KR100812978B1 - Filler containing active carbon for analysis of dioxin and the like - Google Patents

Filler containing active carbon for analysis of dioxin and the like Download PDF

Info

Publication number
KR100812978B1
KR100812978B1 KR1020010021467A KR20010021467A KR100812978B1 KR 100812978 B1 KR100812978 B1 KR 100812978B1 KR 1020010021467 A KR1020010021467 A KR 1020010021467A KR 20010021467 A KR20010021467 A KR 20010021467A KR 100812978 B1 KR100812978 B1 KR 100812978B1
Authority
KR
South Korea
Prior art keywords
activated carbon
dioxins
filler
silica gel
analysis
Prior art date
Application number
KR1020010021467A
Other languages
Korean (ko)
Other versions
KR20010103612A (en
Inventor
타다아키 와키모토
미키오 코바야시
Original Assignee
간토 가가꾸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 간토 가가꾸 가부시키가이샤 filed Critical 간토 가가꾸 가부시키가이샤
Publication of KR20010103612A publication Critical patent/KR20010103612A/en
Application granted granted Critical
Publication of KR100812978B1 publication Critical patent/KR100812978B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

뛰어난 분리능력이 있고, 유기용매에 의한 세정을 필요로 하지 않는 다이옥신류 분석클린업용 충전제를 제공한다.Provided is a filler for dioxins analysis and cleaning that has excellent separation ability and does not require cleaning with an organic solvent.

다이옥신류 분석을 위한 클린업용 충전제이고, 활성탄과 실리카겔을 함유하는 분말을 저산소분위기로 처리한 것을 포함하는 것을 특징으로 하는 상기 충전제.The filler for cleaning up dioxin analysis, characterized in that the powder containing activated carbon and silica gel treated with a low oxygen atmosphere.

Description

다이옥신류 분석용 활성탄함유 충전제{Filler containing active carbon for analysis of dioxin and the like}Filler containing active carbon for analysis of dioxin and the like}

도 1은, 실시예 1(360℃×1h열처리품)에 있어서 1, 3, 6, 8-TCDD의 용출 그래프이다.1 is a dissolution graph of 1, 3, 6, and 8-TCDD in Example 1 (360 占 폚 x 1h heat treated product).

도 2는, 실시예 1(360℃×1h열처리품)에 있어서 OCDF의 용출 그래프이다.2 is a dissolution graph of OCDF in Example 1 (360 占 폚 x 1h heat treated product).

도 3은, 실시예 2(380℃×1h열처리품)에 있어서 1, 3, 6, 8-TCDD의 용출 그래프이다.3 is an elution graph of 1, 3, 6, and 8-TCDD in Example 2 (380 ° C × 1h heat treated product).

도 4는, 실시예 2(380℃×1h열처리품)에 있어서 OCDF의 용출 그래프이다.4 is a dissolution graph of OCDF in Example 2 (380 占 폚 x 1h heat treated product).

도 5은, 실시예 3(400℃×1h열처리품)에 있어서 1, 3, 6, 8-TCDD의 용출 그래프이다.FIG. 5 is a dissolution graph of 1, 3, 6, and 8-TCDD in Example 3 (400 占 폚 x 1h heat treated product). FIG.

도 6은, 실시예 3(400℃×1h열처리품)에 있어서 OCDF의 용출 그래프이다.6 is a dissolution graph of OCDF in Example 3 (400 占 폚 x 1h heat treated product).

도 7은, 실시예 4(420℃×1h열처리품)에 있어서 1, 3, 6, 8-TCDD의 용출 그래프이다.7 is a dissolution graph of 1, 3, 6, and 8-TCDD in Example 4 (420 ° C. × 1 h heat treated product).

도 8은, 실시예 4(420℃×1h열처리품)에 있어서 OCDF의 용출 그래프이다.8 is a dissolution graph of OCDF in Example 4 (420 ° C. × 1 h heat treated product).

본 발명은, 다이옥신류 분석을 위해 클린업 공정에 사용하는 충전제에 관한 것이다.The present invention relates to fillers used in cleanup processes for dioxin analysis.

일반적으로 다이옥신류라고 하는 것은, 폴리염화디벤조-p-다이옥신(PCDD), 폴리염화디벤조퓨란(PCDF) 및 코플래너PCB의 총칭이며, 여기에는 다수의 이성체(異性體)가 포함되어 있다. 최근에는, 이 다이옥신류가 산업폐기물 등의 소각에 의해서도 대기중에 대량 분산되는 것으로 판명되어 큰 사회문제가 되고 있다. ∼Generally, dioxins are a general term for polychlorinated dibenzo-p-dioxin (PCDD), polychlorinated dibenzofuran (PCDF) and coplanar PCB, and many isomers are contained in it. In recent years, these dioxins have been found to be largely dispersed in the atmosphere even by incineration of industrial wastes and the like, which is a major social problem. To

다이옥신류 분석용 시료에 있어서, 다이옥신류의 존재량은 ppb-ppq(10-9∼10-15)레벨로 극히 미량이고, 다수의 다른 유기화합물이 공존하는 경우가 대부분이다. 따라서, 고정밀도로 분리정량 하기 위해서는 가스크로마토그래프(GC)/질량분석계 (MS)로 측정하기 전의 단계에서, 다이옥신류의 분석을 방해하거나 또는 악영향을 미치는 화합물을 클린업 조작으로 제거할 필요가 있다.In the analytical sample dioxins, existing amount of dioxins are ppb-ppq (10 -9 ~10 -15 ) and a very small amount at a level, which is in most cases co-exist a number of different organic compounds. Therefore, in order to separate and quantify with high accuracy, it is necessary to remove compounds which interfere with or adversely affect the analysis of dioxins in a step before measurement with a gas chromatograph (GC) / mass spectrometer (MS) by a clean-up operation.

그와 같은 클린업 조작에 이용되는 클린업용 충전제로써는 다이옥신류와 같은 평판상 구조의 분자를 특이적으로 흡착하는 활성탄 성질을 이용한 실리카겔 등에 활성탄을 함유시킨 충전제가 인지되어 있고, 이것으로 다이옥신류와 그 외의 유기화합물을 분리한다. 예를 들면, 활성탄함유 충전제를 채운 컬럼(column)에 시료용액을 부하한 후, 우선 헥산을 통과시켜 이 획분(畵分)으로 일반적인 유기화합물을 용출시키고, 다음으로 컬럼에 톨루엔을 통과시켜 이 획분으로 다이옥신류를 용출시킴으로써 분리(분획)하는 것이 가능하다. 이 활성탄함유 충전제가 구비해야 할 특성으로는, 뛰어난 분산능력, 다이옥신류의 회수률이 높은 것, 또 다이옥신류 외의 분석방해성분으로 오염되지 않는 것을 들 수 있다. 구체적으로는 규산나트륨(워터 글래스)과 활성탄의 혼합물을 광산(鑛酸)과 반응시킴으로써 얻어지는 활성탄 매장 실리카겔(일본국 특허공고 평7-50084호 공보)이 인지되어 있다. 그러나 이것은 제법이 복잡하고, 그 결과 얻어지는 충전제의 물성을 일정하게 하기 위해서는 고도의 반응제어기술을 필요로 하는 것이 난점이다. As a filler for cleaning up used in such a clean-up operation, the filler which contained activated carbon in silica gel etc. which used the activated carbon property which adsorb | sucks the plate-like structure specifically like dioxins is recognized, and this is the dioxins and others. Isolate organic compounds. For example, after loading a sample solution to a column filled with activated carbon-containing filler, firstly, hexane is passed through this fraction to elute the general organic compound, and then toluene is passed through the column to give this fraction. It is possible to separate (fractionate) by eluting dioxins. The characteristics that the activated carbon-containing filler should include include excellent dispersibility, high recovery of dioxins, and non-contamination by analytical disturbance components other than dioxins. Specifically, activated carbon buried silica gel (Japanese Patent Laid-Open No. 7-50084) obtained by reacting a mixture of sodium silicate (water glass) and activated carbon with a photoacid is recognized. However, this method is complicated and requires a high degree of reaction control technique in order to make the physical properties of the resulting filler constant.

또, 활성탄과 실리카겔을 혼합하여 얻어지는 활성탄 분산 실리카겔(T.Wakimoto, et al, Chemosphere, 27, 2117-2122(1993))이 인지되어 있다. 이것은 제법이 단순하고, 물성의 재현성과 제조비용의 면에서 뛰어난 특징이 있지만, 사전처리로써 오염물질제거에 많은 시간이 소요된다.Moreover, activated carbon dispersion silica gel (T. Wakimoto, et al, Chemosphere, 27 , 2117-2122 (1993)) obtained by mixing activated carbon and silica gel is recognized. This method is simple in manufacturing and has excellent characteristics in terms of reproducibility of properties and manufacturing cost, but it takes a long time to remove contaminants by pretreatment.

그리고, 활성탄 매장 실리카겔의 유사품으로써 탄소분자시브(松村 千里외, 제 7 회 환경화학토론회 강연요지집, 154(1998), 시그마 앨드리치 재팬에서 입수가능)가 인지되어 있다. 그러나, 이것은 다이옥신류의 회수율이 낮고, 또 톨루엔의 가열(50℃정도)과 역유출법으로의 용출이 요구되므로 번잡해지는 결점이 있다.As a similar product of activated carbon buried silica gel, carbon molecular sieve (available from the 7th Environmental Chemistry Discussion Conference Collection, 154 (1998), Sigma Aldrich Japan) is recognized. However, this has a drawback in that the recovery rate of dioxins is low, and the heating of toluene (about 50 ° C.) and the elution by the reverse distillation method are required.

상기의 활성탄매장 실리카겔, 활성탄 분산 실리카겔 및 탄소분자시브중의 어느 경우에 있어서도, 충전제를 클린업 조작에 이용하는데 있어서는, 예를 들면 [유해대기오염물질 측정방법 매뉴얼(다이옥신류 및 코플래너PCBs)](환경청, 평성 11년 3월)에 기재되어 있듯이, 톨루엔 등의 유기용매로 충분히 세정하고, 충전제를 구성하는 활성탄과 실리카겔 등에 원래 포함되어 있는 다이옥신류, 그 외의 분석방해물질을 제거할 필요가 있다.In any of the above-mentioned activated carbon store silica gel, activated carbon dispersed silica gel and carbon molecular sieve, in order to use the filler for the clean-up operation, for example, [Methods for Measuring Hazardous Air Pollutants (Dioxins and Coplanar PCBs)] ( As described in the EPA, March 11, 2015, it is necessary to sufficiently wash with an organic solvent such as toluene and to remove dioxins and other analytical disturbances originally contained in activated carbon and silica gel constituting the filler.

만일, 다이옥신류 등 분석방해물질로 오염되어 있을 가능성이 있는 충전제를 사용하면 신뢰성이 있는 데이터를 얻을 수 없음은 말할 필요도 없다. It goes without saying that reliable data cannot be obtained if fillers that are contaminated with analytical disturbances such as dioxins are used.

또, 다이옥신류 분석의 클린업용 충전제로써는, 알루미나도 사용할 수 있고, 활성화을 목적으로 130℃로 18시간 건조하는 방법([유해대기오염물질 측정방법 매뉴얼(다이옥신류 및 코플래너PCBs)](환경청, 평성 11년 3월)), 활성화(건조) 및 알루미나에 흡착된 다이옥신류를 휘산시킬 목적으로, 공기분위기로 500-600℃의 온도로 24시간 열처리하는 방법이 인지되어 있다(太田 狀一, 파마시아(Pharmacia), 441(1998), 中尾 晃幸,산업과 환경, 41(1998)). 그러나 이 방법은 다이옥신류를 분해하기 위한 것이 아니므로, 알루미나 중에 다이옥신류가 남아 있을 가능성이 있다.Alumina can also be used as a filler for dioxin analysis, and it is dried for 18 hours at 130 ° C for activation (Hazardous Air Pollutant Measurement Manual (Dioxins and Coplanner PCBs)) In order to volatilize the dioxins adsorbed on alumina, and to activate (dry) and alumina, it is known to heat-treat at a temperature of 500-600 ° C for 24 hours (March 11, Pharmacia). Pharmacia), 441 (1998), Nai Chuo, Industry and Environment, 41 (1998). However, since this method is not intended to decompose dioxins, dioxins may remain in alumina.

이와 같이, 종래의 알루미나 및 활성탄함유 충전제는, 원래 있던 다이옥신류 그 외의 분석방해성분으로 오염되어 있으므로, 클린업 조작 이전에 톨루엔 등의 유기용매로 충전제를 충분히 세정할 필요가 있다.As described above, the conventional alumina and activated carbon-containing fillers are contaminated with dioxins and other analytical hindrance components. Therefore, the fillers must be sufficiently washed with an organic solvent such as toluene before the clean-up operation.

그런데, 톨루엔 등의 유기용매에 의한 세정방법으로써는 일반적으로 속슬레이 추출법(예를 들면 [혈액중의 다이옥신류 및 코플래너PCB의 측정분석법(안)](후생성, 제 29 회 일본환경화학회 강연회 예고집(1999), T.Wakimoto, et al, Chemosphere, 27, 2117-2122(1993)) 또는 초음파 세정법(예를 들면, 松村 徹, 물환경 학회지, 21, 412-416(1998))이 이용되는데, 이 속슬레이 추출법으로는 일반적으로 16-24시간의 장시간 추출이 필요하다. (예를 들면, T.Wakimoto, et al, Chemosphere, 27, 2117-2122(1993)). 그리고, 혈액과 같은 다이옥신류 농도가 낮은 시료의 분석에 사용할 경우에는, 1주일 이상의 속슬레이 추출을 실시한 충전제 가 필요하다(예를 들면, 增崎 優子 외, 제 8 회 환경화학토론회 강연요지집, 216(1999)). 또, 세정후에는 로터리 증발기에 의한 감압건조 등의 방법으로 유기용매가 제거되는데, 충전제를 구성하는 활성탄 및 실리카겔이 다공체이므로 그 작은 구멍에 들어간 유기용매를 제거하는 위해서는 장시간의 감압건조가 필요하다. By the way, as a washing method with an organic solvent such as toluene, a soxlay extraction method (for example, [Method for analyzing and measuring dioxins and coplanar PCBs in blood]) (Ministry of Health, 29th Japanese Environmental Chemistry Society Lecture) Preliminary Proceedings (1999), T. Wakimoto, et al, Chemosphere, 27 , 2117-2122 (1993)) or ultrasonic cleaning (e.g., 松 村, Journal of Water and Environment, 21 , 412-416 (1998)). This Soxhley extraction method typically requires 16-24 hours of long extraction (eg T. Wakimoto, et al, Chemosphere, 27 , 2117-2122 (1993)), and When used for the analysis of samples with low dioxin concentrations, a filler that has been subjected to Soxhlay extraction for at least one week is required (for example, Kisaki Sako et al., Eighth Environmental Chemistry Conference Collection, 216 (1999)). After washing, the organic solvent is removed by a method such as vacuum drying with a rotary evaporator. Since the activated carbon and the silica gel constituting the filler are porous bodies, long-term drying under reduced pressure is necessary to remove the organic solvent that has entered the small pores.

상기 종래법의 문제점을 정리하면 다음과 같다.The problems of the conventional method are summarized as follows.

① 충전제의 세정작업에 장시간 소요된다.① It takes a long time to clean the filler.

② 충전제에서 톨루엔 등의 유기용매를 제거하는 것이 불충분하고, 충전제에 유기용제가 잔존해 있으면, 충전제의 분리능력이 현저히 저하하고, 다이옥신류의 분리가 힘들어진다. (2) If it is insufficient to remove organic solvents such as toluene from the filler, and the organic solvent remains in the filler, the separation ability of the filler is significantly reduced, and dioxins are difficult to separate.

③ 톨루엔 등의 유기용매를 충전제 세정에 사용하는데, 이 유기용매는 인체에 유해하고, 작업자의 건강과 환경에 악영향을 미치 우려가 있다.③ Organic solvents, such as toluene, are used to clean the filler. This organic solvent is harmful to the human body and may adversely affect the health and environment of workers.

그리고 관련기술로써, 도시 쓰레기 소각장에서 나오는 비산하는 연기 또는 재에 포함되어 있는 다이옥신류 분해방법에 대해서, 저산소분위기로 300-500℃의 열처리를 하는 방법이 인지되어 있다(예를 들면, 志田 惠 외, 제 3 회 폐기물학회 연구발표회 강연논문집, 355(1992), 廣常 晃生 외, 지구환경, 10, 14(1999)). 또, 배기 가스중의 다이옥신류를 흡착시킨 활성탄을 저산소 분위기로 가열하여 흡착한 다이옥신류를 분해하여 활성탄을 재생하는 방법이 인지되어 있다(일본국 특개평5-301022호 공보, 일본국 특개평 11-76756호 공보 및 일본국 특개평11-114374호 공보). 그러나, 이 저산소 분위기에서의 다이옥신류 열분해법의 이용은, 도시 쓰레기 소각장에서의 다이옥신류 배출 저감 및 활성탄 재생을 목적으로 한 것에만 한정 되어, 분산 능력과 초미량 성분 검출 등의 고도의 특성이 요구되는 다이옥신류 분석 클린업용 충전제의 세정에 이용된 예는 없고, 또 그것에 의한 효과에 대해서는 전혀 검토되어 있지 않다. As a related technique, a method of heat-treating 300-500 ° C. in a low oxygen atmosphere has been recognized for the dioxins decomposition method contained in the fumes or ashes emitted from municipal waste incinerators (eg, Shida Hi et al.). , 3rd Waste Society Research Conference, 355 (1992), Yeung-Sung et al., Global Environment, 10 , 14 (1999)). In addition, a method is known in which activated carbon adsorbed dioxin in exhaust gas is heated in a low oxygen atmosphere to decompose dioxin adsorbed to regenerate activated carbon (JP-A-5-301022, JP-A-11). -76756 and Japanese Patent Laid-Open No. 11-114374. However, the use of dioxins pyrolysis in a low oxygen atmosphere is limited to dioxins emission reduction and activated carbon regeneration in municipal waste incineration plants, and requires high characteristics such as dispersion capacity and ultra trace component detection. There is no example used for the washing | cleaning of the dioxins-type analysis cleanup filler, and the effect by it is not examined at all.

본 발명은 상기의 사정을 감안한 것으로 뛰어난 분산능력이 있고, 유기용매에 의한 세정을 필요로 하지 않는 다이옥신류 분석클린업용 충전제를 제공하는 것에 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a filler for dioxins analysis and cleanup, which has excellent dispersibility and does not require washing with an organic solvent.

본 발명자들은, 상기 과제를 해결하기 위해 면밀한 연구를 거듭하던 중에, 활성탄과 실리카겔 분말을 저산소 분위기로 열처리함으로써 얻어진 다이옥신류 분석 클린업용 충전제로, 상기 과제를 해결하는 방법을 알아내어 본 발명의 완성에 이르렀다. MEANS TO SOLVE THE PROBLEM The present inventors discovered the method of solving the said subject with the dioxins analysis cleanup filler obtained by heat-treating activated carbon and a silica gel powder in a low oxygen atmosphere, in order to solve the said subject, and completed the present invention. Reached.

즉, 본 발명은 다이옥신류 분석을 위한 클린업용 충전제이고, 활성탄과 실리카겔을 함유하는 분말을 저산소 분위기로 열처리한 것을 포함하는 것을 특징으로 하는 상기 충전제에 관한 것이다. That is, the present invention relates to a filler for cleaning up for dioxin analysis, wherein the filler comprising activated carbon and silica gel is heat-treated in a low oxygen atmosphere.

또, 본 발명은, 열처리 온도가 300-500℃인 것을 특징으로 하는 상기 충전제에 관한 것이다.Moreover, this invention relates to the said filler characterized by the heat processing temperature being 300-500 degreeC.

그리고 본 발명은, 저산소 분위기가 산소농도 5%이하의 분위기인 것을 특징으로 하는 상기 충전제에 관한 것이다.And this invention relates to the said filler characterized by the low oxygen atmosphere being atmosphere of 5% or less of oxygen concentration.

그리고 또 본 발명은, 분말이 분자경 75㎛이하의 활성탄과 분자경 50-500㎛인 실리카겔로 본질적으로 이루어지는 분말인 것을 특징으로 하는 상기 충전제에 관한 것이다. The present invention further relates to the above filler, characterized in that the powder is essentially a powder consisting of activated carbon having a molecular diameter of 75 µm or less and silica gel having a molecular diameter of 50-500 µm.

이하에 본 발명의 실시예에 대해서 서술한다.EMBODIMENT OF THE INVENTION Below, the Example of this invention is described.

본 발명에 의한 충전제는, 정립(整粒) 실리카겔에 정립한 활성탄을 첨가하고, 균일하게 혼합하여, 이 분말을 질소기류중에서 열처리하고, 유리 컬럼크로마토관에 글래스울(GLASS WOOL), 무수황산나트륨, 상기 활성탄함유 충전제 및 무수황산나트륨을 적층하여, 유리를 제작하는 공정으로 제조되어 사용된다.The filler according to the present invention adds activated carbon that has been sized to the sized silica gel, mixes uniformly, heat-treats the powder in a nitrogen stream, and heats the glass wool glass tube with GLASS WOOL, anhydrous sodium sulfate, The activated carbon-containing filler and anhydrous sodium sulfate are laminated to prepare a glass to be used.

제조에 이용되는 활성탄의 종류 및 형상에 특별한 제약은 없지만, 그 입자경은 실리카겔과 혼합했을 때의 활성탄 분산성 등을 고려하여 결정되고, 통상 바람직하게는 75㎛이하, 특히 바람직하게는 38㎛이하의 입자경이다.Although there are no particular restrictions on the type and shape of the activated carbon used in the production, the particle diameter thereof is determined in consideration of the dispersibility of activated carbon when mixed with silica gel, and is preferably 75 μm or less, particularly preferably 38 μm or less. It is a particle diameter.

그리고 실리카겔의 종류 및 형상에도 특별한 제약은 없지만, 그 입자경은 컬럼의 통액성, 활성탄과 혼합했을 때의 활성탄 분산성 등을 고려하여 결정되고, 통상 바람직하게는 50-500㎛이고, 특히 바람직하게는 100-250㎛이다. There is no particular restriction on the type and shape of the silica gel, but the particle size thereof is determined in consideration of the liquid permeability of the column, the dispersibility of the activated carbon when mixed with the activated carbon, and is preferably 50 to 500 µm, particularly preferably 100-250 μm.

본 발명에 의한 충전제의 제조에 있어서, 활성탄의 함량은, 저함량일 경우에는 특히 4염소 다이옥신류인 TeCDDs, TeCDF가 25%(v/v) 디클로로메탄함유 헥산획분으로 용출할 우려가 있고, 고함량일 경우에는 다이옥신류의 회수율이 저하하는 경향이 있으므로, 분산능력 등을 고려하여 결정되는데, 실리카겔의 중량에 대해 1-3% 범위가 바람직하고, 특히 1.5%-2.5%가 적당하다.In the production of the filler according to the present invention, the content of activated carbon may be high, especially when TeCDDs and TeCDF, which are tetrachlorine dioxins, are eluted with 25% (v / v) dichloromethane-containing hexane fractions. In this case, since the recovery rate of dioxins tends to decrease, it is determined in consideration of the dispersing capacity and the like, but is preferably in the range of 1-3%, particularly 1.5% -2.5%, based on the weight of the silica gel.

본 발명에 의한 충전제의 열처리온도는, 다이옥신류의 분해효율 및 충전제의 분리능력 등을 고려하여 결정되는데 300-500℃의 온도로 열처리된다. 특히 350- 450℃의 열처리온도가 바람직하다.The heat treatment temperature of the filler according to the present invention is determined in consideration of the decomposition efficiency of dioxins, the separation ability of the filler, and the like, and the heat treatment is performed at a temperature of 300-500 ° C. In particular, a heat treatment temperature of 350-450 ° C is preferred.

또 열처리 보존시간은 다이옥신류의 분해 등을 고려하여 결정되는데, 바람직하게는 10분 이상이고, 특히 바람직하게는 30분-2시간이다.The heat treatment storage time is determined in consideration of the decomposition of dioxins, etc., preferably 10 minutes or more, and particularly preferably 30 minutes-2 hours.

본 발명에 있어서, 열처리시의 분위기 가스 산소농도는 다이옥신류의 분해효율 등을 고려하여 결정되는데, 바람직하게는 5%이하, 특히 바람직하게는 1%이하이다. 또, 활성탄함유 충전제의 열처리 이행시에는 분말을 정치(靜置)시켜 이행하는 것이 가능한데, 분말을 교반시키면서 이행하는 편이 다이옥신류의 분해효율을 높인다는 점에서 바람직하다.In the present invention, the atmospheric gas oxygen concentration during heat treatment is determined in consideration of the decomposition efficiency of dioxins, etc., preferably 5% or less, and particularly preferably 1% or less. In addition, when the heat treatment of the activated carbon-containing filler is carried out, the powder can be left to perform the transfer. Preferably, the powder is stirred while the powder is stirred to increase the decomposition efficiency of dioxins.

저산소 분위기로 열처리하는 공정은, 활성탄과 실리카겔 등을 혼합한 후로 한정되는 것이 아니고, 활성탄과 실리카겔을 각각 단독으로 저산소 분위기에서 열처리하고, 그 후에 그것을 혼합하는 것도 가능하다. The process of heat-treating in a low oxygen atmosphere is not limited after mixing activated carbon, a silica gel, etc., It is also possible to heat-treat an activated carbon and a silica gel each independently in a low oxygen atmosphere, and to mix it after that.

또, 본 발명에 있어서, 활성탄함유 충전제의 구성성분은 활성탄과 실리카겔에만 한정되지 않고, 본 발명에 의한 충전제의 효과를 손상시키지 않거나 향상시키는 한, 다른 성분이 함유되어도 무관하다. In the present invention, the components of the activated carbon-containing filler are not limited to activated carbon and silica gel, and other components may be contained as long as the effects of the filler according to the present invention are not impaired or improved.

[실시예]EXAMPLE

이하에, 실시예와 비교예로 본 발명을 구체적으로 설명하는데, 본 발명은 여기에 한정되지 않는다.Although an Example and a comparative example demonstrate this invention concretely below, this invention is not limited to this.

실시예 1-4Example 1-4

(1) 충전제의 구조(1) the structure of the filler

체(SIEVE, 후루이)로 106-250㎛로 정립한 실리카겔(칸토화학 제품)100g에, 체로 38㎛이하로 정립한 활성탄(타이헤이화학산업 제품)2g을 첨가하고, 균일하게 혼합하여, 분말상의 활성탄 분산 실리카겔로 했다. 이 분말을 질소기류중에서 열처리했다. 표 1에 열처리조건을 나타낸다.To 100 g of silica gel (Kanto Chemical Co., Ltd.) sized at 106-250 μm in a sieve (SIEVE, Furui), 2 g of activated carbon (Taihei Chemical Industry Co., Ltd.) sized at less than 38 μm was added, mixed uniformly, Activated carbon dispersed silica gel. This powder was heat-treated in nitrogen stream. Table 1 shows the heat treatment conditions.

표1 활성탄 분산 실리카겔의 열처리조건Table 1 Heat Treatment Conditions of Activated Carbon Dispersed Silica Gel 열처리 조건Heat treatment condition 분위기atmosphere 질소가스 유량Nitrogen Gas Flow Rate 실시예 1Example 1 360℃ × 1h   360 ℃ × 1h 질소          nitrogen 500㎖/min       500ml / min 실시예 2Example 2 380℃ ×1h   380 ℃ × 1h 실시예 3Example 3 400℃ ×1h   400 ℃ × 1h 실시예 4Example 4 420℃ ×1h   420 ℃ × 1h

(2) 컬럼제작(2) Column production

내경10㎜, 길이250㎜의 유리제 컬럼크로마토관에 글래스 울, 무수황산나트륨 약10㎜, 활성탄 분산 실리카겔 1g, 무수황산나트륨 약 10㎜를 적층하여 컬럼을 제작했다. A glass wool, anhydrous sodium sulfate, about 10mm, activated carbon dispersion silica gel 1g, and anhydrous sodium sulfate about 10mm were laminated | stacked on the glass column chromatographic tube of internal diameter 10mm and length 250mm, and the column was produced.

(3) 블랭크 테스트(blank test)(3) blank test

컬럼에 25%(v/v) 디클로로메탄함유 헥산100㎖를 넣고,다음으로 톨루엔20㎖를 넣어, 각각의 용출액을 100㎕로 농축하고, HRGC(Hewlett Packard 5890ⅠⅠ)-HRMS(JEOL SX-102A)를 이용하여 SIM법으로 분석하고, 다이옥신류(TeCDDs, PeCDDs, HxCDDs, HpCDDs, OCDD, TeCDFs, PeCDFs, HxCDFs, HpCDFs, OCDF)를 블랭크 체크했다. 2㎕의 검액을 주입하여 측정했다. 비교예로써 질소분위기로 열처리하지 않은 활성탄함유 충전제의 블랭크 테스트도 함께 했다. 결과를 표 2에 나타낸다. 또, 피크의 S/N비가 2이하의 경우를 검출하한이하로 하고, 표중에서 N.D.(Not Detected)으로 기재했다. 100 ml of 25% (v / v) dichloromethane-containing hexane was added, followed by 20 ml of toluene, and each eluate was concentrated to 100 µl. HRGC (Hewlett Packard 5890Ⅰ) -HRMS (JEOL SX-102A) Using the SIM method, the dioxins (TeCDDs, PeCDDs, HxCDDs, HpCDDs, OCDD, TeCDFs, PeCDFs, HxCDFs, HpCDFs, OCDF) were blank-checked. 2 μl of sample solution was injected and measured. As a comparative example, the blank test of the activated carbon-containing filler which was not heat-treated by nitrogen atmosphere was also included. The results are shown in Table 2. Moreover, the case where the peak S / N ratio was 2 or less was made into the lower limit of detection, and it described as N.D. (Not Detected) in the table.

표 2 블랭크 테스트에 있어서의 다이옥신류 검출량Table 2 Detection amount of dioxin in blank test 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 비교예 1Comparative Example 1 열처리품 360℃×1hHeat treatment product 360 ℃ × 1h 열처리품 380℃×1hHeat treatment product 380 ℃ × 1h 열처리품 400℃×1hHeat Treatment Product 400 ℃ × 1h 열처리품 420℃×1hHeat treated product 420 ℃ × 1h 미열처리품Unheated products DCM /Hex 획분 (pg)DCM / Hex Fraction (pg) 톨루엔 획분 (pg)toluene                                                  Fraction (pg) DCM /Hex 획분 (pg)DCM / Hex Fraction (pg) 톨루엔 획분 (pg)toluene                                                  Fraction (pg) DCM /Hex 획분 (pg)DCM / Hex Fraction (pg) 톨루엔 획분 (pg)toluene                                                  Fraction (pg) DCM /Hex 획분 (pg)DCM / Hex Fraction (pg) 톨루엔 획분 (pg)toluene                                                  Fraction (pg) DCM /Hex 획분 (pg)DCM / Hex Fraction (pg) 톨루엔 획분 (pg)toluene                                                  Fraction (pg) 다이옥신류 검출Dioxins detection N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. N.D.N.D. TeCDFs 0.3pg 검출0.3pg detection of TeCDFs

주) 표중, DCM/Hex는 25%(v/v)디클로로메탄함유 헥산을 의미한다.Note) In the table, DCM / Hex means 25% (v / v) dichloromethane-containing hexane.

검출대상인 다이옥신류 및 그 검출하한(pg)은 이하와 같다.    Dioxins to be detected and the lower detection limit (pg) thereof are as follows.

TeCDDs : 0.1TeCDDs: 0.1

PeCDDs : 0.1PeCDDs: 0.1

HxCDDs : 0.2HxCDDs: 0.2

HpCDDs : 0.2HpCDDs: 0.2

OCDD : 0.5OCDD: 0.5

TeCDFs : 0.1TeCDFs: 0.1

PeCDFs : 0.1PeCDFs: 0.1

HxCDFs : 0.2HxCDFs: 0.2

HpCDFs : 0.2HpCDFs: 0.2

OCDFs : 0.5
OCDFs: 0.5

블랭크 테스트 결과로 부터 질소기류 중에서 360℃에서 420℃의 온도범위로 열처리한 활성탄함유 충전제에는 다이옥신류가 포함되어 있지 않은 것을 알 수 있다. 한편, 비교예의 질소분위기로 열처리하지 않은 활성탄함유 충전에는 다이옥신류가 포함되어 있었다.From the blank test results, it can be seen that the activated carbon-containing filler heat-treated at a temperature range of 360 ° C to 420 ° C in the nitrogen stream does not contain dioxins. On the other hand, dioxins were included in the activated carbon-containing fillings which were not heat-treated with the nitrogen atmosphere of the comparative example.

(4) 분리 테스트(4) separation test

컬럼에 1, 3, 6, 8-TCDD, 1, 3, 7, 9-TCDD, OCDF(포함하여 1ppm)을 포함하는 시료용액0.5㎖를 부하했다. 다음으로 25%(v/v)디클로로메탄 함유 헥산200㎖(20㎖×10획분) 및 톨루엔300㎖(20㎖×15획분)을 넣어 용출액을 농축한 후, HRGC(Hewlett Packard 5890ⅠⅠ)-HRMS(JEOL SX-102A)를 이용하여 SIM법으로 분석하고, 다이옥신류의 용출패턴을 조정했다.0.5 mL of sample solution containing 1, 3, 6, 8-TCDD, 1, 3, 7, 9-TCDD, OCDF (including 1 ppm) was loaded into the column. Next, 200 ml (20 ml x 10 fractions) of hexane containing 25% (v / v) dichloromethane and 300 ml (20 ml x 15 fractions) of toluene were added to concentrate the eluate, and HRGC (Hewlett Packard 5890I) -HRMS ( JEOL SX-102A) was used to analyze by SIM method, and dilution patterns of dioxins were adjusted.

질소기류에서 360℃에서 420℃의 온도범위로 열처리한 활성탄함유 충전제를 이용한 분리 테스트 결과, 25%(v/v)디클로로메탄 함유 헥산의 획분에 다이옥신류는 용출되지 않고, 톨루엔 획분에서 다이옥신류가 용출했다(도 1 - 도 8). 이것으로, 질소기류에서 360℃에서 420℃의 온도범위로 열처리한 본 발명에 의한 활성탄함유 충전제는 뛰어난 분리능력을 가지는 것을 알 수 있다.As a result of the separation test using activated carbon-containing fillers heat-treated at a temperature range of 360 ° C. to 420 ° C. in a nitrogen stream, dioxins were not eluted in the fraction of hexane containing 25% (v / v) dichloromethane, but dioxins were recovered in the toluene fraction. It eluted (FIGS. 1-8). Thus, it can be seen that the activated carbon-containing filler according to the present invention heat-treated at a temperature range of 360 ° C to 420 ° C in a nitrogen stream has excellent separation ability.

활성탄과 실리카겔을 함유하는 분말을 저산소 분위기로 1시간정도의 단시간 열처리함으로써 활성탄함유 충전제로 다이옥신류를 분해제거하는 것이 가능하다. 그 결과, 톨루엔등의 유기용매에 의한 세정이 불필요하므로, 상기 과제가 해결가능하다. 저온으로 열처리함으로써 활성탄함유 충전제로의 손상을 막고, 뛰어난 분리 능력을 부여하는 것이 가능하다.


It is possible to decompose and remove dioxins with an activated carbon-containing filler by heat-treating powder containing activated carbon and silica gel in a low oxygen atmosphere for about one hour. As a result, since the washing | cleaning by organic solvents, such as toluene, is unnecessary, the said subject can be solved. By heat treatment at low temperature, it is possible to prevent damage to the activated carbon-containing filler and to impart excellent separation ability.


Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 활성탄과 실리카겔을 함유하는 분말을 저산소분위기에서 열처리하는 공정을 포함하는, 다이옥신류 분석을 위한 클린업용 충전제의 제조방법.A method of preparing a filler for cleaning up for dioxin analysis, comprising a step of heat-treating a powder containing activated carbon and silica gel in a low oxygen atmosphere.
KR1020010021467A 2000-04-21 2001-04-20 Filler containing active carbon for analysis of dioxin and the like KR100812978B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000121554A JP4920813B2 (en) 2000-04-21 2000-04-21 Activated carbon-containing filler for analysis of dioxins
JP2000-121554 2000-04-21

Publications (2)

Publication Number Publication Date
KR20010103612A KR20010103612A (en) 2001-11-23
KR100812978B1 true KR100812978B1 (en) 2008-03-13

Family

ID=18632185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010021467A KR100812978B1 (en) 2000-04-21 2001-04-20 Filler containing active carbon for analysis of dioxin and the like

Country Status (3)

Country Link
JP (1) JP4920813B2 (en)
KR (1) KR100812978B1 (en)
TW (1) TWI234654B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891816B2 (en) * 2012-01-27 2016-03-23 三浦工業株式会社 Extraction method of dioxins
WO2014192056A1 (en) 2013-05-27 2014-12-04 三浦工業株式会社 Fractionation method for dioxins
US20150376032A1 (en) * 2013-05-27 2015-12-31 Miura Co., Ltd. Tool for fractionating dioxins
CN112730651B (en) * 2020-12-15 2022-08-05 湖北微谱技术有限公司 Rapid pretreatment method for dioxin sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216911A (en) * 1986-03-17 1987-09-24 Wako Pure Chem Ind Ltd Activated carbon-containing silica gel, its production, and analytical method using said gel as packing material of cleanup column
US5145494A (en) * 1991-02-22 1992-09-08 Sowinski Richard F Method and means for filtering polychlorinated biphenyls from a gas stream
US5209912A (en) * 1990-05-02 1993-05-11 Ftu Gmbh Process for separating out noxious substances from gases and exhaust gases
JPH0648718Y2 (en) * 1989-03-28 1994-12-12 松下電工株式会社 Seesaw switch
JPH0750084A (en) * 1994-06-30 1995-02-21 Canon Electron Inc Cassette
JPH07155608A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Production of high capacity carbon material
JPH0750084Y2 (en) * 1990-03-31 1995-11-15 オ−クマ株式会社 Adjustable ring claw for chuck

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486765B2 (en) * 1998-07-27 2004-01-13 日立造船株式会社 Low-temperature recycling type exhaust gas treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216911A (en) * 1986-03-17 1987-09-24 Wako Pure Chem Ind Ltd Activated carbon-containing silica gel, its production, and analytical method using said gel as packing material of cleanup column
JPH0648718Y2 (en) * 1989-03-28 1994-12-12 松下電工株式会社 Seesaw switch
JPH0750084Y2 (en) * 1990-03-31 1995-11-15 オ−クマ株式会社 Adjustable ring claw for chuck
US5209912A (en) * 1990-05-02 1993-05-11 Ftu Gmbh Process for separating out noxious substances from gases and exhaust gases
US5145494A (en) * 1991-02-22 1992-09-08 Sowinski Richard F Method and means for filtering polychlorinated biphenyls from a gas stream
JPH07155608A (en) * 1993-12-09 1995-06-20 Mitsubishi Gas Chem Co Inc Production of high capacity carbon material
JPH0750084A (en) * 1994-06-30 1995-02-21 Canon Electron Inc Cassette

Also Published As

Publication number Publication date
KR20010103612A (en) 2001-11-23
TWI234654B (en) 2005-06-21
JP2001305119A (en) 2001-10-31
JP4920813B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Horii et al. Novel evidence for natural formation of dioxins in ball clay
Gaggi et al. Accumulation of chlorinated hydrocarbon vapours in pine needles
EP2871476B1 (en) Fractionation method for dioxins
KR100812978B1 (en) Filler containing active carbon for analysis of dioxin and the like
Fan et al. Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes
EP2871477B1 (en) Fractionation apparatus for dioxins
JPS62216911A (en) Activated carbon-containing silica gel, its production, and analytical method using said gel as packing material of cleanup column
Korfmacher et al. Nonphotochemical decomposition of fluorene vapor-adsorbed on coal fly ash
Ghosh et al. Congener level PCB desorption kinetics of field-contaminated sediments
Buser et al. Methylthio metabolites of polychlorobiphenyls identified in sediment samples from two lakes in Switzerland
Loos et al. Group separation of ortho-PCBs, coplanar non-ortho-PCBs and PCDDs/PCDFs using an alumina column as an one-step clean-up procedure
JP2009280453A (en) Method of manufacturing high concentration sulfuric acid-containing silica gel
Otto et al. Treatment technologies for mercury in soil, waste, and water
Osako et al. Influence of coexisting surface-active agents on leachability of dioxins in raw and treated fly ash from an MSW incinerator
Ren et al. Determination of 2, 3, 7, 8-substitituted polychlorinated dibenzo-p-dioxins-dibenzofurans and dioxin-like polychlorinated biphenyls in environmental samples by gas chromatography/high resolution mass spectrometry
Fytianos et al. Determination of polychlorinated dibenzodioxins and dibenzofurans in fly ash
Jiménez et al. Extraction and clean-up procedure for polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from municipal solid waste incinerators
Rossetti et al. Development of a new automated clean-up system for the simultaneous analysis of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and ‘dioxin-like’polychlorinated biphenyls (dl-PCB) in flue gas emissions by GPC-SPE
Gholson JR et al. Simultaneous Ultrasonic Extraction and Silylation for Determination of Organic Acids, Alcohol, and Phenols from Airborne Particulate Matter
Kumar et al. Contamination by polychlorinated dibenzo- p-dioxins (PCDDs) and dibenzo- p-furans (PCDFs) in selected solid wastes: An implication of potential sources of pollution
CN112557548B (en) Method for determining dioxin in food
Finkel et al. Efficiency of dioxin recovery from fly ash samples during extraction and cleanup process
Harjanto et al. Formation and transport of PCDD/Fs in the packed bed of soil containing organic chloride during a thermal remediation process
Adams et al. Determination of PCDDs and PCDFs in PCB oil from a hazardous waste site
US20080119357A1 (en) Solid materials for removing arsenic and method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20110302

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee