JP2001304790A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2001304790A
JP2001304790A JP2000120093A JP2000120093A JP2001304790A JP 2001304790 A JP2001304790 A JP 2001304790A JP 2000120093 A JP2000120093 A JP 2000120093A JP 2000120093 A JP2000120093 A JP 2000120093A JP 2001304790 A JP2001304790 A JP 2001304790A
Authority
JP
Japan
Prior art keywords
heat
tube
heat exchanger
heat transfer
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000120093A
Other languages
Japanese (ja)
Inventor
Masanori Takemoto
正典 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000120093A priority Critical patent/JP2001304790A/en
Publication of JP2001304790A publication Critical patent/JP2001304790A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a small and light-weight heat exchanger used for exchanging heat between two different fluids which react with each other when contacted, wherein inside and outside fluids are less risked to be mixed with each other even when a heating tube is broken, particularly a heat exchanger suitable for an evaporator of a liquid metal cooling fast breeder. SOLUTION: A heating tube 6 has a dual structure of an inner tube 21 and an outer tube 22 which are sufficiently distanced from each other so as not to be broken at once by one cause. An intermediate heating medium is filled in a gap 24 made between the inner tube and the outer tube so as to be naturally convected. Thus heat is exchanged with fluid on the outside of the tube through natural convection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、接触すると反応す
る2つの異なる流体間で熱交換する熱交換器に関し、特
に液体金属冷却高速増殖炉の蒸気発生器に関する。
The present invention relates to a heat exchanger for exchanging heat between two different fluids that react upon contact, and more particularly to a steam generator for a liquid metal cooled fast breeder reactor.

【0002】[0002]

【従来の技術】ナトリウムを用いた液体金属冷却高速増
殖炉の蒸気発生器において通常用いられるような一重の
伝熱管を用いると、伝熱管が損傷を受けたときに直ちに
ナトリウムと水が接触してナトリウム水反応が生じるの
で危険である。このため、伝熱管が損傷しにくく、また
損傷が生じても直ちに重大事故に繋がらないような信頼
性の高い熱交換器が求められている。
2. Description of the Related Art When a single heat transfer tube, such as that usually used in a steam generator of a liquid metal-cooled fast breeder reactor using sodium, is used, when the heat transfer tube is damaged, sodium and water come into contact immediately. It is dangerous because sodium reaction occurs. For this reason, there is a demand for a highly reliable heat exchanger that does not easily damage the heat transfer tube and does not immediately lead to a serious accident even if the heat transfer tube is damaged.

【0003】このため、従来、液体金属冷却高速増殖炉
用蒸気発生器として、内管と外管に分割して独立させた
密着二重管、組網線入り二重管などの二重伝熱管を用い
た熱交換器が用いられている。しかしこれらの二重管式
熱交換器は、管壁を2層に分けて一挙に破損する危険を
減少させる代わりに、伝熱管の伝熱性能が低下する。こ
のため、内外管間隙に伝熱媒体を介在させたり、多孔質
の金属を介装して、伝熱性能を確保する方法も利用され
ている。
For this reason, conventionally, as a steam generator for a liquid metal-cooled fast breeder reactor, a double heat transfer tube such as an intimate double tube divided into an inner tube and an outer tube and made independent, and a braided double tube. Is used. However, in these double-pipe heat exchangers, the pipe wall is divided into two layers to reduce the risk of breakage at once, but the heat transfer performance of the heat transfer pipe is reduced. For this reason, a method of ensuring heat transfer performance by interposing a heat transfer medium in the gap between the inner and outer pipes or interposing a porous metal is also used.

【0004】たとえば、特開昭54−016762号公
報には、伝熱管を二重にして内外管の間に熱媒体として
ヘリウムガスを充填して両端部で爆発圧着することによ
り封入した密着熱交換器が開示されている。しかし、密
着二重管式熱交換器は熱媒体の熱伝導を利用して内外管
の熱伝達を補助するものであって、伝熱効率が間隙幅に
反比例して低下するため、内管と外管の間隙が数ミクロ
ンから数100ミクロン程度に抑えられている。したが
って、大きな力が加わった場合には内管と外管が同時に
損傷を受けることは避けられず、効果的にナトリウム水
反応を回避することはできなかった。
For example, Japanese Patent Application Laid-Open No. 54-016762 discloses that a heat transfer tube is doubled, helium gas is filled as a heat medium between the inner and outer tubes, and explosion bonding is performed at both ends to seal heat exchange. A vessel is disclosed. However, the contacted double-pipe heat exchanger uses the heat conduction of the heat medium to assist the heat transfer between the inner and outer pipes, and the heat transfer efficiency decreases in inverse proportion to the gap width. The gap between the tubes is reduced to several microns to several hundred microns. Therefore, when a large force is applied, it is inevitable that the inner tube and the outer tube are simultaneously damaged, and the sodium water reaction cannot be avoided effectively.

【0005】また、特開平6−323777号公報に
は、二重管の内外管間隙中に多孔質金属を配設して、管
壁が破れた場合には間隙内に滲入した外部流体を熱交換
器の端部に設けたセンサーで検出して漏洩を検知するよ
うにした組網線入り二重管式熱交換器が開示されてい
る。開示された熱交換器は、内管に組網線からなる多孔
質金属を巻着し外管に挿入して一体抽伸加工を施し、熱
処理して多孔質金属と内外管との間に金属冶金的結合を
させたものである。なお、ヘリカル状に成形した後で再
び熱処理をすることで熱伝導率の高いヘリカル型二重伝
熱管が得られるとしている。
Japanese Patent Application Laid-Open No. Hei 6-323777 discloses that a porous metal is disposed in a gap between an inner pipe and an outer pipe of a double pipe, and when a pipe wall is torn, an external fluid penetrating into the gap is heated. There is disclosed a braided double-pipe heat exchanger that detects leakage by detecting a sensor provided at an end of the exchanger. The disclosed heat exchanger has a metallurgy between the porous metal and the inner and outer tubes by winding a porous metal made of braided wire on the inner tube, inserting the outer metal into the outer tube, subjecting the inner tube to integral drawing, and performing heat treatment. It is the one that has been combined. It is stated that a helical double heat transfer tube having high thermal conductivity can be obtained by performing heat treatment again after forming into a helical shape.

【0006】この熱交換器では、内管または外管が破損
すると内管と外管の間に冷却材もしくは蒸気が滲入して
多孔質金属を伝って熱交換器の端部に到達するのでセン
サが漏れを検出することができる。このように、開示さ
れた熱交換器は、滲入した冷却材等が内外管間の間隙の
中を円滑に流動することが好ましいため液体金属などの
伝熱流体を使用せず、主として多孔質金属の組網線にお
ける熱伝導を介して内管と外管の熱伝達を行うもので、
熱伝達効率は必ずしも高くない。
In this heat exchanger, when the inner tube or the outer tube is damaged, a coolant or steam infiltrates between the inner tube and the outer tube and reaches the end of the heat exchanger through the porous metal to reach the sensor. Can detect leaks. As described above, the disclosed heat exchanger does not use a heat transfer fluid such as liquid metal because it is preferable that the infiltrated coolant and the like flow smoothly in the gap between the inner and outer tubes, and mainly uses porous metal. Heat transfer between the inner tube and the outer tube through heat conduction in the braided wire
Heat transfer efficiency is not always high.

【0007】また、ナトリウムと水の接触をより確実に
回避するようにしたものとして、たとえば図6に断面図
で、また図7に有効伝熱部の一部拡大横断面図で示すよ
うな分離型蒸気発生器がある。分離型の熱交換器は2つ
の流体を通す配管の間に伝熱体を配置して熱伝導により
熱交換させるもので、アルミニウムなどの伝熱性能のよ
い金属ブロックに伝熱管が通る穴を開けて、ナトリウム
配管と水・蒸気配管を互いに隣接するように挿入し、金
属ブロックと配管の間にビスマス、スズ、インジュウム
などの熱伝導性の優れた液体金属を中間熱媒体として充
填する。ナトリウムの熱は配管の壁を伝播しビスマス等
の液体金属を介してアルミブロックに伝達され、さらに
アルミニウム内を伝導し液体金属を介して水・蒸気配管
の中に伝えられ、配管中の水を蒸気として発電機等に送
出する。
Further, in order to more reliably avoid contact between sodium and water, for example, separation as shown in a sectional view of FIG. 6 and a partially enlarged transverse sectional view of an effective heat transfer portion in FIG. There is a type steam generator. The heat exchanger of the separation type arranges a heat transfer body between two fluid pipes and exchanges heat by heat conduction. Drill a hole in a metal block such as aluminum which has good heat transfer performance. Then, a sodium pipe and a water / steam pipe are inserted so as to be adjacent to each other, and a liquid metal having excellent thermal conductivity, such as bismuth, tin, or indium, is filled between the metal block and the pipe as an intermediate heat medium. The heat of sodium propagates through the wall of the pipe, is transmitted to the aluminum block through liquid metal such as bismuth, and is further conducted in aluminum, and is transmitted into the water / steam pipe through the liquid metal, and removes the water in the pipe. It is sent as steam to a generator.

【0008】分離型蒸気発生器では、ナトリウム配管と
水・蒸気配管は位置的に独立しており、単一の原因で2
つの配管が同時に破損事故を起こす可能性が小さくな
る。しかし、分離型蒸気発生器では、熱交換領域にアル
ミブロックを配設する必要がある上に、熱交換器内に充
填する中間熱媒体が膨大な量になり、また、構造が複雑
で大型化するため経済上の問題があった。
In the separate steam generator, the sodium pipe and the water / steam pipe are positionally independent, and the
The possibility of two pipes being damaged at the same time is reduced. However, in the case of a separate steam generator, it is necessary to dispose an aluminum block in the heat exchange area, and the amount of intermediate heat medium to be filled in the heat exchanger is enormous, and the structure is complicated and large. There was an economic problem.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明が解決
しようとする課題は、伝熱管が破損した場合にも内外の
流体が混ざる危険を減少させた小型軽量の熱交換器を提
供することであり、特に液体金属冷却高速増殖炉の蒸気
発生器に適した熱交換器を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a small and lightweight heat exchanger which reduces the risk of mixing of internal and external fluids even when the heat transfer tube is broken. In particular, it is an object of the present invention to provide a heat exchanger suitable for a steam generator of a liquid metal-cooled fast breeder reactor.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、接触すると反応する2つの異なる流体間で熱交換す
るために使用する本発明の熱交換器は、第1の流体が通
る伝熱管を内管と外管の2重構造にして、内管と外管の
間隙に中間熱媒体を自然対流可能に充満し、その自然対
流を介して管外の第2の流体と熱交換することを特徴と
する。本発明の熱交換器では、熱媒体の熱伝導に加えて
自然対流熱伝達を利用するから、内外管間隙部の熱伝達
率は間隙幅の0.22乗にほぼ比例して緩やかに低下す
る。したがって、内管と外管が1つの原因により一度に
破損しないように十分隔離するようにしても、熱伝達効
率が大幅に低下することがない。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a heat exchanger according to the present invention used for exchanging heat between two different fluids which react upon contact with each other includes a heat transfer tube through which a first fluid passes. The inner pipe and the outer pipe have a double structure, and the gap between the inner pipe and the outer pipe is filled with the intermediate heat medium so as to be capable of natural convection, and heat exchange with the second fluid outside the pipe is performed through the natural convection. Features. In the heat exchanger of the present invention, since natural convection heat transfer is used in addition to heat conduction of the heat medium, the heat transfer coefficient in the gap between the inner and outer pipes gradually decreases almost in proportion to the gap width to the power of 0.22. . Therefore, even if the inner pipe and the outer pipe are sufficiently isolated so as not to be damaged at one time due to one cause, the heat transfer efficiency does not significantly decrease.

【0011】また、自然対流熱伝達では、熱伝達効率が
熱伝導だけによるものと比較して1.2倍から3.1倍
に向上することが知られており、本発明により応答性が
よく熱効率のよい蒸気発生器を得ることができる。本発
明の熱交換器では、従来の分離型熱交換器で必要とされ
る中間熱媒体としてのアルミブロックとビスマス等の液
体金属の量と比較すると、ずっと少ない中間熱媒体で済
み、また構造も簡単で小型になる。
It is known that in natural convection heat transfer, the heat transfer efficiency is improved from 1.2 times to 3.1 times as compared with that obtained by only heat conduction. A highly efficient steam generator can be obtained. In the heat exchanger of the present invention, compared with the amount of the liquid metal such as aluminum block and bismuth as the intermediate heat medium required in the conventional separation type heat exchanger, the intermediate heat medium requires much less, and the structure is also small. Simple and compact.

【0012】なお、内外管間隙に中間熱媒体を封止する
ようにしてもよい。内外管間隙のうち熱交換部位に当た
る部分のみに中間熱媒体が存在するようにすれば、熱交
換効率を低下させないで中間熱媒体の使用量を減少させ
ることができ、経済的である。また、内外管間隙をレイ
リー数が1000以上になるように規定することが好ま
しい。レイリー数が1000以下では内外管間隙に存在
する中間熱媒体は静止して対流が生じないが、1000
以上では中間熱媒体が自然対流して熱伝達するようにな
る。特に、上下面が固定壁の場合には、レイリー数が1
700程度以下では媒体が流動しないとされている。
The intermediate heat medium may be sealed in the gap between the inner and outer tubes. If the intermediate heat medium is present only in the portion corresponding to the heat exchange portion in the inner and outer pipe gaps, the amount of the intermediate heat medium used can be reduced without lowering the heat exchange efficiency, which is economical. Further, it is preferable that the inner and outer pipe gaps be defined so that the Rayleigh number is 1000 or more. When the Rayleigh number is less than 1000, the intermediate heat medium present in the gap between the inner and outer pipes is stationary and convection does not occur.
In the above, the intermediate heat medium naturally convects and transfers heat. In particular, when the upper and lower surfaces are fixed walls, the Rayleigh number is 1
It is said that the medium does not flow below about 700.

【0013】さらに、本発明の二重管式熱交換器におけ
る内外管間隙は1mm以上であることが好ましい。間隙
が1mm以上あれば、中間熱媒体が自然対流を起こすと
共に、内管と外管が同時に破損する可能性が著しく低減
する。なお、本発明の熱交換器は伝熱管がほぼ水平に向
いた横置き型であってもよい。縦置き型の熱交換器と比
較すると、横置き型のほうが自然対流しやすく、中間熱
媒体重量や鋼材重量を少なくすることができる。
Further, the gap between the inner and outer pipes in the double-pipe heat exchanger of the present invention is preferably 1 mm or more. When the gap is 1 mm or more, the intermediate heat medium causes natural convection, and the possibility that the inner tube and the outer tube are simultaneously damaged is significantly reduced. The heat exchanger of the present invention may be of a horizontal type in which the heat transfer tubes are oriented substantially horizontally. Compared with the vertical type heat exchanger, the horizontal type heat exchanger is easier to naturally convection, and the weight of the intermediate heat medium and the weight of the steel material can be reduced.

【0014】本発明の熱交換器は、液体金属冷却高速増
殖炉の蒸気発生器などでよく使用される水とナトリウム
金属もしくはカリウム金属の間の熱交換に適用すること
ができる。このときは、中間熱媒体が鉛、ビスマス、ス
ズ、インジュウムのいずれかあるいはこれらの混合体で
あることが好ましい。特に鉛もしくはビスマスであれ
ば、コスト面や媒体の毒性面から好ましい。また、中間
熱媒体の静圧は第2流体の静圧より低くすることが好ま
しい。こうすることによって、外管が破損するようなこ
とが起こっても、中間熱媒体がナトリウムなどの第2媒
体の系に混入しないので事故の規模が拡大するのを防ぐ
ことができる。
The heat exchanger of the present invention can be applied to heat exchange between water and sodium metal or potassium metal often used in a steam generator of a liquid metal-cooled fast breeder reactor. In this case, the intermediate heat medium is preferably any one of lead, bismuth, tin, and indium, or a mixture thereof. Particularly, lead or bismuth is preferable from the viewpoint of cost and toxicity of the medium. Further, it is preferable that the static pressure of the intermediate heat medium be lower than the static pressure of the second fluid. In this way, even if the outer tube is damaged, the scale of the accident can be prevented from increasing because the intermediate heat medium does not enter the system of the second medium such as sodium.

【0015】[0015]

【発明の実施の形態】以下、本発明について実施例に基
づき図面を参照して詳細に説明する。本実施例は、本発
明の熱交換器を液体金属冷却高速増殖炉の蒸気発生器に
適用したものである。図1は本実施例の断面図、図2は
本実施例の第1の態様における伝熱管を軸に沿った面で
切断した状態を表した模式的な断面図、図3は本実施例
の伝熱管を軸に垂直な面で切断した断面図、図4本実施
例の第2の態様における伝熱管を軸に沿った面で切断し
た模式的断面図、図5は本実施例における性能を説明す
る線図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings. In this embodiment, the heat exchanger of the present invention is applied to a steam generator of a liquid metal-cooled fast breeder reactor. FIG. 1 is a cross-sectional view of the present embodiment, FIG. 2 is a schematic cross-sectional view showing a state where the heat transfer tube according to the first embodiment of the present invention is cut along a plane along an axis, and FIG. FIG. 4 is a cross-sectional view of the heat transfer tube cut along a plane perpendicular to the axis, FIG. 4 is a schematic cross-sectional view of the heat transfer tube according to the second embodiment of the present invention cut along a plane along the axis, and FIG. FIG.

【0016】本実施例の蒸気発生器は図1に示すような
横置き型で、液体金属冷却高速増殖炉の冷却材である溶
融ナトリウムが入口ノズル1からシェル側に供給され出
口ノズル2から液体金属冷却高速増殖炉に帰還し、水が
供給ノズル3からチューブ側に供給され蒸気になって出
口ノズル4から発電機等に送出される。蒸気発生器のシ
ェル5内に多数配設された伝熱管6の1本ずつは、給水
入口管板7から蒸気出口管板8まで繋がっている。
The steam generator of this embodiment is of a horizontal type as shown in FIG. 1, and molten sodium, which is a coolant of a liquid metal-cooled fast breeder reactor, is supplied from an inlet nozzle 1 to a shell side, and liquid sodium is supplied from an outlet nozzle 2 The water returns to the metal-cooled fast breeder reactor, and water is supplied from the supply nozzle 3 to the tube side to be converted into steam and sent from the outlet nozzle 4 to a generator or the like. One of a number of heat transfer tubes 6 arranged in the shell 5 of the steam generator is connected to a feed water inlet tube plate 7 and a steam outlet tube plate 8.

【0017】図2と図3は伝熱管6の単体の断面図であ
る。伝熱管6は、図に示すように内管21と外管22の
二重構造になっていて、内管21は給水入口管板7と蒸
気出口管板8に接続され、外管22はナトリウム入口管
板9とナトリウム出口管板10に接続されている。内管
21と外管22の間に形成される間隙24は、給水入口
管板7とナトリウム出口管板10の間に形成されるプレ
ナム12と、蒸気出口管板8とナトリウム入口管板9の
間に形成されるプレナム13に通じている。内外管間の
間隙24は、適当な間隙スペーサ23により隙間を維持
し、それぞれのプレナム12,13から供給される低融
点金属を中間熱媒体として充満させている。
FIGS. 2 and 3 are sectional views of the heat transfer tube 6 alone. The heat transfer tube 6 has a double structure of an inner tube 21 and an outer tube 22 as shown in the figure. The inner tube 21 is connected to the feed water inlet tube plate 7 and the steam outlet tube plate 8, and the outer tube 22 is made of sodium. It is connected to an inlet tubesheet 9 and a sodium outlet tubesheet 10. The gap 24 formed between the inner pipe 21 and the outer pipe 22 is formed between the plenum 12 formed between the feed water inlet pipe sheet 7 and the sodium outlet pipe sheet 10 and the steam outlet pipe sheet 8 and the sodium inlet pipe sheet 9. It leads to a plenum 13 formed therebetween. The gap 24 between the inner and outer tubes is maintained by an appropriate gap spacer 23, and the low melting point metal supplied from the respective plenums 12 and 13 is filled as an intermediate heat medium.

【0018】プレナム12,13は、内部に充填する中
間熱媒体を節約するため、図示しないが、内部に中子を
配設して自由空間を狭くすることが好ましい。中間熱媒
体は、融点が運転温度より低く、伝熱管外管22の壁が
破損してナトリウムと混合しても、また内管21の壁が
破損して水や蒸気と混合しても過激な化学反応が生じな
いようなものが選ばれる。また、万一漏洩した場合でも
環境汚染を引き起こさないものが好ましく、さらに経済
性も加味するとたとえば鉛やビスマスなどを使用するこ
とが好ましい。
Although not shown, the plenums 12 and 13 are preferably provided with a core inside to reduce the free space, in order to save an intermediate heat medium filled therein. The melting point of the intermediate heat medium is lower than the operating temperature, and even if the wall of the heat transfer tube outer tube 22 breaks and mixes with sodium, or if the wall of the inner tube 21 breaks and mixes with water or steam, it is extreme. Those that do not cause a chemical reaction are selected. In addition, it is preferable that the material does not cause environmental pollution even in the event of leakage, and it is preferable to use, for example, lead or bismuth in consideration of economic efficiency.

【0019】なお、内管21と外管22の間隙24は、
溶融金属が自然対流を生じる程度にし、少なくとも1m
m以上の幅を有するようにする。内外管間隙24は大き
いほど内管21と外管22が同時に損傷を受け難くなる
が、大き過ぎれば溶融金属の充填量が大きくなり経済的
でない。また、対流伝熱における伝熱効率は、熱伝導を
利用する場合より緩やかとはいえ、間隙幅の0.22乗
に反比例して劣化するとされており、間隙幅は極端に大
きくしないようにすることが好ましい。
The gap 24 between the inner tube 21 and the outer tube 22 is
At least 1 m, so that the molten metal generates natural convection
m or more. Although the inner tube 21 and the outer tube 22 are less likely to be damaged at the same time as the inner / outer tube gap 24 is larger, if it is too large, the filling amount of the molten metal becomes large, which is not economical. Also, the heat transfer efficiency in convective heat transfer is considered to be degraded in inverse proportion to the 0.22 power of the gap width, though it is slower than in the case of using heat conduction, and the gap width should not be extremely large. Is preferred.

【0020】スペーサ23は、内管21と外管22の間
隙幅を保持するため、内管21の外表面に適当な間隔毎
に設けられる。スペーサ23は、たとえば1mmの間隙
を持つときに0.6mm程度の間隙幅より若干小さい厚
みを持った板材を巻き付けたり、コイル、円筒あるいは
切り欠き円筒などを溶接止めしたりして形成することが
できる。
The spacers 23 are provided at appropriate intervals on the outer surface of the inner tube 21 in order to maintain a gap width between the inner tube 21 and the outer tube 22. The spacer 23 can be formed, for example, by winding a plate having a thickness slightly smaller than the gap width of about 0.6 mm when a gap of 1 mm is provided, or by welding a coil, a cylinder, a notched cylinder, or the like. it can.

【0021】伝熱管6は長尺になるので、シェル5内で
撓んで伝熱管6同士が接触しないように、また液体ナト
リウムが偏流を起こしたりしないように、蒸気発生器の
軸方向に適当な間隔で伝熱管スペーサ11を設け、所定
の伝熱管間隔と位置を維持するように支持している。な
お、伝熱管6はプレナム12,13の一方において曲管
部16を形成して熱膨張を吸収できるようにしてある。
Since the heat transfer tubes 6 are long, appropriate heat treatment tubes 6 are bent in the axial direction of the steam generator so as to prevent the heat transfer tubes 6 from contacting each other due to bending in the shell 5 and preventing the liquid sodium from drifting. Heat transfer tube spacers 11 are provided at intervals, and are supported so as to maintain a predetermined heat transfer tube interval and position. The heat transfer tube 6 has a curved tube portion 16 formed in one of the plenums 12 and 13 so as to absorb thermal expansion.

【0022】また、シェル5はほぼ中央位置に図示しな
いシェルベローズを備えて、蒸気発生器と支持構造体の
熱膨張差を吸収できるようにしてある。なお、プレナム
12,13には、内外管間隙24内に漏れ込んだナトリ
ウムと水を検出する装置が設けられている。また、事故
に備えて、カバーガス圧力計、破壊板破裂検出系および
圧力放出装置を備えている。
The shell 5 is provided with a shell bellows (not shown) at a substantially central position so that a difference in thermal expansion between the steam generator and the support structure can be absorbed. The plenums 12 and 13 are provided with a device for detecting sodium and water leaked into the gap 24 between the inner and outer pipes. In addition, a cover gas pressure gauge, a rupture plate rupture detection system, and a pressure release device are provided in case of an accident.

【0023】図4は、本実施例の蒸気発生器に用いる伝
熱管6の別の例を示す断面図である。なお、軸に垂直な
方向の断面は、図3に表した伝熱管と同じである。本実
施例に使用される二重管式伝熱管6において、ナトリウ
ムと水の間で熱交換をするのはナトリウム入口管板9と
ナトリウム出口管板10に挟まれた熱交換部である。し
たがって、中間熱媒体は内外管の間の間隙24における
熱交換部に存在すれば十分である。
FIG. 4 is a sectional view showing another example of the heat transfer tube 6 used in the steam generator of the present embodiment. The cross section in the direction perpendicular to the axis is the same as the heat transfer tube shown in FIG. In the double-tube heat transfer tube 6 used in the present embodiment, the heat exchange between sodium and water is performed by the heat exchange portion sandwiched between the sodium inlet tube sheet 9 and the sodium outlet tube sheet 10. Therefore, it is sufficient that the intermediate heat medium is present in the heat exchange portion in the gap 24 between the inner and outer tubes.

【0024】図4の伝熱管6は、熱交換部の外側位置で
内管21と外管22の間にベローズ26を設けて内外管
間隙を封止したものである。封止した内部24に中間熱
媒体を封じ込めて、プレナム12,13にはそれぞれア
ルゴンガス供給ノズル14,15を通じてアルゴンガス
を圧入して、ベローズ26の外側25からアルゴンガス
の静圧を印加する。中間熱媒体に印加する静圧をナトリ
ウムの圧力より小さくして、外管破損事故が起こったと
きにも中間熱媒体がナトリウム系に侵入しないようにす
る。
The heat transfer tube 6 shown in FIG. 4 has a structure in which a bellows 26 is provided between the inner tube 21 and the outer tube 22 at a position outside the heat exchange section to seal the gap between the inner and outer tubes. An intermediate heat medium is sealed in the sealed interior 24, and argon gas is press-fitted into the plenums 12 and 13 through argon gas supply nozzles 14 and 15, respectively, and a static pressure of the argon gas is applied from the outside 25 of the bellows 26. The static pressure applied to the intermediate heat medium is made smaller than the pressure of sodium so that the intermediate heat medium does not enter the sodium system even when an outer tube breakage accident occurs.

【0025】また、熱交換器両端部のプレナム12,1
3には図示しない漏洩検出器が設けられていて、中間熱
媒体に混入したナトリウムや蒸気をプレナム12,13
に漏出させて、それぞれの検出器で検出して事故の発生
を検知する。なお、中間熱媒体を2気圧以上に加圧して
おくと、事故の際の水蒸気爆発を防止することができ
る。中間熱媒体は内外管間隙24内で温度差により自然
対流を行い、ナトリウムの熱を水に伝えて蒸気化する。
この伝熱管6は、中間熱媒体を熱交換部にのみ保持すれ
ばよいから、熱交換能力を維持しながら熱媒体総量を大
幅に節減することができる。
Further, the plenums 12, 1 at both ends of the heat exchanger are provided.
3 is provided with a leak detector (not shown) to remove sodium or steam mixed in the intermediate heat medium into plenums 12 and 13.
And the detection by each detector to detect the occurrence of an accident. When the intermediate heat medium is pressurized to 2 atm or more, a steam explosion at the time of an accident can be prevented. The intermediate heat medium performs natural convection due to a temperature difference in the inner and outer pipe gaps 24, and transfers heat of sodium to water to be vaporized.
Since the heat transfer tube 6 needs to hold the intermediate heat medium only in the heat exchange section, it is possible to greatly reduce the total amount of the heat medium while maintaining the heat exchange capacity.

【0026】図2の伝熱管と図4の伝熱管は、熱交換器
の伝熱効果については差異がない。本発明の熱交換器
は、伝熱管を内管と外管の二重構造にして内外管間の間
隙に、熱交換物質と反応しないような液体金属を中間熱
媒体として自然対流が可能なように充填し、自然対流を
媒介としてチューブ内の物質とシェル内の物質の間で熱
交換を行わせている。本発明の熱交換器における熱伝達
量は、熱媒体の熱伝導のみで熱伝達する場合と比較する
と、自然対流があるため大きく増加する。
There is no difference between the heat transfer tube of FIG. 2 and the heat transfer tube of FIG. 4 regarding the heat transfer effect of the heat exchanger. In the heat exchanger of the present invention, the heat transfer tube has a double structure of an inner tube and an outer tube, and a natural convection is possible in a gap between the inner and outer tubes using a liquid metal that does not react with a heat exchange substance as an intermediate heat medium. And heat exchange takes place between the substance in the tube and the substance in the shell via natural convection. The amount of heat transfer in the heat exchanger of the present invention greatly increases due to natural convection as compared with the case where heat transfer is performed only by heat conduction of the heat medium.

【0027】図5は、自然対流の寄与を説明する線図で
ある。図中の丸位置は、熱交換器の使用条件に基づいて
算出したレイリー数Raを横軸に、そのときのヌッセル
ト数Nuを縦軸においてプロットしたものである。レイ
リー数Raは、水平に置かれた平行板の間の静止流体を
下面から熱するときに生ずる自然対流に関する指標とし
て使用される変数である。レイリー数Raは、上下板間
距離l、重力の加速度g、動粘性率ν、温度伝導率α、
体膨張率γ、下面と上面の温度差ΔTを用いて、 Nu=l3gγΔT/(να) で表される。
FIG. 5 is a diagram illustrating the contribution of natural convection. The circle positions in the figure plot the Rayleigh number Ra calculated based on the use conditions of the heat exchanger on the horizontal axis and the Nusselt number Nu at that time on the vertical axis. The Rayleigh number Ra is a variable used as an index for natural convection generated when a stationary fluid between horizontally placed parallel plates is heated from below. The Rayleigh number Ra is the distance l between the upper and lower plates, the acceleration g of gravity, the kinematic viscosity ν, the temperature conductivity α,
Nu = l 3 gγΔT / (να) using the body expansion coefficient γ and the temperature difference ΔT between the lower surface and the upper surface.

【0028】上下面が固体壁であるときは、レイリー数
が1708以下では流体は対流を生じない。本実施例の
伝熱管は水平の平行板ではないが、図から分かるよう
に、レイリー数Raが1000の辺りからヌッセルト数
Nuが大きくなって、やがて3.0を超える値になる。
ヌッセルト数Nuは、流体中に置かれた物体の表面を通
して伝わる熱量と熱伝導だけ伝わる熱量の比を表すもの
であるから、本発明の熱交換器では、従来形式の熱交換
器と比較すると伝熱面積が小さくても同じ熱伝達効果を
得ることができることになる。
When the upper and lower surfaces are solid walls, when the Rayleigh number is 1708 or less, the fluid does not produce convection. Although the heat transfer tube of the present embodiment is not a horizontal parallel plate, as can be seen from the figure, the Nusselt number Nu increases from around 1000 with the Rayleigh number Ra, and eventually exceeds 3.0.
Since the Nusselt number Nu represents the ratio of the amount of heat transmitted through the surface of an object placed in a fluid to the amount of heat transmitted only by heat conduction, the heat exchanger of the present invention has a higher heat transfer than a conventional heat exchanger. Even if the heat area is small, the same heat transfer effect can be obtained.

【0029】このように、本発明の熱交換器は、内外管
間隙に流動する中間熱媒体を充填し、熱媒体の自然対流
による熱伝達を利用するため、熱媒体の熱伝導のみで熱
伝達をしていた従来の中間熱媒体入り二重管型熱交換器
より熱伝達効率が格段に向上する。なお、中間熱媒体は
内管と外管の間隙内に充填すれば足りるから、熱交換器
の底部に液体金属の溜りを形成してアルミブロックの孔
と管壁の間に液体金属を充填するようにした従来の分離
管型熱交換器と比較すると、中間熱媒体使用量を大幅に
節減することができる。また、熱交換器全体の鋼材使用
量も節約できる。たとえば、1000MWt/基に対応
する交換熱量を処理するものとして、従来型の分離管型
蒸気発生器であれば鋼材重量1030t、中間熱媒体量
(アルミブロックと液体金属)1020tが必要とされ
るのに対して、本実施例の蒸気発生器では鋼材重量64
0t、中間熱媒体量(液体金属のみ)700tであれば
よい。
As described above, the heat exchanger of the present invention fills the space between the inner and outer tubes with the intermediate heat medium flowing therethrough and utilizes heat transfer by natural convection of the heat medium. The heat transfer efficiency is remarkably improved as compared with the conventional double tube heat exchanger containing an intermediate heat medium. The intermediate heat medium only needs to be filled in the gap between the inner tube and the outer tube. Therefore, a liquid metal reservoir is formed at the bottom of the heat exchanger, and the liquid metal is filled between the hole of the aluminum block and the tube wall. Compared with the conventional separation tube type heat exchanger, the amount of the intermediate heat medium used can be greatly reduced. Also, the amount of steel used in the entire heat exchanger can be saved. For example, in order to process an exchange heat amount corresponding to 1000 MWt / unit, a conventional separation tube type steam generator requires a steel material weight of 1030 t and an intermediate heat medium amount (aluminum block and liquid metal) of 1020 t. On the other hand, in the steam generator of the present embodiment, the steel weight 64
0 t and the amount of the intermediate heat medium (liquid metal only) 700 t.

【0030】さらに、本発明の熱交換器は、二重管型伝
熱管の内管と外管の間隔が十分広いため、同じ原因によ
って内管と外管が同時に損傷を受ける事故が従来型の二
重管型熱交換器と比較すると著しく発生しにくい。さら
に、中間熱媒体の静圧をナトリウムの圧力より小さくし
たものは、外管破損事故が起こったときにも中間熱媒体
がナトリウム系に侵入しないので、後処理が容易になる
利点がある。また、中間熱媒体に混入したナトリウムや
蒸気は、熱交換器両端部のプレナムに漏出するので、そ
れぞれの検出器で検出することにより、事故の発生をい
ち早く警報することができる。
Further, in the heat exchanger according to the present invention, since the distance between the inner tube and the outer tube of the double tube type heat transfer tube is sufficiently large, there is a possibility that the inner tube and the outer tube are simultaneously damaged due to the same cause. It is significantly less likely to occur as compared to a double tube heat exchanger. Further, a device in which the static pressure of the intermediate heat medium is smaller than the pressure of sodium has an advantage that the post-treatment becomes easy because the intermediate heat medium does not enter the sodium system even when an outer tube breakage accident occurs. Further, since sodium and vapor mixed in the intermediate heat medium leak into the plenums at both ends of the heat exchanger, detection of the respective detectors can promptly alert the occurrence of an accident.

【0031】本発明の熱交換器は、液体金属冷却高速増
殖炉の蒸気発生器に適用することにより大きな効果が得
られるが、一般に熱交換しようとする流体同士が混合す
ると化学反応を起こしたりして何らかの望ましくない結
果となるようなあらゆる対象に使用することができるの
で、一般産業用熱交換器に広く適用することができるこ
とはいうまでもない。なお、上記実施例は横置き型熱交
換器に関するものであったが、本発明は内外管の間隙内
で中間熱媒体が自然対流によって熱伝達することに基づ
くものであるから、内外管間の間隙を十分大きく取れ
ば、縦置き型熱交換器でも自然対流を生じて本発明の効
果が得られることはいうまでもない。特に、内外管間に
適当な間隔でスペーサを設けるときは、スペーサに挟ま
れた領域で局所的な自然対流が発生しやすく、縦置き型
熱交換器に本発明が適用することでより小さな伝熱面積
を持ちイベントリに優れた熱交換器を得ることができ
る。
The heat exchanger of the present invention has a great effect when applied to a steam generator of a liquid metal-cooled fast breeder reactor, but generally causes a chemical reaction when fluids to be exchanged heat are mixed. Needless to say, it can be widely applied to general industrial heat exchangers since it can be used for any object that produces some undesirable result. Although the above embodiment relates to a horizontal heat exchanger, the present invention is based on the fact that the intermediate heat medium transfers heat by natural convection in the gap between the inner and outer tubes. If the gap is made sufficiently large, it goes without saying that the effects of the present invention can be obtained by generating natural convection even in a vertical heat exchanger. In particular, when spacers are provided at appropriate intervals between the inner and outer tubes, local natural convection is likely to occur in a region sandwiched by the spacers, and the present invention is applied to a vertical heat exchanger, whereby a smaller heat transfer is achieved. It is possible to obtain a heat exchanger having a heat area and excellent event liability.

【0032】[0032]

【発明の効果】以上説明したように、本発明の熱交換器
は、内外管の間隔が十分広い二重管型伝熱管を用いるた
め、内管と外管が同時に損傷を受ける事故が発生しにく
いので安全である。また、内外管間隙に充填した中間熱
媒体の自然対流を利用するため、熱伝達効率が格段に向
上する。さらに、中間熱媒体は内外管の間隙内に充填す
れば足りるから、使用量を大幅に節減することができ、
また熱交換器全体の鋼材使用量も節約できる。
As described above, since the heat exchanger of the present invention uses a double tube type heat transfer tube having a sufficiently large space between the inner and outer tubes, an accident occurs in which the inner tube and the outer tube are simultaneously damaged. It is safe because it is difficult. Further, since the natural convection of the intermediate heat medium filled in the gap between the inner and outer pipes is used, the heat transfer efficiency is remarkably improved. Furthermore, since the intermediate heat medium only needs to be filled in the gap between the inner and outer tubes, the amount of use can be greatly reduced,
Also, the amount of steel used in the entire heat exchanger can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器を液体金属冷却高速増殖炉の
蒸気発生器の断面図である。
FIG. 1 is a cross-sectional view of a steam generator of a liquid metal-cooled fast breeder reactor using the heat exchanger of the present invention.

【図2】本実施例の第1の態様における伝熱管を軸に沿
った面で切断した断面図である。
FIG. 2 is a cross-sectional view of the heat transfer tube according to the first embodiment of the present invention, taken along a plane along an axis.

【図3】本実施例の伝熱管を軸に垂直な面で切断した断
面図である。
FIG. 3 is a cross-sectional view of the heat transfer tube of the present embodiment cut along a plane perpendicular to an axis.

【図4】本実施例の第2の態様における伝熱管を軸に沿
った面で切断した断面図である。
FIG. 4 is a cross-sectional view of a heat transfer tube according to a second embodiment of the present invention, taken along a plane along an axis.

【図5】本実施例における性能を表す線図である。FIG. 5 is a diagram illustrating performance in the present embodiment.

【図6】従来の二重管型熱交換器の例を示す断面図であ
る。
FIG. 6 is a cross-sectional view showing an example of a conventional double tube heat exchanger.

【図7】図6の熱交換器の熱交換部の断面図である。FIG. 7 is a sectional view of a heat exchange part of the heat exchanger of FIG.

【符号の説明】[Explanation of symbols]

1 ナトリウム入口ノズル 2 ナトリウム出口ノズル 3 給水入口ノズル 4 蒸気出口ノズル 5 シェル 6 伝熱管 7 給水入口管板 8 蒸気出口管板 9 ナトリウム入口管板 10 ナトリウム出口管板 11 伝熱管スペーサ 12,13 プレナム 14,15 アルゴンガス供給ノズル 16 曲管部 21 内管 22 外管 23 間隙スペーサ 24 内外管間の間隙 25 ベローズ外部 26 ベローズ DESCRIPTION OF SYMBOLS 1 Sodium inlet nozzle 2 Sodium outlet nozzle 3 Feed water inlet nozzle 4 Steam outlet nozzle 5 Shell 6 Heat transfer tube 7 Feed water inlet tube plate 8 Steam outlet tube plate 9 Sodium inlet tube plate 10 Sodium outlet tube plate 11 Heat transfer tube spacer 12,13 Plenum 14 , 15 Argon gas supply nozzle 16 Curved tube 21 Inner tube 22 Outer tube 23 Gap spacer 24 Gap between inner and outer tubes 25 Bellows exterior 26 Bellows

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 接触すると反応する2つの異なる流体間
で熱交換する熱交換器であって、内部を第1の流体が通
る伝熱管を内管と外管の2重構造にして、該内外管間隙
に中間熱媒体を自然対流可能に充満し、該中間熱媒体の
自然対流を介して前記伝熱管の外部の第2の流体と熱交
換するようにしたことを特徴とする熱交換器。
1. A heat exchanger for exchanging heat between two different fluids which react upon contact with each other, wherein a heat transfer tube through which a first fluid passes has a double structure of an inner tube and an outer tube. A heat exchanger characterized in that the pipe gap is filled with an intermediate heat medium so as to be capable of natural convection, and heat is exchanged with a second fluid outside the heat transfer tube via natural convection of the intermediate heat medium.
【請求項2】 前記内外管間隙に前記中間熱媒体を封止
したことを特徴とする請求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the intermediate heat medium is sealed in the gap between the inner and outer pipes.
【請求項3】 前記内外管間隙をレイリー数が1000
以上になるようにして前記中間熱媒体が自然対流して熱
伝達するようにしたものであることを特徴とする請求項
1または2記載の熱交換器。
3. The gap between the inner and outer pipes having a Rayleigh number of 1000
The heat exchanger according to claim 1 or 2, wherein the intermediate heat medium is configured to transfer heat by natural convection as described above.
【請求項4】 前記内外管間隙が1mm以上あることを
特徴とする請求項1から3のいずれかに記載の熱交換
器。
4. The heat exchanger according to claim 1, wherein the gap between the inner and outer pipes is 1 mm or more.
【請求項5】 前記管がほぼ水平に向いた横置き型であ
ることを特徴とする請求項1から4のいずれかに記載の
熱交換器。
5. The heat exchanger according to claim 1, wherein the tube is of a horizontal type oriented substantially horizontally.
【請求項6】 前記第1流体が水で、第2流体がナトリ
ウム金属もしくはカリウム金属であって、前記中間熱媒
体が鉛、ビスマス、スズ、インジュウムのいずれかある
いはこれらの混合体であることを特徴とする請求項1か
ら5のいずれかに記載の熱交換器。
6. The method according to claim 1, wherein the first fluid is water, the second fluid is sodium metal or potassium metal, and the intermediate heat medium is any of lead, bismuth, tin, indium or a mixture thereof. The heat exchanger according to any one of claims 1 to 5, wherein:
【請求項7】 前記中間熱媒体の静圧が前記第2流体の
静圧より低いことを特徴とする請求項1から6のいずれ
かに記載の熱交換器。
7. The heat exchanger according to claim 1, wherein a static pressure of the intermediate heat medium is lower than a static pressure of the second fluid.
JP2000120093A 2000-04-20 2000-04-20 Heat exchanger Pending JP2001304790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120093A JP2001304790A (en) 2000-04-20 2000-04-20 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120093A JP2001304790A (en) 2000-04-20 2000-04-20 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2001304790A true JP2001304790A (en) 2001-10-31

Family

ID=18630964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120093A Pending JP2001304790A (en) 2000-04-20 2000-04-20 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2001304790A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210152A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013210151A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
WO2016170705A1 (en) * 2015-04-21 2016-10-27 佐藤 誠 Nuclear power generation system free from sodium leakage
CN110351977A (en) * 2018-04-02 2019-10-18 通用电气公司 System and method for cooling down imaging system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013210152A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
JP2013210151A (en) * 2012-03-30 2013-10-10 Calsonic Kansei Corp Integrated cooling system
WO2016170705A1 (en) * 2015-04-21 2016-10-27 佐藤 誠 Nuclear power generation system free from sodium leakage
CN110351977A (en) * 2018-04-02 2019-10-18 通用电气公司 System and method for cooling down imaging system

Similar Documents

Publication Publication Date Title
CA1055482A (en) Heat exchanger
US4842053A (en) Heat exchanger using heat pipes
JP3920241B2 (en) Steam generator for liquid metal furnace and its heat transfer method
JPH09329393A (en) Heat exchanger employed at high temperature heating
WO2010149858A1 (en) Plate heat exchanger and method for supporting a plate pack of a plate heat exchanger
JP2001304790A (en) Heat exchanger
US4723602A (en) Heat exchanger with multiwall tubes
CN104658622B (en) A kind of heat exchanger for liquid heavy metal cooled reactor
JPH09178393A (en) Heat exchanger
US4612976A (en) Steam generator for a nuclear reactor cooled with liquid metal
JP2004019813A (en) Multiplex piping for low-temperature fluid
JPS5941110B2 (en) Heat exchanger with double tube members
CN219440689U (en) Self-absorption expansion type molten salt evaporator with film wall
JP2003014883A (en) Double pipe structure in steam generator
CN115930640A (en) Heat exchanger and heat exchange system of reactor
ES2249480T3 (en) RECOMBINATOR WITH STABILIZED REACTION TEMPERATURE.
JPH11304085A (en) High-temperature fluid piping structure
JPS6014150Y2 (en) Counterflow type U-shaped heat exchanger
JPH0249501Y2 (en)
JP3602726B2 (en) Fast reactor steam generator
JPH07198277A (en) Heat exchanger using two-phase intermediate flow
JPH08296804A (en) Double bulb type tube plate steam generator
JP2957515B2 (en) Hydrogen storage alloy container
JPS63120286A (en) Double tank type fast breeder reactor
JPS63311091A (en) Double thermal transmitting pipe for heat exchanger