JP2001305119A - Filler containing activated charcoal for analyzing dioxins - Google Patents

Filler containing activated charcoal for analyzing dioxins

Info

Publication number
JP2001305119A
JP2001305119A JP2000121554A JP2000121554A JP2001305119A JP 2001305119 A JP2001305119 A JP 2001305119A JP 2000121554 A JP2000121554 A JP 2000121554A JP 2000121554 A JP2000121554 A JP 2000121554A JP 2001305119 A JP2001305119 A JP 2001305119A
Authority
JP
Japan
Prior art keywords
dioxins
filler
activated carbon
silica gel
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000121554A
Other languages
Japanese (ja)
Other versions
JP4920813B2 (en
Inventor
Tadaaki Wakimoto
忠明 脇本
Mikio Kobayashi
幹夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Chemical Co Inc
Original Assignee
Kanto Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Chemical Co Inc filed Critical Kanto Chemical Co Inc
Priority to JP2000121554A priority Critical patent/JP4920813B2/en
Priority to TW090106568A priority patent/TWI234654B/en
Priority to KR1020010021467A priority patent/KR100812978B1/en
Publication of JP2001305119A publication Critical patent/JP2001305119A/en
Application granted granted Critical
Publication of JP4920813B2 publication Critical patent/JP4920813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning up filler for the analysis of dioxins which eliminates the need for cleaning using an organic solvent. SOLUTION: The cleaning up filler for the analysis of dioxins contains the powder, heat treated in a low oxygen atmosphere, containing activated charcoal and silica gel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ダイオキシン類分
析のためのクリーンアップ工程に使用する充填剤に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler used in a clean-up process for analyzing dioxins.

【0002】[0002]

【従来の技術】一般にダイオキシン類とは、ポリ塩化ジ
ベンゾ−p−ダイオキシン(PCDD)、ポリ塩化ジベ
ンゾフラン(PCDF)及びコプラナーPCBの総称で
あり、これには多数の異性体が含まれている。近年、こ
のダイオキシン類が産業廃棄物等の焼却によっても大気
中に大量に飛散することが判明し、大きな社会問題とな
っている。ダイオキシン類分析用の試料においては、ダ
イオキシン類の存在量はppb〜ppq(10‐9〜10‐15)レ
ベルと極めて微量であり、さらに多数の他の有機化合物
が共存している場合がほとんどである。従って、高精度
な分離定量をするためには、ガスクロマトグラフ(GC)
/質量分析計(MS)による測定を行う前の段階で、ダイ
オキシン類の分析を妨害するか、又は悪影響を与える化
合物をクリーンアップ操作により除去する必要がある。
2. Description of the Related Art In general, dioxins are a general term for polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and coplanar PCBs, which contain a large number of isomers. In recent years, it has been found that a large amount of these dioxins are scattered in the atmosphere even by incineration of industrial wastes and the like, which is a major social problem. In samples for dioxin analysis, the abundance of dioxins is extremely small, at the level of ppb to ppq (10 -9 to 10 -15 ), and in many cases, many other organic compounds coexist. is there. Therefore, in order to perform highly accurate separation and quantification, gas chromatography (GC)
Before the measurement by a mass spectrometer (MS), it is necessary to remove compounds that interfere with the analysis of dioxins or have an adverse effect by a cleanup operation.

【0003】そのようなクリーンアップ操作に用いられ
るクリーンアップ用充填剤としてはダイオキシン類のよ
うな平板状(planar)構造を有する分子を特異的に吸着
するという活性炭の性質を利用した、シリカゲルなどに
活性炭を含有させた充填剤が知られており、これにより
ダイオキシン類とその他の有機化合物を分離している。
例えば、活性炭含有充填剤を詰めたカラムに試料溶液を
負荷した後、まずヘキサンを通液してこの画分に一般的
な有機化合物を溶出させ、次にカラムにトルエンを通液
してこの画分にダイオキシン類を溶出させることで分離
(分画)することができる。この活性炭含有充填剤が具
備すべき特性としては、優れた分離能を有しているこ
と、ダイオキシン類の回収率が高いこと、また、ダイオ
キシン類その他の分析妨害成分で汚染されていないこと
が挙げられる。具体的には、珪酸ナトリウム(水ガラ
ス)と活性炭の混合物を鉱酸と反応させることにより得
られる、活性炭埋蔵シリカゲル(特公平7‐50084号公
報)が知られている。しかしながらこれは製法が複雑で
あり、その結果、得られる充填剤の物性を一定にするに
は高度な反応制御技術が必要であるという難点がある。
[0003] As a cleanup filler used in such a cleanup operation, silica gel and the like utilizing the property of activated carbon that specifically adsorbs molecules having a planar structure such as dioxins are used. Fillers containing activated carbon are known, which separate dioxins and other organic compounds.
For example, after loading a sample solution on a column packed with an activated carbon-containing packing material, first pass hexane to elute common organic compounds in this fraction, and then pass toluene through the column to elute this organic compound. The dioxins can be separated (fractionated) by eluting the dioxins. The characteristics that the activated carbon-containing filler should have are that it has excellent separation ability, high recovery of dioxins, and that it is not contaminated with dioxins and other analysis-interfering components. Can be Specifically, there is known activated carbon embedded silica gel (Japanese Patent Publication No. 7-50084) obtained by reacting a mixture of sodium silicate (water glass) and activated carbon with a mineral acid. However, this method has a disadvantage in that the production method is complicated, and as a result, an advanced reaction control technique is required to keep the physical properties of the obtained filler constant.

【0004】また、活性炭とシリカゲルを混合すること
により得られる活性炭分散シリカゲル(T.Wakimoto, et
al,Chemosphere,27,2117-2122 (1993))が知られてい
る。これは製法が単純であり、物性の再現性や製造コス
トの面で優れた特徴を持っているが、前処理として汚染
物質除去に多くの時間を割く必要がある。
Activated carbon-dispersed silica gel obtained by mixing activated carbon and silica gel (T. Wakimoto, et al.
al, Chemosphere, 27 , 2117-2122 (1993)). This method has a simple manufacturing method and has excellent characteristics in terms of reproducibility of physical properties and manufacturing cost, but requires much time for removing contaminants as a pretreatment.

【0005】さらに、活性炭埋蔵シリカゲルの類似品と
して、カーボンモレキュラーシーブ(松村千里他,第7
回環境化学討論会講演要旨集,154(1998)、シグマ
アルドリッチ ジャパンより入手可能)が知られてい
る。しかしながら、これはダイオキシン類の回収率が低
く、また、トルエンの加熱(50℃程度)や逆流出法での
溶出が必要で煩雑であるという欠点を持つ。
Further, as a similar product of activated carbon embedded silica gel, carbon molecular sieve (Chisato Matsumura et al., No. 7)
Abstracts of Annual Meeting of the Japanese Society of Environmental Chemistry, 154 (1998), Sigma
(Available from Aldrich Japan). However, this method has a drawback that the recovery rate of dioxins is low, and heating and toluene (about 50 ° C.) and elution by a reverse effluent method are necessary, which is complicated.

【0006】上述した活性炭埋蔵シリカゲル、活性炭分
散シリカゲル及びカーボンモレキュラーシーブのいずれ
の場合にも、充填剤をクリーンアップ操作に用いるに当
たっては、例えば「有害大気汚染物質測定方法マニュア
ル(ダイオキシン類及びコプラナPCBs)」(環境庁、平
成11年3月)にあるように、トルエンなどの有機溶媒で
十分に洗浄し、充填剤を構成する活性炭やシリカゲルな
どに元来含まれているダイオキシン類その他の分析妨害
物質を除去する必要がある。もし、ダイオキシン類等の
分析妨害物質で汚染されたままの可能性のある充填剤を
分析に使用すれば、信頼性のあるデータが得られないの
は言うまでもない。
In any of the above-mentioned activated carbon-buried silica gel, activated carbon-dispersed silica gel, and carbon molecular sieve, when using a filler in a clean-up operation, for example, a "manual for measuring harmful air pollutants (dioxins and coplanar PCBs)" (Environment Agency, March 1999), wash thoroughly with organic solvents such as toluene, and dioxins and other interfering substances originally contained in activated carbon and silica gel that make up the filler. Need to be removed. Obviously, if a filler that may remain contaminated with analysis interfering substances such as dioxins is used for analysis, reliable data cannot be obtained.

【0007】また、ダイオキシン類分析のクリーンアッ
プ用充填剤としては、アルミナも使用することができ、
活性化を目的として130℃で18時間乾燥する方法(「有害
大気汚染物質測定方法マニュアル(ダイオキシン類及び
コプラナPCBs)」(環境庁、平成11年3月))、活性化
(乾燥)及びアルミナに吸着しているダイオキシン類を
揮散させることを目的として、空気雰囲気で500〜600℃
の温度で24時間熱処理する方法が知られている(太田壮
一、ファルマシア、441(1998)、中尾晃幸、産業と環
境、41(1998))。しかしながら、この方法ではダイオ
キシン類を分解させるわけではないので、アルミナ中に
ダイオキシン類が残存する可能性がある。
As a cleanup filler for dioxin analysis, alumina can also be used.
Drying at 130 ° C for 18 hours for the purpose of activation (“Manual for Measurement of Hazardous Air Pollutants (Dioxins and Coplanar PCBs)” (Environmental Agency, March 1999)), activation (drying) and alumina 500-600 ° C in air atmosphere to volatilize adsorbed dioxins
A method of heat treatment at a temperature of 24 hours is known (Soichi Ota, Pharmacia, 441 (1998), Akiyuki Nakao, Industry and Environment, 41 (1998)). However, since this method does not decompose dioxins, there is a possibility that dioxins remain in alumina.

【0008】このように従来のアルミナ及び活性炭含有
充填剤は、元来存在するダイオキシン類その他の分析妨
害成分で汚染されているために、クリーンアップ操作に
先立ち、トルエンなどの有機溶媒で充填剤を十分に洗浄
する必要がある。
[0008] As described above, the conventional filler containing alumina and activated carbon is contaminated with dioxins and other analysis-interfering components which are originally present. Therefore, prior to the cleanup operation, the filler is removed with an organic solvent such as toluene. It needs to be thoroughly washed.

【0009】ところで、トルエンなどの有機溶媒による
洗浄方法としては、一般にソックスレー抽出法(例えば
「血液中のダイオキシン類及びコプラナーPCBの測定分析
法(案)」(厚生省)、第29回日本環境化学会講演会予
稿集(1999)、T.Wakimoto, etal,Chemosphere,27,2117-2
122 (1993))又は超音波洗浄法(例えば松村徹、水環境
学会誌、21,412-416(1998))が用いられているが、この
ソックスレー抽出法では、一般に16〜24時間の長時間の
抽出が必要である(例えばT.Wakimoto, et al,Chemosph
ere,27,2117-2122 (1993))。さらに、血液のようなダ
イオキシン類濃度が低い試料の分析に使用する場合に
は、1週間以上のソックスレー抽出をした充填剤が必要
となる(例えば増崎優子他、第8回環境化学討論会講演
要旨集、216(1999))。また、洗浄後はロータリーエ
バポレーターによる減圧乾燥などの方法で有機溶媒が除
去されるが、充填剤を構成する活性炭およびシリカゲル
が多孔体であるため、細孔に入り込んだ有機溶媒を除去
するには長時間の減圧乾燥が必要である。以上の従来法
の問題点をまとめると次のとおりとなる。 充填剤の洗浄作業に長時間を要する。 充填剤からのトルエンなどの有機溶媒の除去が不充
分で、充填剤に有機溶剤が残存していると、充填剤の分
離能が著しく低下し、ダイオキシン類の分離が困難にな
る。 トルエンなどの有機溶媒を充填剤の洗浄に使用する
が、この有機溶媒は人体に有害であり、作業者の健康や
環境への悪影響が懸念される。
As a washing method using an organic solvent such as toluene, a Soxhlet extraction method (for example, “Method for measuring and analyzing dioxins in blood and coplanar PCB (draft)” (Ministry of Health and Welfare), the 29th Japan Society for Environmental Chemistry Proceedings of lectures (1999), T. Wakimoto, etal, Chemosphere, 27 , 2117-2
122 (1993)) or an ultrasonic cleaning method (for example, Toru Matsumura, Journal of Japan Society on Water Environment, 21 , 412-416 (1998)). In this Soxhlet extraction method, a long time of 16 to 24 hours is generally used. Extraction is required (eg, T. Wakimoto, et al, Chemosph
ere, 27 , 2117-2122 (1993)). Furthermore, when used for the analysis of samples with low concentrations of dioxins such as blood, it is necessary to use a Soxhlet-extracted filler for more than one week (for example, Yuko Masusaki et al., The 8th Environmental Chemistry Lecture Meeting) Abstracts, 216 (1999)). After the washing, the organic solvent is removed by a method such as drying under reduced pressure using a rotary evaporator. However, since activated carbon and silica gel constituting the filler are porous, it takes a long time to remove the organic solvent that has entered the pores. It is necessary to dry under reduced pressure for a long time. The problems of the above conventional method are summarized as follows. It takes a long time to clean the filler. If the organic solvent such as toluene is not sufficiently removed from the filler and the organic solvent remains in the filler, the separation ability of the filler is significantly reduced, and it becomes difficult to separate dioxins. An organic solvent such as toluene is used for washing the filler, but this organic solvent is harmful to the human body, and there is a concern that the health of workers and the environment may be adversely affected.

【0010】なお、関連技術として、都市ごみ焼却炉か
らの飛灰中に含まれるダイオキシン類の分解方法につい
て、低酸素雰囲気で300〜500℃の熱処理をする方法が知
られている(例えば、志田 恵他、第3回廃棄物学会研究
発表会講演論文集、355(1992)、広常晃生他、地球環
境、10,14(1999))。また、排ガス中のダイオキシン
類を吸着させた活性炭を低酸素雰囲気で加熱し、吸着し
ているダイオキシン類を分解して活性炭を再生する方法
が知られている(特開平5‐301022号公報、特開平11‐7
6756号公報及び特開平11‐114374号公報)。しかしなが
ら、この低酸素雰囲気でのダイオキシン類熱分解法の利
用は、専ら都市ごみ焼却炉からのダイオキシン類の排出
低減及び活性炭の再生を目的としたものに限られ、分離
能や、超微量成分の検出などの高度な特性が要求される
ダイオキシン類分析のクリーンアップ用充填剤の洗浄に
利用された例はなく、またそれによる効果についても全
く検討されていない。
As a related technique, a method of decomposing dioxins contained in fly ash from a municipal solid waste incinerator by heat treatment at 300 to 500 ° C. in a low oxygen atmosphere is known (for example, Shida). Megumi et al., Proceedings of the 3rd Conference of Japan Society for Waste Management, 355 (1992), Akihiro Hirone et al., Global Environment, 10 , 14 (1999)). In addition, a method is known in which activated carbon to which dioxins in exhaust gas are adsorbed is heated in a low oxygen atmosphere to decompose the adsorbed dioxins to regenerate the activated carbon (Japanese Patent Laid-Open No. 5-301022, Kaihei 11-7
6756 and JP-A-11-114374). However, the use of the dioxin pyrolysis method in this low oxygen atmosphere is limited only to the purpose of reducing the emission of dioxins from municipal solid waste incinerators and regenerating activated carbon. There is no example used for cleaning a filler for cleanup in dioxin analysis, which requires advanced characteristics such as detection, and the effect of the use has not been studied at all.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記事情に
鑑みてなされたもので、優れた分離能を有し、有機溶媒
による洗浄を必要としないダイオキシン類分析クリーン
アップ用充填剤を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a dioxin analysis cleanup packing material which has excellent separation ability and does not require washing with an organic solvent. It is in.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねる中で、活性炭とシリ
カゲルの粉末を低酸素雰囲気で熱処理することにより得
られたダイオキシン類分析クリーンアップ用充填剤によ
り、上記課題を解決し得ることを見出し、本発明を完成
するに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and found that dioxin analysis cleanup obtained by heat-treating activated carbon and silica gel powder in a low oxygen atmosphere. It has been found that the above problem can be solved by the filling filler, and the present invention has been completed.

【0013】即ち、本発明は、ダイオキシン類分析のた
めのクリーンアップ用充填剤であって、活性炭とシリカ
ゲルとを含有する粉末を低酸素雰囲気で熱処理したもの
を含むことを特徴とする、前記充填剤に関する。また本
発明は、熱処理の温度が300〜500℃であることを特徴と
する、前記充填剤に関する。さらに本発明は、低酸素雰
囲気が酸素濃度5%以下の雰囲気であることを特徴とす
る、前記充填剤に関する。さらにまた本発明は、粉末が
粒子径75μm以下の活性炭と粒子径50〜500μmのシリカ
ゲルとから本質的になる粉末であることを特徴とする、
前記充填剤に関する。
That is, the present invention provides a clean-up filler for dioxin analysis, which is obtained by heat-treating a powder containing activated carbon and silica gel in a low oxygen atmosphere. Agent. The present invention also relates to the filler, wherein the temperature of the heat treatment is 300 to 500 ° C. Further, the present invention relates to the filler, wherein the low oxygen atmosphere is an atmosphere having an oxygen concentration of 5% or less. Furthermore, the present invention is characterized in that the powder is a powder consisting essentially of activated carbon having a particle diameter of 75 μm or less and silica gel having a particle diameter of 50 to 500 μm,
It relates to the filler.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態につい
て述べる。本発明による充填剤は、整粒したシリカゲル
に整粒した活性炭を加え、均一混合し、この粉末を窒素
気流中で熱処理し、ガラス製カラムクロマト管にガラス
ウール、無水硫酸ナトリウム、上記活性炭含有充填剤及
び無水硫酸ナトリウムを積層し、カラムを作製するとい
う工程で製造され、使用される。
Embodiments of the present invention will be described below. The filler according to the present invention is prepared by adding sized activated carbon to sized silica gel, uniformly mixing the mixture, heat treating the powder in a nitrogen stream, filling a glass column chromatograph tube with glass wool, anhydrous sodium sulfate, and the above-mentioned activated carbon-containing filler. It is manufactured and used in a process of laminating an agent and anhydrous sodium sulfate to form a column.

【0015】製造に用いられる活性炭の種類及び形状に
は特に制約はないが、その粒子径は、シリカゲルと混合
したときの活性炭の分散性等を考慮して決定され、通
常、好ましくは75μm以下であり、特に好ましくは38μm
以下の微粒子である。
The type and shape of the activated carbon used in the production are not particularly limited, but its particle size is determined in consideration of the dispersibility of the activated carbon when mixed with silica gel, and is usually preferably 75 μm or less. Yes, particularly preferably 38 μm
The following fine particles.

【0016】さらにシリカゲルの種類及び形状にも特に
制約はないが、その粒子径は、カラムの通液性、活性炭
と混合した時の活性炭の分散性等を考慮して決定され、
通常、好ましくは50〜500μmであり、特に好ましくは10
0〜250μmである。本発明による充填剤の製造におい
て、活性炭の含量は、低含量では特に4塩素のダイオキ
シン類であるTeCDDs、TeCDFsが25%(v/v)ジクロロメタ
ン含有ヘキサン画分に溶出する恐れがあり、高含量では
ダイオキシン類の回収率が低下する傾向があるため、分
離能等を考慮して決定されるが、シリカゲルの重量に対
して1〜3%の範囲が好ましく、特に1.5%〜2.5%が好適で
ある。
The type and shape of the silica gel are not particularly limited, but the particle size is determined in consideration of the liquid permeability of the column, the dispersibility of the activated carbon when mixed with the activated carbon, and the like.
Usually, it is preferably 50 to 500 μm, and particularly preferably 10 to 500 μm.
It is 0 to 250 μm. In the preparation of the filler according to the present invention, the content of activated carbon is particularly low at a low content because tetrachlorine dioxins, TeCDDs and TeCDFs, may be eluted in a 25% (v / v) dichloromethane-containing hexane fraction. Since the recovery rate of dioxins tends to decrease, it is determined in consideration of the separation ability and the like, but is preferably in the range of 1 to 3%, more preferably 1.5 to 2.5%, based on the weight of the silica gel. is there.

【0017】本発明による充填剤の熱処理温度は、ダイ
オキシン類の分解効率及び充填剤の分離能等を考慮して
決定されるが300℃〜500℃の温度で熱処理される。特に
350℃〜450℃の熱処理温度が好ましい。また熱処理の保
持時間は、ダイオキシン類の分解等を考慮して決定され
るが、好ましくは10分間以上であり、特に好ましくは30
分間〜2時間である。
The heat treatment temperature of the filler according to the present invention is determined in consideration of the decomposition efficiency of dioxins, the ability to separate the filler, and the like, and the heat treatment is performed at a temperature of 300 ° C. to 500 ° C. In particular
A heat treatment temperature of 350C to 450C is preferred. Further, the holding time of the heat treatment is determined in consideration of the decomposition of dioxins and the like, but is preferably 10 minutes or more, and particularly preferably 30 minutes or more.
Minutes to 2 hours.

【0018】本発明において、熱処理時の雰囲気ガスの
酸素濃度は、ダイオキシン類の分解効率等を考慮して決
定されるが、好ましくは5%以下であり、特に好ましく
は1%以下である。また、活性炭含有充填剤の熱処理を
行う際は粉末を静置させて行うこともできるが、粉末を
攪拌しながら行う方がダイオキシン類の分解効率を高め
る点から好ましい。
In the present invention, the oxygen concentration of the atmosphere gas during the heat treatment is determined in consideration of the decomposition efficiency of dioxins and the like, but is preferably 5% or less, particularly preferably 1% or less. When the heat treatment of the activated carbon-containing filler is performed, the powder can be allowed to stand still. However, it is preferable to perform the heat treatment while stirring the powder in order to increase the decomposition efficiency of dioxins.

【0019】低酸素雰囲気で熱処理をする工程は、活性
炭とシリカゲルなどを混合した後に限定されるものでは
なく、活性炭とシリカゲルなどをそれぞれ単独に低酸素
雰囲気で熱処理をし、その後にそれらを混合することも
できる。また、本発明において、活性炭含有充填剤の構
成成分は活性炭とシリカゲルのみに限定されず、本発明
による充填剤の効果を損なわないか向上させる限り、他
の成分が含まれていてもよい。
The step of heat-treating in a low-oxygen atmosphere is not limited to the method after mixing activated carbon and silica gel, but heat-treating activated carbon and silica gel separately in a low-oxygen atmosphere, and then mixing them. You can also. In the present invention, the constituent components of the activated carbon-containing filler are not limited to activated carbon and silica gel, and other components may be included as long as the effect of the filler according to the present invention is not impaired or improved.

【0020】[0020]

【実施例】以下に、実施例と比較例を示し本発明を具体
的に説明するが、本発明はこれにより限定されるもので
はない。実施例1〜4 (1)充填剤の製造 フルイで106〜250μmに整粒したシリカゲル(関東化学
製)100gに、フルイで38μm以下に整粒した活性炭(太
平化学産業製)2gを加え、均一混合し、粉末状の活性炭
分散シリカゲルとした。この粉末を窒素気流中で熱処理
した。表1に熱処理条件を示す。
The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to these examples. Examples 1 to 4 (1) Production of filler To 100 g of silica gel (manufactured by Kanto Kagaku) sized with a sieve of 106 to 250 μm, 2 g of activated carbon (manufactured by Taihei Kagaku Sangyo) sized with a sieve of 38 μm or less was added, and the mixture was homogenized. The mixture was mixed to obtain a powdered activated carbon-dispersed silica gel. This powder was heat-treated in a nitrogen stream. Table 1 shows the heat treatment conditions.

【0021】[0021]

【表1】 [Table 1]

【0022】(2)カラム作製 内径10mm、長さ250mmのガラス製カラムクロマト管にガ
ラスウール、無水硫酸ナトリウム約10mm、活性炭分散シ
リカゲル1g、無水硫酸ナトリウム約10mmを積層し、カ
ラムを作製した。
(2) Preparation of Column Glass wool, anhydrous sodium sulfate (about 10 mm), activated carbon-dispersed silica gel (1 g), and anhydrous sodium sulfate (about 10 mm) were laminated on a glass column chromatography tube having an inner diameter of 10 mm and a length of 250 mm to prepare a column.

【0023】(3)ブランクテスト カラムに25%(v/v)ジクロロメタン含有ヘキサン100mlを
流し、次にトルエン200mlを流し、それぞれの溶出液を1
00μlに濃縮し、HRGC(Hewlett Packard 5890II)-HRMS(J
EOL SX-102A)を用いSIM法で分析し、ダイオキシン類(T
eCDDs, PeCDDs,HxCDDs, HpCDDs, OCDD, TeCDFs, PeCDF
s, HxCDFs, HpCDFs, OCDF)のブランクチェックを行っ
た。2μlの検液を注入し測定した。比較例として、窒
素雰囲気で熱処理をしていない活性炭含有充填剤のブラ
ンクテストも併せて行った。結果を表2に示す。なお、
ピークのS/N比が2以下の場合を検出下限以下とし、表
中でN.D.(Not Detected)と記した。
(3) Blank test 100 ml of hexane containing 25% (v / v) dichloromethane was flowed through the column, and then 200 ml of toluene was flown.
Concentrate to 00 μl, and use HRGC (Hewlett Packard 5890II) -HRMS (J
Analyze by SIM method using EOL SX-102A) and obtain dioxins (T
eCDDs, PeCDDs, HxCDDs, HpCDDs, OCDD, TeCDFs, PeCDF
s, HxCDFs, HpCDFs, OCDF). 2 μl of the test solution was injected and measured. As a comparative example, a blank test of the activated carbon-containing filler that was not heat-treated in a nitrogen atmosphere was also performed. Table 2 shows the results. In addition,
The case where the S / N ratio of the peak was 2 or less was defined as the detection lower limit or less, and was described as ND (Not Detected) in the table.

【0024】[0024]

【表2】 ブランクテストの結果から、窒素気流中で360℃から420
℃の温度範囲で熱処理した活性炭含有充填剤にはダイオ
キシン類が含まれていないことがわかる。一方、比較例
の窒素雰囲気で熱処理をしていない活性炭含有充填剤に
はダイオキシン類が含まれていた。
[Table 2] From the results of the blank test, it was found that
It can be seen that dioxins are not contained in the activated carbon-containing filler heat-treated in the temperature range of ° C. On the other hand, the activated carbon-containing filler which was not heat-treated in a nitrogen atmosphere of Comparative Example contained dioxins.

【0025】(4)分画テスト カラムに1,3,6,8-TCDD、1,3,7,9-TCDD、OCDF(合わせて
1ppm)を含む試料溶液0.5mlを負荷した。次に25%(v/v)
ジクロロメタン含有ヘキサン200ml(20ml×10画分)お
よびトルエン300ml(20ml×15画分)を流し、溶出液を
濃縮後、HRGC(Hewlett Packard 5890II)-HRMS(JEOL SX-
102A)を用いSIM法で分析し、ダイオキシン類の溶出パタ
ーンを調べた。窒素気流中で360℃から420℃の温度範囲
で熱処理した活性炭含有充填剤を用いた分画テストの結
果、25%(v/v)ジクロロメタン含有ヘキサンの画分にダ
イオキシン類は溶出せず、トルエン画分からダイオキシ
ン類が溶出した(図1〜図8)。このことから、窒素気
流中で360℃から420℃の温度範囲で熱処理した本発明に
よる活性炭含有充填剤は優れた分離能を有することがわ
かる。
(4) Fractionation test In the column, 1,3,6,8-TCDD, 1,3,7,9-TCDD, OCDF (total
0.5 ml of a sample solution containing 1 ppm) was loaded. Next 25% (v / v)
200 ml of hexane containing dichloromethane (20 ml × 10 fractions) and 300 ml of toluene (20 ml × 15 fractions) were allowed to flow. The eluate was concentrated, and then HRGC (Hewlett Packard 5890II) -HRMS (JEOL SX-
102A) was analyzed by SIM method, and the elution pattern of dioxins was examined. As a result of a fractionation test using an activated carbon-containing filler heat-treated at a temperature range of 360 ° C to 420 ° C in a nitrogen stream, dioxins were not eluted in a fraction of 25% (v / v) dichloromethane-containing hexane, and toluene Dioxins eluted from the fraction (FIGS. 1 to 8). This indicates that the activated carbon-containing filler according to the present invention, which was heat-treated in a temperature range of 360 ° C. to 420 ° C. in a nitrogen stream, has excellent separation ability.

【0026】[0026]

【発明の効果】活性炭とシリカゲルを含有する粉末を、
低酸素雰囲気で1時間程度の短時間の熱処理をすること
により、活性炭含有充填剤からダイオキシン類を分解除
去できた。その結果、トルエンなどの有機溶媒による洗
浄が不要になり、上記課題が解決できた。低温で熱処理
することにより活性炭含有充填剤へのダメージを抑え、
優れた分離能を持たせることができた。
The powder containing activated carbon and silica gel is
Dioxins could be decomposed and removed from the activated carbon-containing filler by heat treatment for about 1 hour in a low oxygen atmosphere. As a result, washing with an organic solvent such as toluene is not required, and the above problem can be solved. Heat treatment at low temperature reduces damage to activated carbon-containing filler,
Excellent separation ability could be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1(360℃×1h熱処理品)における1,
3,6,8-TCDDの溶出挙動である。
FIG. 1 shows the results obtained in Example 1 (heat treated at 360 ° C. for 1 hour).
This is the dissolution behavior of 3,6,8-TCDD.

【図2】 実施例1(360℃×1h熱処理品)におけるOC
DFの溶出挙動である。
FIG. 2 OC in Example 1 (heat treated at 360 ° C. for 1 hour)
This is the elution behavior of DF.

【図3】 実施例2(380℃×1h熱処理品)における1,
3,6,8-TCDDの溶出挙動である。
FIG. 3 shows the results obtained in Example 2 (heat treated at 380 ° C. for 1 hour).
This is the dissolution behavior of 3,6,8-TCDD.

【図4】 実施例2(380℃×1h熱処理品)におけるOC
DFの溶出挙動である。
FIG. 4 OC in Example 2 (heat treated at 380 ° C. for 1 hour)
This is the elution behavior of DF.

【図5】 実施例3(400℃×1h熱処理品)における1,
3,6,8-TCDDの溶出挙動である。
FIG. 5 shows the results obtained in Example 3 (heat treated at 400 ° C. for 1 hour).
This is the dissolution behavior of 3,6,8-TCDD.

【図6】 実施例3(400℃×1h熱処理品)におけるOC
DFの溶出挙動である。
FIG. 6: OC in Example 3 (heat-treated product at 400 ° C. × 1 h)
This is the elution behavior of DF.

【図7】 実施例4(420℃×1h熱処理品)における1,
3,6,8-TCDDの溶出挙動である。
FIG. 7 shows the results obtained in Example 4 (heat treated at 420 ° C. for 1 hour).
This is the dissolution behavior of 3,6,8-TCDD.

【図8】 実施例4(420℃×1h熱処理品)におけるOC
DFの溶出挙動である。
FIG. 8: OC in Example 4 (heat treated at 420 ° C. for 1 hour)
This is the elution behavior of DF.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 33/00 G01N 33/00 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 33/00 G01N 33/00 D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ダイオキシン類分析のためのクリーンア
ップ用充填剤であって、活性炭とシリカゲルとを含有す
る粉末を低酸素雰囲気で熱処理したものを含むことを特
徴とする、前記充填剤。
1. A filler for cleanup for dioxin analysis, which is obtained by heat-treating a powder containing activated carbon and silica gel in a low oxygen atmosphere.
【請求項2】 熱処理の温度が300〜500℃であることを
特徴とする、請求項1に記載の充填剤。
2. The filler according to claim 1, wherein the temperature of the heat treatment is 300 to 500 ° C.
【請求項3】 低酸素雰囲気が酸素濃度5%以下の雰囲気
であることを特徴とする、請求項1又は2に記載の充填
剤。
3. The filler according to claim 1, wherein the low oxygen atmosphere is an atmosphere having an oxygen concentration of 5% or less.
【請求項4】 粉末が粒子径75μm以下の活性炭と粒子径
50〜500μmのシリカゲルとから本質的になる粉末である
ことを特徴とする、請求項1〜3に記載の充填剤。
4. Activated carbon powder having a particle size of 75 μm or less and a particle size
4. The filler according to claim 1, which is a powder consisting essentially of silica gel of 50 to 500 [mu] m.
JP2000121554A 2000-04-21 2000-04-21 Activated carbon-containing filler for analysis of dioxins Expired - Lifetime JP4920813B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000121554A JP4920813B2 (en) 2000-04-21 2000-04-21 Activated carbon-containing filler for analysis of dioxins
TW090106568A TWI234654B (en) 2000-04-21 2001-03-21 Filler containing active carbon for analysis of dioxin and the like
KR1020010021467A KR100812978B1 (en) 2000-04-21 2001-04-20 Filler containing active carbon for analysis of dioxin and the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121554A JP4920813B2 (en) 2000-04-21 2000-04-21 Activated carbon-containing filler for analysis of dioxins

Publications (2)

Publication Number Publication Date
JP2001305119A true JP2001305119A (en) 2001-10-31
JP4920813B2 JP4920813B2 (en) 2012-04-18

Family

ID=18632185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121554A Expired - Lifetime JP4920813B2 (en) 2000-04-21 2000-04-21 Activated carbon-containing filler for analysis of dioxins

Country Status (3)

Country Link
JP (1) JP4920813B2 (en)
KR (1) KR100812978B1 (en)
TW (1) TWI234654B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156065A (en) * 2012-01-27 2013-08-15 Miura Co Ltd Extraction method for dioxin kind
US20150376032A1 (en) * 2013-05-27 2015-12-31 Miura Co., Ltd. Tool for fractionating dioxins
EP2871476A4 (en) * 2013-05-27 2016-04-27 Miura Kogyo Kk Fractionation method for dioxins
CN112730651A (en) * 2020-12-15 2021-04-30 湖南微谱检测技术有限公司 Rapid pretreatment method for dioxin sample

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042357A (en) * 1998-07-27 2000-02-15 Hitachi Zosen Corp Low temperature recycle type treatment of waste gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750084B2 (en) * 1986-03-17 1995-05-31 和光純薬工業株式会社 Analytical method using activated carbon-buried silica gel as packing material for clean-up column
JPH0648718Y2 (en) * 1989-03-28 1994-12-12 松下電工株式会社 Seesaw switch
JPH0750084Y2 (en) * 1990-03-31 1995-11-15 オ−クマ株式会社 Adjustable ring claw for chuck
US5209912A (en) * 1990-05-02 1993-05-11 Ftu Gmbh Process for separating out noxious substances from gases and exhaust gases
US5145494A (en) * 1991-02-22 1992-09-08 Sowinski Richard F Method and means for filtering polychlorinated biphenyls from a gas stream
JP3539434B2 (en) * 1993-12-09 2004-07-07 三菱瓦斯化学株式会社 Manufacturing method of high performance carbon material
JP2502045B2 (en) * 1994-06-30 1996-05-29 キヤノン電子株式会社 cassette

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000042357A (en) * 1998-07-27 2000-02-15 Hitachi Zosen Corp Low temperature recycle type treatment of waste gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156065A (en) * 2012-01-27 2013-08-15 Miura Co Ltd Extraction method for dioxin kind
US20150376032A1 (en) * 2013-05-27 2015-12-31 Miura Co., Ltd. Tool for fractionating dioxins
EP2871476A4 (en) * 2013-05-27 2016-04-27 Miura Kogyo Kk Fractionation method for dioxins
US9696290B2 (en) 2013-05-27 2017-07-04 Miura Co., Ltd. Method for fractionating dioxins
CN112730651A (en) * 2020-12-15 2021-04-30 湖南微谱检测技术有限公司 Rapid pretreatment method for dioxin sample

Also Published As

Publication number Publication date
JP4920813B2 (en) 2012-04-18
KR100812978B1 (en) 2008-03-13
KR20010103612A (en) 2001-11-23
TWI234654B (en) 2005-06-21

Similar Documents

Publication Publication Date Title
Harper Sorbent trapping of volatile organic compounds from air
Petty et al. Application of semipermeable membrane devices (SPMDs) as passive air samplers
EP2871476A1 (en) Fractionation method for dioxins
EP1558361B1 (en) Apparatus and methods for removing mercury from fluid streams
JP7218584B2 (en) Method for fractionating dioxins
EP3476474B1 (en) Reactive sorbent based on activated clay for decontaminating chemical warfare agent (cwa) and decontamination method using the same
EP2871477B1 (en) Fractionation apparatus for dioxins
JP4920813B2 (en) Activated carbon-containing filler for analysis of dioxins
Windal et al. Supercritical fluid extraction of polychlorinated dibenzo-p-dioxins from fly ash: the importance of fly ash origin and composition on extraction efficiency
JPS62216911A (en) Activated carbon-containing silica gel, its production, and analytical method using said gel as packing material of cleanup column
Zhou et al. Removal efficiencies for 136 tetra-through octa-chlorinated dibenzo-p-dioxins and dibenzofuran congeners with activated carbons
Korfmacher et al. Nonphotochemical decomposition of fluorene vapor-adsorbed on coal fly ash
Kanaujia et al. Multiwalled carbon nanotubes as efficient adsorbent for solid‐phase extraction of chemical warfare agents and related chemicals from water
JP5691120B2 (en) Production method of silica gel containing high concentration sulfuric acid
Buser et al. Methylthio metabolites of polychlorobiphenyls identified in sediment samples from two lakes in Switzerland
Loos et al. Group separation of ortho-PCBs, coplanar non-ortho-PCBs and PCDDs/PCDFs using an alumina column as an one-step clean-up procedure
JP4767575B2 (en) Organic halogen compound take-out apparatus and organic halogen compound take-out method
Rossetti et al. Development of a new automated clean-up system for the simultaneous analysis of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and ‘dioxin-like’polychlorinated biphenyls (dl-PCB) in flue gas emissions by GPC-SPE
WO2022064749A1 (en) Method for extracting organic halogen compound
Kumar et al. Contamination by polychlorinated dibenzo- p-dioxins (PCDDs) and dibenzo- p-furans (PCDFs) in selected solid wastes: An implication of potential sources of pollution
JP4064117B2 (en) Contaminated oil treatment method
Tilio et al. Reduction/elimination of sulfur interference in organochlorine residue determination by supercritical fluid extraction
WO2022176252A1 (en) Method of extracting organohalogen compound
JP4087816B2 (en) Toxic gas removing adsorbent and absorbent can using the same
JP2005172754A (en) Fractionation method of dioxins and fractionation column therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120202

R150 Certificate of patent or registration of utility model

Ref document number: 4920813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term