JP2021070047A - Laser welding method for steel plate - Google Patents

Laser welding method for steel plate Download PDF

Info

Publication number
JP2021070047A
JP2021070047A JP2019198819A JP2019198819A JP2021070047A JP 2021070047 A JP2021070047 A JP 2021070047A JP 2019198819 A JP2019198819 A JP 2019198819A JP 2019198819 A JP2019198819 A JP 2019198819A JP 2021070047 A JP2021070047 A JP 2021070047A
Authority
JP
Japan
Prior art keywords
groove
laser
irradiation
steel plate
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019198819A
Other languages
Japanese (ja)
Other versions
JP7221847B2 (en
Inventor
星太 ▲濱▼▲崎▼
星太 ▲濱▼▲崎▼
Seita Hamazaki
理生 鈴森
Toshio Suzumori
理生 鈴森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Iron Works Co Ltd
Original Assignee
Toyoda Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Iron Works Co Ltd filed Critical Toyoda Iron Works Co Ltd
Priority to JP2019198819A priority Critical patent/JP7221847B2/en
Publication of JP2021070047A publication Critical patent/JP2021070047A/en
Application granted granted Critical
Publication of JP7221847B2 publication Critical patent/JP7221847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)

Abstract

To provide a laser welding method for steel plate which can suppress formation of a blow hole without performance of time-consuming adjustment.SOLUTION: A laser welding method for steel plate comprises a groove processing process, an overlapping process, and an irradiation process as follows. In the groove processing process, a groove 7, which has a width larger than that of a molten pool 6 when welding by laser irradiation from an irradiation part, is formed in one steel plate 1 of steel plates which are overlapped in a thickness direction. In the overlapping process, another steel plate is overlapped with the steel plate 1 with the groove 7 formed therein to cover opening of the groove 7. In the irradiation process, laser beam is radiated toward a bottom of the groove 7 from the irradiation part, and at the same time, the irradiation part is moved so that the molten pool 6 when welding by irradiation of the laser beam moves in an extension direction of the groove 7 in the state that the pool has an interval between itself and inside surfaces 7a on both sides in a width direction of the groove 7.SELECTED DRAWING: Figure 1

Description

本発明は、鋼板のレーザー溶接方法に関する。 The present invention relates to a method for laser welding a steel sheet.

鋼板のレーザー溶接としては、厚さ方向に重ねられた鋼板同士に対して厚さ方向に照射部からレーザーを照射し、その照射部を鋼板に沿って移動させることにより、鋼板同士を定められた長さ及び幅を有する溶接部で溶接することが知られている。 In laser welding of steel sheets, steel sheets are defined by irradiating steel sheets stacked in the thickness direction with a laser from an irradiation portion in the thickness direction and moving the irradiation portion along the steel plates. It is known to weld at welds of length and width.

ところで、レーザー溶接される鋼板においては、錆防止のために鋼板の表面が亜鉛で被覆されていたり、鋼板の表面に油分等の異物が付着していたりする場合がある。この場合、レーザーの照射による鋼板同士の溶接時、それら亜鉛や異物が溶融して蒸発することによりガスが発生し、そのガスが溶接時の溶融池に混ざり込むことによって鋼板同士の溶接部にブローホールが形成されるおそれがある。 By the way, in a steel sheet to be laser welded, the surface of the steel sheet may be coated with zinc to prevent rust, or foreign matter such as oil may adhere to the surface of the steel sheet. In this case, when the steel plates are welded by laser irradiation, the zinc and foreign matter melt and evaporate to generate gas, and the gas mixes with the molten pool at the time of welding and blows to the welded part of the steel plates. Holes may be formed.

このため、厚さ方向に重ねられた鋼板同士の間に上記ガスを逃がすための隙間を形成した状態で、レーザーの照射による鋼板同士の溶接を行うことが考えられる。このようにすれば、溶接時に鋼板表面の亜鉛や異物が溶融して蒸発することによりガスが発生したとしても、そのガスが鋼板同士の隙間を介して排出される。このため、上記ガスが溶融池に混ざり込むことはなく、そうしたガスの溶融池への混ざり込みによって抑制鋼板同士の溶接部にブローホールが形成されることは抑制される。 Therefore, it is conceivable to weld the steel sheets by laser irradiation in a state where a gap for letting the gas escape is formed between the steel sheets stacked in the thickness direction. In this way, even if zinc or foreign matter on the surface of the steel sheet melts and evaporates during welding to generate gas, the gas is discharged through the gaps between the steel sheets. Therefore, the gas does not mix in the molten pool, and the mixing of the gas into the molten pool suppresses the formation of blow holes in the welded portions of the suppressed steel sheets.

ちなみに、厚さ方向に重ねられた鋼板同士の間に隙間を形成するため、特許文献1では、溶接前に一方の鋼板に対しビームを照射することにより、その鋼板におけるビームの当たる部分を熱膨張させて突起を形成している。これにより、鋼板同士を厚さ方向に重ねたとき、上記突起によって鋼板同士の間に隙間が形成されるようになる。 Incidentally, in order to form a gap between the steel plates stacked in the thickness direction, in Patent Document 1, by irradiating one steel plate with a beam before welding, the portion of the steel plate to which the beam hits is thermally expanded. It is made to form a protrusion. As a result, when the steel plates are stacked in the thickness direction, a gap is formed between the steel plates by the protrusions.

また、特許文献2では、一方の鋼板に窪み部を屈曲形成する一方、他方の鋼板には鋼板同士を厚さ方向に重ねたときに上記窪み部に嵌め込まれる突起部を屈曲形成し、その突起部の突出量を上記窪み部の深さよりも大きくなるようにしている。これにより、鋼板同士を厚さ方向に重ねたとき、鋼板同士の間には、上記突起部の突出量と上記窪み部の深さの差に対応した大きさの隙間が形成されるようになる。 Further, in Patent Document 2, a recess is formed in one steel plate by bending, while a protrusion that is fitted into the recess is formed in the other steel plate by bending when the steel plates are stacked in the thickness direction. The amount of protrusion of the portion is set to be larger than the depth of the recessed portion. As a result, when the steel plates are stacked in the thickness direction, a gap having a size corresponding to the difference between the protrusion amount of the protrusion and the depth of the recess is formed between the steel plates. ..

特開平7−16777号公報Japanese Unexamined Patent Publication No. 7-167777 特開2013−237053号公報Japanese Unexamined Patent Publication No. 2013-237053

上記厚さ方向に重ねられた鋼板同士の間の隙間については、精度良く適切な大きさとなるようにしないと、鋼板同士の溶接に不良が生じるという問題や、鋼板同士の溶接部でのブローホールの形成を抑制できないといった問題が生じる。詳しくは、上記隙間の大きさが大きすぎると、レーザーを照射したときに鋼板同士の溶接部での溶接が適切に行われず、その溶接部での溶接に不良が生じるおそれがある。一方、上記隙間の大きさが小さすぎると、溶接時における亜鉛や異物の溶融及び蒸発によって生じるガスが上記隙間を介して効果的に排出されずに溶融池に混ざり込み、鋼板同士の溶接部にブローホールが形成されるおそれがある。 The gap between the steel plates stacked in the thickness direction must be accurately and appropriately sized, otherwise there is a problem that the welding between the steel plates is defective, and a blow hole in the welded portion between the steel plates. The problem arises that the formation of the steel cannot be suppressed. Specifically, if the size of the gap is too large, welding at the welded portion between the steel plates may not be properly performed when the laser is irradiated, and there is a possibility that the welding at the welded portion may be defective. On the other hand, if the size of the gap is too small, the gas generated by the melting and evaporation of zinc and foreign matter during welding is not effectively discharged through the gap and is mixed into the molten pool and becomes a welded portion between the steel plates. Blow holes may be formed.

しかし、特許文献1、2に示されるように鋼板同士の間に隙間を形成する場合、隙間を適正な大きさにしようとすると、多大な手間がかかるようになる。すなわち、特許文献1では、突起の大きさが上記隙間の大きさに対応しているため、その突起の大きさが適正な隙間の大きさに対応した大きさとなるよう、上記突起を形成するための鋼板に対するレーザーの照射を精密に調整しなければならない。また、特許文献2では、窪み部の深さと突起部の突出量との差が上記隙間の大きさに対応している。このため、一方の鋼板における窪み部の深さと他方の鋼板における突起部の突出量との差が適正な隙間の大きさに対応した値となるよう、それら窪み部の深さ及び突起部の突出量を精密に調整しなければならない。 However, when a gap is formed between the steel plates as shown in Patent Documents 1 and 2, it takes a lot of time and effort to make the gap an appropriate size. That is, in Patent Document 1, since the size of the protrusion corresponds to the size of the gap, the protrusion is formed so that the size of the protrusion corresponds to the appropriate size of the gap. The laser irradiation on the steel sheet of the steel sheet must be precisely adjusted. Further, in Patent Document 2, the difference between the depth of the recess and the amount of protrusion of the protrusion corresponds to the size of the gap. Therefore, the depth of the recesses and the protrusions of the protrusions so that the difference between the depth of the recesses in one steel plate and the protrusion amount of the protrusions in the other steel plate corresponds to the appropriate size of the gap. The amount must be finely adjusted.

本発明の目的は、手間のかかる調整を行わなくてもブローホールの形成を抑制できる鋼板のレーザー溶接方法を提供することにある。 An object of the present invention is to provide a laser welding method for a steel sheet capable of suppressing the formation of blow holes without performing time-consuming adjustment.

上記課題を解決する鋼板のレーザー溶接方法では、厚さ方向に重ねられた鋼板同士に対し厚さ方向に照射部からレーザーを照射し、その照射部を鋼板に沿って移動させることにより、鋼板同士を定められた長さ及び幅を有する溶接部で溶接する。更に、同溶接方法は、次のような溝加工工程、重ね工程、及び照射工程を有する。上記溝加工工程では、厚さ方向に重ねられる鋼板同士のうちの一方の鋼板に、上記溶接部と同じ方向に延びるとともに照射部からのレーザーの照射による溶接時の溶融池よりも大きい幅の溝を形成する。上記重ね工程では、上記溝が形成された鋼板に対し別の鋼板を厚さ方向に重ねて上記溝の開口を覆う。上記照射工程では、照射部から上記溝の底に向けてレーザーを照射しつつ、そのレーザーの照射による溶接時の溶融池が、上記溝の幅方向両側の内側面との間に間隔を持った状態で上記溝の延びる方向に移動するよう、照射部を移動させる。 In the laser welding method of steel plates that solves the above problems, the steel plates stacked in the thickness direction are irradiated with a laser from the irradiation portion in the thickness direction, and the irradiation portions are moved along the steel plates to move the steel plates to each other. Weld at a weld with a specified length and width. Further, the welding method includes the following grooving step, stacking step, and irradiation step. In the grooving process, one of the steel plates stacked in the thickness direction extends in the same direction as the welded portion and has a width larger than that of the molten pool at the time of welding by irradiating the laser from the irradiated portion. To form. In the laminating step, another steel sheet is superposed on the steel sheet on which the groove is formed in the thickness direction to cover the opening of the groove. In the irradiation step, while irradiating the laser from the irradiation portion toward the bottom of the groove, the molten pool at the time of welding by the irradiation of the laser has a space between the inner surfaces on both sides in the width direction of the groove. The irradiation unit is moved so as to move in the extending direction of the groove in the state.

厚さ方向に重ねられた鋼板同士のうち、溝が形成された一方の鋼板を他方の鋼板側から見た状態を概略的に示す拡大平面図。An enlarged plan view schematically showing a state in which one of the steel plates in which grooves are formed is viewed from the other steel plate side among the steel plates stacked in the thickness direction. 鋼板同士の溶接時の状態を示す断面図。The cross-sectional view which shows the state at the time of welding of steel plates. 溝加工工程における鋼板に対する溝の加工態様を示す断面図。The cross-sectional view which shows the processing mode of the groove with respect to the steel plate in the grooving process. 同鋼板における溝の加工態様を示す平面図。The plan view which shows the processing mode of the groove in the steel sheet. 照射工程における鋼板同士の溶接態様を示す断面図。The cross-sectional view which shows the welding mode of steel plates in an irradiation process. 照射工程での一方の鋼板を他方の鋼板側から見た状態を示す平面図。The plan view which shows the state which one steel plate in the irradiation process is seen from the other steel plate side. 溶接後の一方の鋼板を他方の鋼板側から見た状態を示す平面図。The plan view which shows the state which one steel plate after welding is seen from the other steel plate side. 溶接後の鋼板同士を図7の矢印A−A方向から見た状態を示す断面図。FIG. 5 is a cross-sectional view showing a state in which the welded steel plates are viewed from the direction of arrows AA in FIG. 一方の鋼板に形成される溝の他の例を示す断面図。FIG. 5 is a cross-sectional view showing another example of a groove formed in one steel plate. 同溝を示す平面図。The plan view which shows the groove. 一方の鋼板に形成される溝の他の例を示す平面図。The plan view which shows the other example of the groove formed in one steel plate. 鋼板に対するレーザーの照射態様の他の例を概略的に示す平面図。FIG. 5 is a plan view schematically showing another example of a laser irradiation mode on a steel plate.

以下、鋼板のレーザー溶接方法の一実施形態について、図1〜図8を参照して説明する。
図1及び図2はそれぞれ、本実施形態のレーザー溶接の実施態様を示している。図2に示すように、厚さ方向に重ねられた鋼板1,2同士のレーザー溶接では、鋼板1,2同士に対し、それらの厚さ方向(図2の上下方向)に照射部3からのレーザーを照射する。そして、このように照射部3から上述したようにレーザーを照射しつつ、同照射部3を鋼板1,2に沿って、すなわち図2の左右方向に移動させることにより、鋼板1,2同士を定められた長さ及び幅を有する溶接部4(図1)で溶接する。なお、図1は、厚さ方向に重ねられた鋼板1,2のうちの一方の鋼板1を図2の上方から見た状態を示している。
Hereinafter, an embodiment of the laser welding method for a steel sheet will be described with reference to FIGS. 1 to 8.
1 and 2 each show an embodiment of laser welding of the present embodiment. As shown in FIG. 2, in the laser welding of the steel plates 1 and 2 stacked in the thickness direction, the steel plates 1 and 2 are welded to each other in the thickness direction (vertical direction of FIG. 2) from the irradiation unit 3. Irradiate the laser. Then, while irradiating the laser from the irradiation unit 3 as described above, the irradiation unit 3 is moved along the steel plates 1 and 2, that is, in the left-right direction of FIG. 2, so that the steel plates 1 and 2 are moved to each other. Weld at the welded portion 4 (FIG. 1) having the specified length and width. Note that FIG. 1 shows a state in which one of the steel plates 1 and 2 stacked in the thickness direction, the steel plate 1, is viewed from above in FIG.

レーザーの照射による鋼板1,2同士の溶接時、鋼板1,2におけるレーザーが照射された部分には、鋼板1,2が溶融且つ蒸発することによってキーホール5が生じる。更に、鋼板1,2におけるキーホール5の周囲には、鋼板1,2が溶融することによって溶融池6が生じる。また、こうした溶接の際には、鋼板1,2を被覆する亜鉛の蒸発や鋼板1,2の表面に付着した油分等の異物の蒸発に起因してガスが発生する。本実施形態のレーザー溶接では、上述したように発生するガスが溶融池6に混ざり込んで溶接部4にブローホールが形成されることのないよう、次のように溝加工工程、重ね工程、及び照射工程が実施される。 When the steel plates 1 and 2 are welded to each other by laser irradiation, keyholes 5 are generated in the laser-irradiated portions of the steel plates 1 and 2 by melting and evaporating the steel plates 1 and 2. Further, a molten pool 6 is formed around the keyhole 5 in the steel plates 1 and 2 by melting the steel plates 1 and 2. Further, during such welding, gas is generated due to the evaporation of zinc coating the steel plates 1 and 2 and the evaporation of foreign substances such as oil adhering to the surfaces of the steel plates 1 and 2. In the laser welding of the present embodiment, the grooving step, the stacking step, and the laminating step are as follows so that the gas generated as described above is not mixed in the molten pool 6 and a blow hole is not formed in the welded portion 4. The irradiation step is carried out.

上記溝加工工程では、厚さ方向に重ねられる鋼板1,2同士のうちの一方の鋼板1に、上記溶接部4と同じ方向に延びるとともに照射部3からのレーザーの照射による溶接時の溶融池6よりも大きい幅(図1の上下方向の距離)の溝7を形成する。なお、上記溶接部4は、図1の左右方向に延びるように形成されている。上記重ね工程では、上記溝7が形成された鋼板1に対し別の鋼板2を厚さ方向に重ねて上記溝7の開口を覆う。上記照射工程では、照射部3から上記溝7の底に向けてレーザーを照射しつつ、そのレーザーの照射による溶接時の溶融池6が、上記溝7の幅方向両側の内側面7aとの間に間隔を持った状態で上記溝7の延びる方向に移動するよう、照射部3を移動させる。 In the grooving process, one of the steel plates 1 and 2 stacked in the thickness direction extends in the same direction as the welded portion 4 and the molten pool at the time of welding by irradiating the laser from the irradiation portion 3. A groove 7 having a width larger than 6 (distance in the vertical direction in FIG. 1) is formed. The welded portion 4 is formed so as to extend in the left-right direction of FIG. In the stacking step, another steel plate 2 is superposed on the steel plate 1 on which the groove 7 is formed in the thickness direction to cover the opening of the groove 7. In the irradiation step, while irradiating a laser from the irradiation unit 3 toward the bottom of the groove 7, the molten pool 6 at the time of welding by the irradiation of the laser is between the inner side surfaces 7a on both sides of the groove 7 in the width direction. The irradiation unit 3 is moved so as to move in the extending direction of the groove 7 with a gap between the two.

次に、上記溝加工工程、上記重ね工程、及び上記照射工程について、個別に詳しく説明する。
[溝加工工程]
図3及び図4は、鋼板1に対する溝7の加工態様を示している。この溝7の形成は、鋼板1,2に対しレーザー溶接を行うためのレーザー加工設備を用いて行われる。
Next, the grooving process, the stacking process, and the irradiation process will be described in detail individually.
[Grooving process]
3 and 4 show a processing mode of the groove 7 with respect to the steel plate 1. The groove 7 is formed by using a laser processing facility for performing laser welding on the steel plates 1 and 2.

すなわち、図3に示すように、上記レーザー加工設備の照射部3に対応する位置に鋼板1を設置し、その照射部3からのレーザーを鋼板1に照射しつつ、同照射部3を鋼板1に沿ってレーザー溶接を行うときの移動速度よりも速い速度で移動させる。これにより、鋼板1におけるレーザーの照射された部分が移動してゆき、その移動軌跡に対応して溝7が形成されるようになる。 That is, as shown in FIG. 3, the steel plate 1 is installed at a position corresponding to the irradiation unit 3 of the laser processing facility, and the steel plate 1 is irradiated with the laser from the irradiation unit 3 while irradiating the steel plate 1 with the irradiation unit 3. Move at a speed faster than the moving speed when performing laser welding along. As a result, the laser-irradiated portion of the steel sheet 1 moves, and the groove 7 is formed corresponding to the movement locus.

図4に示すように、この例では溶接部4が鋼板1において環状となるように延びている。そして、上記溝7については、溶接部4に沿って同じく環状となるように、且つ、鋼板1の外縁と重ならないよう形成する。また、溝7の幅が溶接部4の幅よりも大きくなるように、且つ、溝7の内部に同溝7における幅方向両側の内側面7aとの間にそれぞれ間隔をおいて溶接部4が位置するように、その溝7を形成する。 As shown in FIG. 4, in this example, the welded portion 4 extends so as to be annular in the steel plate 1. Then, the groove 7 is formed so as to be similarly annular along the welded portion 4 and not to overlap with the outer edge of the steel plate 1. Further, the width of the groove 7 is larger than the width of the welded portion 4, and the welded portion 4 is provided inside the groove 7 at intervals from the inner side surfaces 7a on both sides in the width direction of the groove 7. The groove 7 is formed so as to be located.

[重ね工程]
図5に示すように、上記溝7が形成された鋼板1に対し別の鋼板2を厚さ方向に重ねることにより、上記溝7の開口(図5における上方に向かう開口)を覆う。鋼板1,2同士の間における上記溝7の内部は、溶接時に発生する上記ガスを排出するための隙間として機能する。
[Layering process]
As shown in FIG. 5, another steel plate 2 is superposed on the steel plate 1 on which the groove 7 is formed in the thickness direction to cover the opening of the groove 7 (the opening upward in FIG. 5). The inside of the groove 7 between the steel plates 1 and 2 functions as a gap for discharging the gas generated during welding.

[照射工程]
図5に示すように、照射部3から上記溝7の底に向けてレーザーを照射することにより、鋼板1,2の溶接部4がレーザーの照射による溶接時の溶融池6となるようにする。更に、その溶融池6が、図6に示すように溝7の幅方向両側の内側面7aとの間に間隔を持った状態で、溝7の延びる方向に移動するよう、照射部3(図5)を移動させる。なお、一方の内側面7aと溶融池6との間の間隔は、他方の内側面7aと溶融池6との間の間隔と等しくすることが好ましく、この例では上記間隔における溝7の幅方向の長さが1mm以上とされている。
[Irradiation process]
As shown in FIG. 5, by irradiating the laser from the irradiation portion 3 toward the bottom of the groove 7, the welded portion 4 of the steel plates 1 and 2 becomes a molten pool 6 at the time of welding by irradiating the laser. .. Further, as shown in FIG. 6, the irradiating portion 3 (FIG. 6) moves the molten pool 6 in the extending direction of the groove 7 with a space between the molten pool 6 and the inner side surfaces 7a on both sides in the width direction of the groove 7. 5) is moved. The distance between one inner surface 7a and the molten pool 6 is preferably equal to the distance between the other inner surface 7a and the molten pool 6, and in this example, the width direction of the groove 7 in the above distance. The length of is 1 mm or more.

こうした照射部3の移動を通じて、溶融池6が溝7(溶接部4)に沿って環状となるよう一周させることにより、鋼板1,2同士がレーザー溶接によって互いに接合される。なお、上述したように照射部3を移動させる際の移動速度は、鋼板1に対しレーザーによって溝7を形成する際の照射部3の移動速度よりも遅い速度とされる。 Through such movement of the irradiation portion 3, the molten pool 6 is made to go around along the groove 7 (welded portion 4) so as to form an annular shape, so that the steel plates 1 and 2 are joined to each other by laser welding. As described above, the moving speed when moving the irradiation unit 3 is set to be slower than the moving speed of the irradiation unit 3 when forming the groove 7 with the laser on the steel plate 1.

図7及び図8はそれぞれ、上記レーザー溶接後の鋼板1における溝7側の部分及び鋼板1,2同士の溶接部4を鋼板2側から見た状態、並びに、接合された鋼板1,2同士を図7の矢印A−A方向から見た状態を示している。鋼板1,2同士の溶接部4は図7から分かるように溝7に沿って環状になり、上記溶接部4と溝7における幅方向両側の内側面7aとの間には図8から分かるように隙間8が形成される。 7 and 8 show a state in which the portion of the steel plate 1 after laser welding on the groove 7 side and the welded portion 4 between the steel plates 1 and 2 are viewed from the steel plate 2 side, and the joined steel plates 1 and 2 are joined to each other. Is shown in the direction of arrows AA in FIG. 7. As can be seen from FIG. 7, the welded portions 4 between the steel plates 1 and 2 form an annular shape along the groove 7, and between the welded portion 4 and the inner side surfaces 7a on both sides in the width direction of the groove 7, as can be seen from FIG. A gap 8 is formed in the space.

次に、本実施形態における鋼板のレーザー溶接方法の作用について説明する。
図1及び図2に示されるように、レーザーの照射による鋼板1,2同士の溶接時、鋼板1,2におけるレーザーが照射される部分にはキーホール5が生じるとともに、そのキーホール5の周囲に溶融池6が生じる。そして、それらキーホール5及び溶融池6が溝7の延びる方向(図1及び図2では右方向)に移動するよう、照射部3が移動されることにより、鋼板1,2同士がレーザー溶接によって互いに接合される。
Next, the operation of the laser welding method for the steel sheet in the present embodiment will be described.
As shown in FIGS. 1 and 2, when the steel plates 1 and 2 are welded to each other by laser irradiation, a keyhole 5 is generated in the portion of the steel plates 1 and 2 that is irradiated with the laser, and the periphery of the keyhole 5 is formed. A molten pool 6 is formed in. Then, the irradiation unit 3 is moved so that the keyhole 5 and the molten pool 6 move in the extending direction of the groove 7 (to the right in FIGS. 1 and 2), so that the steel plates 1 and 2 are laser-welded to each other. Joined to each other.

上述したレーザーの照射による鋼板1,2同士の溶接時には、鋼板1,2の表面を覆う亜鉛や鋼板1,2の表面に付着した油分等の異物が溶融して蒸発することに起因してガスが発生する。このように発生したガスは、図1に矢印Y1で示すように溶融池6と溝7の幅方向の両側の内側面との間の部分を通って溝7内における同溶融池6の移動方向の前側に回り込む。溶融池6における移動方向の前側の部分は、キーホール5との間の厚さが薄くなるため、その部分を上記ガスが図1の矢印Y2で示すように突き抜けてキーホール5を介して外部に排出される。 When the steel plates 1 and 2 are welded to each other by the laser irradiation described above, the gas is caused by the melting and evaporation of foreign substances such as zinc covering the surfaces of the steel plates 1 and 2 and oil adhering to the surfaces of the steel plates 1 and 2. Occurs. As shown by the arrow Y1 in FIG. 1, the gas generated in this way passes through the portion between the molten pool 6 and the inner side surfaces on both sides in the width direction of the groove 7, and the moving direction of the molten pool 6 in the groove 7. Wrap around to the front side of. Since the thickness of the front portion of the molten pool 6 in the moving direction with the key hole 5 becomes thin, the gas penetrates the portion as shown by the arrow Y2 in FIG. 1 and is external through the key hole 5. Is discharged to.

このように上記ガスが排出されることにより、そのガスが溶融池6に混ざり込んで鋼板1,2同士の溶接部4にブローホールが形成されることは抑制される。また、一方の鋼板1に形成された上記溝7は上記ガスを排出するための隙間として機能するが、その溝7の深さが上記隙間の大きさに対応した値となる。このため、上記隙間として適切な大きさに対応する深さ(例えば50μm)の溝7を一方の鋼板1に形成し、鋼板1,2同士を厚さ方向に重ねて上記溝7の開口を他方の鋼板2で塞ぐだけで、鋼板1,2同士の間に適切な大きさの隙間を形成することができる。 By discharging the gas in this way, it is possible to prevent the gas from being mixed into the molten pool 6 and forming blow holes in the welded portions 4 between the steel plates 1 and 2. Further, the groove 7 formed in one of the steel plates 1 functions as a gap for discharging the gas, and the depth of the groove 7 is a value corresponding to the size of the gap. Therefore, a groove 7 having a depth (for example, 50 μm) corresponding to an appropriate size as the gap is formed in one steel plate 1, and the steel plates 1 and 2 are overlapped with each other in the thickness direction to open the opening of the groove 7 in the other. A gap of an appropriate size can be formed between the steel plates 1 and 2 simply by closing the steel plate 2 of the above.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)溶接時に発生する上記ガスを排出するための隙間として、厚さ方向に重ねられた鋼板1,2同士の間に適切な大きさの隙間を、上記溝7の形成を通じて簡単に形成することができる。従って、手間のかかる調整を行わなくてもブローホールの形成を抑制することができる。
According to the present embodiment described in detail above, the following effects can be obtained.
(1) As a gap for discharging the gas generated during welding, a gap having an appropriate size is easily formed between the steel plates 1 and 2 stacked in the thickness direction through the formation of the groove 7. be able to. Therefore, it is possible to suppress the formation of blow holes without performing time-consuming adjustment.

(2)鋼板1における溝7については、環状に延びるように、且つ、鋼板1の外縁と重ならないように形成されている。この場合、鋼板1,2同士を厚さ方向に重ねたときに溝7内が外部に開放されないことになる。この場合でも、亜鉛や異物が蒸発して生じたガスが、溝7内からキーホール5を介して外部に排出されるため、そのガスが溶融池6に混ざり込んで鋼板1,2同士の溶接部4にブローホールが形成されることを抑制できるようになる。 (2) The groove 7 in the steel plate 1 is formed so as to extend in an annular shape and not to overlap with the outer edge of the steel plate 1. In this case, when the steel plates 1 and 2 are stacked in the thickness direction, the inside of the groove 7 is not opened to the outside. Even in this case, the gas generated by the evaporation of zinc and foreign matter is discharged from the groove 7 to the outside through the keyhole 5, so that the gas is mixed in the molten pool 6 and the steel plates 1 and 2 are welded to each other. It becomes possible to suppress the formation of blow holes in the portion 4.

(3)溝7を形成するための溝加工工程と、鋼板1,2同士を溶接するための照射工程とを、同じレーザー加工設備で行うことが可能となる。このため、鋼板1に溝7を形成するために別の設備に同鋼板1を持ち込まなくてもよいことから、溝7を形成するための設備から溶接のためのレーザー加工設備に鋼板1を移動させる手間を省くことができる。 (3) The groove processing step for forming the groove 7 and the irradiation step for welding the steel plates 1 and 2 can be performed with the same laser processing equipment. Therefore, since it is not necessary to bring the steel plate 1 to another equipment in order to form the groove 7 in the steel plate 1, the steel plate 1 is moved from the equipment for forming the groove 7 to the laser processing equipment for welding. You can save the trouble of making it.

なお、上記実施形態は、例えば以下のように変更することもできる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・溝7は、必ずしも環状に形成されている必要はない。例えば図9及び図10に示されるように、溝7が直線状に延びるように形成されているものであり、且つ、同溝7の長手方向の両端部が鋼板1の外縁に達していない(重なっていない)ものであってもよい。
The above embodiment can be changed as follows, for example. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The groove 7 does not necessarily have to be formed in an annular shape. For example, as shown in FIGS. 9 and 10, the groove 7 is formed so as to extend linearly, and both ends of the groove 7 in the longitudinal direction do not reach the outer edge of the steel plate 1 (. It may be non-overlapping).

・図11に示されるように、直線状に延びる溝7を形成し、且つ、その溝7の長手方向の両端部が鋼板1の外縁に重なる(鋼板1の外縁に達する)よう同溝7が形成されていてもよい。この場合、鋼板1,2同士を厚さ方向に重ねたとき、溝7の長手方向の両端部が大気に開放されるため、溶接時に発生したガスが溝7の上記両端部からも排出されるため、そのガスが溶融池6に対し一層混ざり込みにくくなる。 As shown in FIG. 11, the groove 7 is formed so as to form a groove 7 extending linearly and both ends of the groove 7 in the longitudinal direction overlap the outer edge of the steel plate 1 (reach the outer edge of the steel plate 1). It may be formed. In this case, when the steel plates 1 and 2 are stacked in the thickness direction, both ends of the groove 7 in the longitudinal direction are opened to the atmosphere, so that the gas generated during welding is also discharged from both ends of the groove 7. Therefore, it becomes more difficult for the gas to mix with the molten pool 6.

・溝加工工程では、レーザーの照射によって溝7を形成するようにしたが、切削加工やプレス加工等によって溝7を形成するようにしてもよい。
・照射工程における一方の内側面7aと溶融池6との間の間隔、及び、他方の内側面7aと溶融池6との間の間隔については、1mm以外の値に適宜変更することも可能である。
-In the grooving process, the groove 7 is formed by irradiating a laser, but the groove 7 may be formed by cutting, pressing, or the like.
-The distance between one inner surface 7a and the molten pool 6 and the distance between the other inner surface 7a and the molten pool 6 in the irradiation step can be appropriately changed to a value other than 1 mm. is there.

・照射工程における一方の内側面7aと溶融池6との間の間隔は、必ずしも他方の内側面7aと溶融池6との間の間隔と等しくする必要はない。
・図12に示されるように、照射部3からのレーザーの照射については、鋼板1,2に対する投影形状が、円形となるセンタービーム9と同センタービーム9を同心円状に囲むリングビーム10とを有する形状となるようにしてもよい。
-The distance between one inner surface 7a and the molten pool 6 in the irradiation step does not necessarily have to be equal to the distance between the other inner surface 7a and the molten pool 6.
As shown in FIG. 12, regarding the irradiation of the laser from the irradiation unit 3, the center beam 9 having a circular projection shape on the steel plates 1 and 2 and the ring beam 10 concentrically surrounding the center beam 9 are arranged. It may have a shape to have.

1…鋼板、2…鋼板、3…照射部、4…溶接部、5…キーホール、6…溶融池、7…溝、7a…内側面、8…隙間、9…センタービーム、10…リングビーム。 1 ... Steel plate, 2 ... Steel plate, 3 ... Irradiation part, 4 ... Welded part, 5 ... Keyhole, 6 ... Molten pond, 7 ... Groove, 7a ... Inner surface, 8 ... Gap, 9 ... Center beam, 10 ... Ring beam ..

Claims (3)

厚さ方向に重ねられた鋼板同士に対し厚さ方向に照射部からレーザーを照射し、その照射部を鋼板に沿って移動させることにより、前記鋼板同士を定められた長さ及び幅を有する溶接部で溶接する鋼板のレーザー溶接方法において、
厚さ方向に重ねられる鋼板同士のうちの一方の鋼板に、前記溶接部と同じ方向に延びるとともに前記照射部からのレーザーの照射による溶接時の溶融池よりも大きい幅の溝を形成する溝加工工程と、
前記溝が形成された鋼板に対し別の鋼板を厚さ方向に重ねて前記溝の開口を覆う重ね工程と、
前記照射部から前記溝の底に向けてレーザーを照射しつつ、そのレーザーの照射による溶接時の溶融池が、前記溝の幅方向両側の内側面との間に間隔を持った状態で前記溝の延びる方向に移動するよう、前記照射部を移動させる照射工程と、
を有することを特徴とする鋼板のレーザー溶接方法。
By irradiating the steel plates stacked in the thickness direction with a laser from the irradiation portion in the thickness direction and moving the irradiation portion along the steel plates, the steel plates are welded to each other with a predetermined length and width. In the laser welding method of steel sheets to be welded at the part,
Grooving that extends in the same direction as the welded portion and forms a groove with a width larger than the molten pool at the time of welding by irradiating the laser from the irradiated portion on one of the steel plates stacked in the thickness direction. Process and
A stacking step of stacking another steel plate on the steel plate on which the groove is formed in the thickness direction to cover the opening of the groove.
While irradiating a laser from the irradiation portion toward the bottom of the groove, the molten pool at the time of welding by the irradiation of the laser is in a state where there is a space between the inner side surfaces on both sides in the width direction of the groove. The irradiation step of moving the irradiation unit so as to move in the extending direction of
A method for laser welding a steel sheet, which comprises.
前記溝加工工程では、前記溝として長手方向の両端を有する溝を形成し、且つ、その両端が前記一方の鋼板の外縁と重ならないよう前記溝を形成する請求項1に記載の鋼板のレーザー溶接方法。 The laser welding of the steel plate according to claim 1, wherein in the grooving step, a groove having both ends in the longitudinal direction is formed as the groove, and the groove is formed so that both ends do not overlap with the outer edge of the one steel plate. Method. 前記溝加工工程では、前記溝を環状に延びるように、且つ、前記一方の鋼板の外縁と重ならないように形成する請求項1に記載の鋼板のレーザー溶接方法。 The laser welding method for a steel sheet according to claim 1, wherein in the grooving step, the groove is formed so as to extend in an annular shape and not to overlap with the outer edge of one of the steel sheets.
JP2019198819A 2019-10-31 2019-10-31 Laser welding method for steel plate Active JP7221847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019198819A JP7221847B2 (en) 2019-10-31 2019-10-31 Laser welding method for steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019198819A JP7221847B2 (en) 2019-10-31 2019-10-31 Laser welding method for steel plate

Publications (2)

Publication Number Publication Date
JP2021070047A true JP2021070047A (en) 2021-05-06
JP7221847B2 JP7221847B2 (en) 2023-02-14

Family

ID=75712079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019198819A Active JP7221847B2 (en) 2019-10-31 2019-10-31 Laser welding method for steel plate

Country Status (1)

Country Link
JP (1) JP7221847B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300753A (en) * 2000-04-25 2001-10-30 Nippon Steel Corp Method of cutting steel material with laser beam and device for the same
JP2001314986A (en) * 2000-05-02 2001-11-13 Nippon Steel Corp Laser beam cutting method
JP2005297026A (en) * 2004-04-13 2005-10-27 Nippon Steel Corp Laser beam welding method of metal plate, and metal plate for laser beam welding
JP2013169565A (en) * 2012-02-21 2013-09-02 Hitachi Automotive Systems Ltd Structure and method of laser-welding bonding, and high pressure fuel supply pump having structure of laser-welding bonding
WO2021065067A1 (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Welding method, plate-shaped member, and elevator equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300753A (en) * 2000-04-25 2001-10-30 Nippon Steel Corp Method of cutting steel material with laser beam and device for the same
JP2001314986A (en) * 2000-05-02 2001-11-13 Nippon Steel Corp Laser beam cutting method
JP2005297026A (en) * 2004-04-13 2005-10-27 Nippon Steel Corp Laser beam welding method of metal plate, and metal plate for laser beam welding
JP2013169565A (en) * 2012-02-21 2013-09-02 Hitachi Automotive Systems Ltd Structure and method of laser-welding bonding, and high pressure fuel supply pump having structure of laser-welding bonding
WO2021065067A1 (en) * 2019-09-30 2021-04-08 三菱電機株式会社 Welding method, plate-shaped member, and elevator equipment

Also Published As

Publication number Publication date
JP7221847B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
JP6846619B2 (en) Laser welding method
JP4612076B2 (en) Laser welding method for metal plated plate
JP6699007B2 (en) Laser joining method of galvanized steel sheet
WO2015104781A1 (en) Laser welding method and laser welding device
US20120211474A1 (en) Laser lap welding method
JPS60210386A (en) Method and device for laser welding
JP3115456B2 (en) Laser welding method for galvanized steel sheet
JP2013173170A (en) Method for machining joining face
JPWO2011042984A1 (en) Rotor and method for manufacturing the same
US20210246924A1 (en) Method for joining plated steel sheet and joint structure
JP2008049392A (en) Laser welding method
JP7221847B2 (en) Laser welding method for steel plate
KR102087664B1 (en) Laser-welded joint and method for producing same
JP2011025260A (en) Laser lap welding method for plated steel sheet and plated steel sheet for laser lap welding
JP2000209792A (en) Motor core
JP4232024B2 (en) Weld bead structure and welding method
JPH0413077B2 (en)
JP2010094702A (en) Method of laser welding metal plated plate
JP2016153129A (en) Lap welding method for plated steel sheet
JP2008137011A (en) Laser beam welding method
JP2017131905A (en) Lap laser welding method of plated steel sheet
JP2010023082A (en) Lap laser welding method of plated steel sheet and lap laser welding structure of plated steel sheet
JP4620753B2 (en) Laser welding method for metal plated plate
JP2002316281A (en) Method for welding metallic plate by laser, laser-welded metallic plate, and casing structure of image forming device
JP5312060B2 (en) Laser welding method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221207

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230202

R150 Certificate of patent or registration of utility model

Ref document number: 7221847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150