06-28 2020-12-30
CN112404708A (en) * 2020-11-16 2021-02-26 柳州宏德激光科技有限公司 Laser precision cutting method for 3D (three-dimensional) special-shaped workpiece of white car body
CN112643100A (en) * 2020-12-10 2021-04-13 华侨大学 Shimming laser auxiliary milling device and method suitable for difficult-to-machine materials
JP2021070047A (en) * 2019-10-31 2021-05-06 豊田鉄工株式会社 Laser welding method for steel plate
CN114669893A (en) * 2022-05-30 2022-06-28 济南鼎点数控设备有限公司 Groove swinging head laser pipe cutting machine and method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001463A (en) * 2001-06-08 2003-01-08 Husky Injection Molding Syst Ltd Method and device of cutting plastic by using laser beam
JP2004337983A (en) * 2003-05-13 2004-12-02 Lasag Ag Method and equipment for spot welding using laser beam
JP4537763B2 (en) * 2003-05-13 2010-09-08 ラサーグ・アーゲー Method and apparatus for spot welding using a laser beam
US8866043B2 (en) 2008-03-27 2014-10-21 Electro Scientific Industries, Inc. Method and apparatus for laser drilling holes with Gaussian pulses
WO2009120585A2 (en) * 2008-03-27 2009-10-01 Electro Scientific Industries, Inc. Method and apparatus for laser drilling holes with gaussian pulses
WO2009120585A3 (en) * 2008-03-27 2009-12-17 Electro Scientific Industries, Inc. Method and apparatus for laser drilling holes with gaussian pulses
TWI460043B (en) * 2008-03-27 2014-11-11 Electro Scient Ind Inc Method and apparatus for laser drilling holes with gaussian pulses
US8237080B2 (en) 2008-03-27 2012-08-07 Electro Scientific Industries, Inc Method and apparatus for laser drilling holes with Gaussian pulses
JP4924771B2 (en) * 2009-05-15 2012-04-25 トヨタ自動車株式会社 Laser welding method and battery manufacturing method including the same
KR101250093B1 (en) * 2009-05-15 2013-04-02 도요타지도샤가부시키가이샤 Method of laser-welding and method of manufacturing battery including the same
WO2010131298A1 (en) * 2009-05-15 2010-11-18 トヨタ自動車株式会社 Method of laser-welding and method of manufacturig battery including the same
EP2444512A4 (en) * 2009-06-19 2016-10-19 Nissan Motor Thermal spraying preprocessing geometry, thermal spraying preprocessing method, and thermal spraying preprocessing device
US9562279B2 (en) 2009-06-19 2017-02-07 Nissan Motor Co., Ltd. Prespray processing method
CN102699536A (en) * 2012-05-11 2012-10-03 东莞光谷茂和激光技术有限公司 Laser cutting process for metal thick plate
CN107457485A (en) * 2017-06-09 2017-12-12 西安交通大学 Improve the method for red copper laser-arc hybrid welding process stability based on algorithm for power modulation
US11084124B2 (en) 2017-07-28 2021-08-10 Amada Holdings Co., Ltd. Laser cutting nozzle and laser cutting method
JP2019025511A (en) * 2017-07-28 2019-02-21 株式会社アマダホールディングス Laser cutting method and laser cutting nozzle production method
CN111032276A (en) * 2017-07-28 2020-04-17 株式会社天田控股集团 Laser cutting method, laser cutting nozzle, and method for manufacturing laser cutting nozzle
WO2019021641A1 (en) * 2017-07-28 2019-01-31 株式会社アマダホールディングス Laser cutting method, laser cutting nozzle, and laser cutting nozzle manufacturing method
WO2019156220A1 (en) * 2018-02-08 2019-08-15 日本製鉄株式会社 Grain-oriented electrical steel sheet
US11551838B2 (en) 2018-02-08 2023-01-10 Nippon Steel Corporation Grain-oriented electrical steel sheet
JPWO2019156220A1 (en) * 2018-02-08 2021-02-04 日本製鉄株式会社 Directional electrical steel sheet
JP7010311B2 (en) 2018-02-08 2022-02-10 日本製鉄株式会社 Directional electrical steel sheet
JP7081050B2 (en) 2019-06-28 2022-06-06 三菱重工業株式会社 Laser processing equipment
WO2020261537A1 (en) * 2019-06-28 2020-12-30 三菱重工業株式会社 Laser machining device
JPWO2020261537A1 (en) * 2019-06-28 2020-12-30
JP2021070047A (en) * 2019-10-31 2021-05-06 豊田鉄工株式会社 Laser welding method for steel plate
JP7221847B2 (en) 2019-10-31 2023-02-14 豊田鉄工株式会社 Laser welding method for steel plate
CN112404708A (en) * 2020-11-16 2021-02-26 柳州宏德激光科技有限公司 Laser precision cutting method for 3D (three-dimensional) special-shaped workpiece of white car body
CN112643100A (en) * 2020-12-10 2021-04-13 华侨大学 Shimming laser auxiliary milling device and method suitable for difficult-to-machine materials
CN114669893A (en) * 2022-05-30 2022-06-28 济南鼎点数控设备有限公司 Groove swinging head laser pipe cutting machine and method

Similar Documents

Publication Publication Date Title
JP2001314986A (en) Laser beam cutting method
US6327875B1 (en) Control of median crack depth in laser scoring
JP5384354B2 (en) Laser processing method and system
CN105271689B (en) The method for delineating sheet of brittle material
KR0158278B1 (en) Method and apparatus for laser
US7982162B2 (en) Method and apparatus for scoring and separating a brittle material with a single beam of radiation
KR101774290B1 (en) Method and apparatus of processing brittle material with laser pin beam and optical system for the same
US6812430B2 (en) Glass cutting method and apparatus with controlled laser beam energy
US20120031883A1 (en) Laser machining device and laser machining method
WO2020215596A1 (en) Laser shock strengthening method and system
EP3085465B1 (en) Apparatus for side trimming a steel plate
CA2182552A1 (en) Laser cutting of materials
JP2007055000A (en) Method and device for cutting article to be processed made of nonmetal material
CN111163897B (en) Laser cutting method for plated steel sheet
JPS59104289A (en) Method and device for cutting steel plate by laser beam
JP2001300753A (en) Method of cutting steel material with laser beam and device for the same
JP2010253654A (en) Blade edging method and blade edging device
JPH06246475A (en) Laser welding process
JPH08118053A (en) Workpiece cutting process
KR100507957B1 (en) Glass-plate cutting machine having multiple-focus lens
JPH06114582A (en) Pulse laser beam irradiating method for plated steel sheet
JP3534807B2 (en) Laser cutting method
JP2010214402A (en) Laser welding method and laser welding apparatus for metal plate
Zgripcea et al. Technology of thin metal sheet cutting with fiber laser
JP2005231035A (en) Method and apparatus for processing fragile material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703