JP2957515B2 - Hydrogen storage alloy container - Google Patents

Hydrogen storage alloy container

Info

Publication number
JP2957515B2
JP2957515B2 JP9092528A JP9252897A JP2957515B2 JP 2957515 B2 JP2957515 B2 JP 2957515B2 JP 9092528 A JP9092528 A JP 9092528A JP 9252897 A JP9252897 A JP 9252897A JP 2957515 B2 JP2957515 B2 JP 2957515B2
Authority
JP
Japan
Prior art keywords
heat medium
hydrogen storage
storage alloy
pipe
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9092528A
Other languages
Japanese (ja)
Other versions
JPH10288419A (en
Inventor
直樹 広
賢二 名迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP9092528A priority Critical patent/JP2957515B2/en
Publication of JPH10288419A publication Critical patent/JPH10288419A/en
Application granted granted Critical
Publication of JP2957515B2 publication Critical patent/JP2957515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を充
填するための水素吸蔵合金容器、及び水素吸蔵合金を収
納した一対の容器を互いに連結して構成される水素ガス
利用システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy container for filling a hydrogen storage alloy, and a hydrogen gas utilization system constituted by connecting a pair of containers storing the hydrogen storage alloy to each other. .

【0002】[0002]

【従来の技術】近年、水素吸蔵合金の水素ガス貯蔵機能
や水素吸放出に伴う熱エネルギー変換機能等を応用した
水素ガス利用システム、例えばヒートポンプ、空調装
置、アクチュエータ等の開発が進んでいる。これらの水
素ガス利用システムは、基本的には図3に示す如く、水
素吸蔵合金が充填された一対の水素吸蔵合金容器(10)(1
0)を水素ガス吸放出管(5)によって互いに連結して構成
され、各水素吸蔵合金容器(10)には、水素吸蔵合金を加
熱し或いは冷却するための熱媒配管(30)が設置されてい
る。
2. Description of the Related Art In recent years, a hydrogen gas utilizing system, such as a heat pump, an air conditioner, and an actuator, which utilizes a hydrogen gas storage function of a hydrogen storage alloy and a thermal energy conversion function accompanying hydrogen absorption and release, has been developed. As shown in FIG. 3, these hydrogen gas utilization systems basically include a pair of hydrogen storage alloy containers (10) (1) filled with a hydrogen storage alloy.
0) are connected to each other by a hydrogen gas storage / discharge tube (5), and each hydrogen storage alloy container (10) is provided with a heat medium pipe (30) for heating or cooling the hydrogen storage alloy. ing.

【0003】図2は、従来の水素吸蔵合金容器(11)の具
体的構成を表わしており、密閉構造を有する筒体(1)に
水素ガス吸放出管(5)が接続されている。筒体(1)の内
部には、粉末状の水素吸蔵合金(2)が充填され、該水素
吸蔵合金(2)中を熱媒配管(30)が複数回に亘って往復し
て伸びており、その両端は筒体(1)から外部へ突出して
熱媒入口(31)と熱媒出口(32)とを有している。又、筒体
(1)の内部には、熱媒配管(30)が貫通する複数枚の伝熱
フィン(4)が、管軸方向に一定の間隔をおいて配列され
ている。尚、従来の水素吸蔵合金容器(11)においては、
熱媒配管(30)の内、熱媒が最初に流れる入口配管部(3a)
と、熱媒が最後に流れる出口配管部(3b)は、筒体(1)内
の最大離間位置に配置されていた。
FIG. 2 shows a specific structure of a conventional hydrogen storage alloy container (11), in which a hydrogen gas storage / discharge tube (5) is connected to a cylinder (1) having a closed structure. The inside of the cylindrical body (1) is filled with a powdery hydrogen storage alloy (2), and a heating medium pipe (30) reciprocates a plurality of times in the hydrogen storage alloy (2). The two ends thereof have a heat medium inlet (31) and a heat medium outlet (32) protruding outside from the cylindrical body (1). Also, cylindrical
Inside (1), a plurality of heat transfer fins (4) through which a heat medium pipe (30) penetrates are arranged at regular intervals in the tube axis direction. In the conventional hydrogen storage alloy container (11),
In the heat medium pipe (30), the inlet pipe part (3a) through which the heat medium flows first
And the outlet pipe section (3b) through which the heat medium flows last is located at the maximum separation position in the cylindrical body (1).

【0004】上記水素吸蔵合金容器(11)においては、熱
媒入口(31)から熱媒配管(30)へ温水を供給することによ
って、水素吸蔵合金(2)が加熱され、水素吸蔵合金(2)
中の水素が放出される。逆に、熱媒入口(31)から熱媒配
管(30)へ冷水を供給することによって、水素吸蔵合金
(2)が冷却され、水素吸蔵合金(2)中に水素が吸収され
る。従って、図3の如く水素ガス吸放出管(5)を介して
互いに接続されている一対の水素吸蔵合金容器(11)(11)
の内、一方を加熱すると同時に他方を冷却することによ
って、一方から他方へ水素ガスが移動し、その後、冷却
と加熱を逆転させることによって、逆向きに水素ガスが
移動する。ここで、一方の水素吸蔵合金容器(11)に充填
すべき水素吸蔵合金と、他方の水素吸蔵合金容器(11)に
充填すべき水素吸蔵合金として、平衡水素圧力の異なる
2種類の合金を採用すれば、上述の水素ガスの往復移動
によって熱サイクルが構成されることになる。
In the hydrogen storage alloy container (11), hot water is supplied from the heat medium inlet (31) to the heat medium pipe (30), whereby the hydrogen storage alloy (2) is heated, and the hydrogen storage alloy (2) is heated. )
The hydrogen inside is released. Conversely, by supplying cold water from the heat medium inlet (31) to the heat medium pipe (30), the hydrogen storage alloy
(2) is cooled, and hydrogen is absorbed in the hydrogen storage alloy (2). Therefore, as shown in FIG. 3, a pair of hydrogen storage alloy containers (11) and (11) connected to each other through a hydrogen gas storage / release pipe (5).
Of these, by heating one and simultaneously cooling the other, hydrogen gas moves from one to the other, and then, by reversing the cooling and heating, the hydrogen gas moves in the opposite direction. Here, two kinds of alloys having different equilibrium hydrogen pressures are adopted as a hydrogen storage alloy to be filled in one hydrogen storage alloy container (11) and a hydrogen storage alloy to be filled in the other hydrogen storage alloy container (11). Then, a thermal cycle is constituted by the reciprocating movement of the hydrogen gas.

【0005】[0005]

【発明が解決しようとする課題】上述の水素吸蔵合金容
器(11)を用いた水素ガス利用システムにおいては、上述
の熱サイクルにおける水素吸蔵合金の水素吸放出に伴っ
て、水素吸蔵合金に膨張、収縮が生じ、これによって水
素吸蔵合金容器(11)に繰返し応力が作用する。特に、冷
水が供給される熱媒配管(3)の入口配管部(3a)の入口(3
1)近傍では、冷水の温度が低いため、水素吸蔵合金の反
応速度が高く、水素吸収に伴う水素吸蔵合金の局所的な
膨張によって、過大な応力が発生する。この結果、水素
吸蔵合金容器(11)が変形し、更には破壊に至る問題があ
った。
In a hydrogen gas utilization system using the above-mentioned hydrogen storage alloy container (11), the hydrogen storage alloy expands into a hydrogen storage alloy as the hydrogen storage alloy absorbs and releases hydrogen in the above-described heat cycle. Shrinkage occurs, which causes repeated stress to act on the hydrogen storage alloy container (11). In particular, the inlet (3a) of the inlet pipe (3a) of the heat medium pipe (3) to which cold water is supplied.
1) In the vicinity, since the temperature of cold water is low, the reaction speed of the hydrogen storage alloy is high, and excessive stress is generated due to local expansion of the hydrogen storage alloy due to hydrogen absorption. As a result, there is a problem that the hydrogen storage alloy container (11) is deformed and further broken.

【0006】本発明の目的は、水素吸放出に伴って水素
吸蔵合金容器に作用する繰返し応力を緩和し、水素吸蔵
合金容器の変形や破壊を防止することである。
An object of the present invention is to alleviate the repetitive stress acting on a hydrogen storage alloy container due to the absorption and release of hydrogen and to prevent deformation and breakage of the hydrogen storage alloy container.

【0007】[0007]

【課題を解決する為の手段】本発明に係る水素吸蔵合金
容器は、水素ガス吸放出管(5)が接続された筒体(1)を
具え、該筒体(1)の内部に、水素吸蔵合金の収納室が形
成されると共に、該合金収納室中を同一方向に伸びる複
数の配管部を互いに直接に接続してなる熱媒配管(3)が
設置されている。熱媒配管(3)の両端は筒体(1)から外
部へ突出して熱媒入口(31)と熱媒出口(32)とを有してい
る。ここで、熱媒配管(3)を構成する複数の配管部の
内、熱媒が最初に流れる入口配管部(3a)と、熱媒が最後
に流れる出口配管部(3b)とは、互いに隣接している。
A hydrogen storage alloy container according to the present invention comprises a cylinder (1) to which a hydrogen gas absorption / desorption tube (5) is connected. A storage chamber for the storage alloy is formed, and a heat medium pipe (3) is provided, which is formed by directly connecting a plurality of pipe sections extending in the same direction in the storage chamber. Both ends of the heat medium pipe (3) project out of the cylinder (1) to have a heat medium inlet (31) and a heat medium outlet (32). Here, among a plurality of pipes constituting the heat medium pipe (3), the inlet pipe (3a) through which the heat medium flows first and the outlet pipe (3b) through which the heat medium flows last are adjacent to each other. doing.

【0008】又、本発明に係る水素ガス利用システム
は、上記本発明の水素吸蔵合金容器を水素ガス吸放出管
(5)により互いに連結して構成される。
Further, the hydrogen gas utilization system according to the present invention is characterized in that the hydrogen storage alloy container of the present invention is provided with a hydrogen gas storage / discharge tube.
(5) are connected to each other.

【0009】上記本発明の水素吸蔵合金容器において、
熱媒入口(31)へ流入した熱媒としての冷却液は、熱媒配
管(3)内を流れた後、熱媒出口(32)から流出し、この過
程で筒体(1)内の水素吸蔵合金を冷却する。これによっ
て、水素吸蔵合金は水素を吸収して、膨張する。又、冷
却液は、水素吸収によって発熱する水素吸蔵合金と熱交
換を行ないつつ、熱媒配管(3)内を流れるため、熱媒配
管(3)の入口配管部(3a)で最も温度が低く、出口配管部
(3b)で最も温度が高くなる。
In the above hydrogen storage alloy container of the present invention,
The coolant as a heat medium flowing into the heat medium inlet (31) flows through the heat medium pipe (3) and then flows out of the heat medium outlet (32). Cool the storage alloy. Thereby, the hydrogen storage alloy absorbs hydrogen and expands. In addition, since the coolant flows through the heat medium pipe (3) while performing heat exchange with the hydrogen storage alloy that generates heat by absorbing hydrogen, the temperature of the coolant is lowest at the inlet pipe part (3a) of the heat medium pipe (3). , Outlet piping
(3b) has the highest temperature.

【0010】従来の水素吸蔵合金容器においては、熱媒
配管の入口配管部(3a)と出口配管部(3b)とが離間して配
置されており、入口配管部(3a)と出口配管部(3b)の間で
熱交換は殆ど行なわれないのに対し、本発明の水素吸蔵
合金容器においては、入口配管部(3a)と出口配管部(3b)
とが隣接して配置されているため、出口配管部(3b)と入
口配管部(3a)の間で十分な熱伝達が行なわれ、両配管部
(3a)(3b)の温度差が縮小されることになる。この結果、
従来は入口配管部(3a)の入口(31)近傍で生じていた水素
吸蔵合金の局所的な膨張による過大な応力が抑制され
る。
[0010] In the conventional hydrogen storage alloy container, the inlet pipe section (3a) and the outlet pipe section (3b) of the heating medium pipe are disposed separately, and the inlet pipe section (3a) and the outlet pipe section (3) are arranged. While heat exchange hardly takes place during 3b), in the hydrogen storage alloy container of the present invention, the inlet pipe section (3a) and the outlet pipe section (3b)
Are located adjacent to each other, sufficient heat transfer is performed between the outlet pipe section (3b) and the inlet pipe section (3a),
The temperature difference of (3a) and (3b) is reduced. As a result,
Excessive stress due to local expansion of the hydrogen storage alloy, which has conventionally occurred near the inlet (31) of the inlet pipe (3a), is suppressed.

【0011】[0011]

【発明の効果】本発明に係る水素吸蔵合金容器及びこれ
を用いた水素ガス利用システムにおいては、熱媒配管
(3)の入口配管部(3a)と出口配管部(3b)を互いに近接さ
せて配置した構成により、水素吸放出に伴って水素吸蔵
合金容器に作用する繰返し応力が緩和され、この結果、
水素吸蔵合金容器の変形や破壊が防止される。
In the hydrogen storage alloy container and the hydrogen gas utilization system using the same according to the present invention, a heating medium pipe is provided.
With the configuration in which the inlet pipe section (3a) and the outlet pipe section (3b) of (3) are arranged close to each other, the repetitive stress acting on the hydrogen storage alloy container due to hydrogen absorption and release is reduced, and as a result,
The hydrogen storage alloy container is prevented from being deformed or broken.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につ
き、図面に沿って具体的に説明する。図1は、本発明に
係る水素吸蔵合金容器(10)の構造を表わしており、図4
は、一対の水素吸蔵合金容器(10)(10)を水素ガス吸放出
管(5)により互いに連結して構成される水素ガス利用シ
ステムを、模式的に表わしたものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 shows the structure of a hydrogen storage alloy container (10) according to the present invention.
1 schematically shows a hydrogen gas utilization system constituted by connecting a pair of hydrogen storage alloy containers (10) and (10) with a hydrogen gas storage / discharge tube (5).

【0013】図1に示す如く水素吸蔵合金容器(10)は、
密閉構造を有する筒体(1)を具え、該筒体(1)に水素ガ
ス吸放出管(5)が接続されている。筒体(1)の内部に
は、粉末状の水素吸蔵合金(2)が充填され、該水素吸蔵
合金(2)中を熱媒配管(3)が複数回に亘って往復して伸
びており、その両端は筒体(1)から外部へ突出して熱媒
入口(31)と熱媒出口(32)とを有している。ここで、熱媒
配管(3)は、図示の如く互いに平行に伸びる複数の配管
部の内、熱媒が最初に流れる入口配管部(3a)が筒体(1)
の上方の隅部を水平に伸びた後、筒体(1)内を往復しつ
つ筒体(1)の下方の隅部まで至り、その後、戻り管部(3
c)を経て再び筒体(1)の上部まで戻り、熱媒が最後に流
れる出口配管部(3b)は、入口配管部(3a)と隣接して、入
口配管部(3a)とは逆方向に伸びている。又、筒体(1)の
内部には、熱媒配管(3)が貫通する複数枚の伝熱フィン
(4)が、管軸方向に一定の間隔をおいて配列されてい
る。
As shown in FIG. 1, the hydrogen storage alloy container (10)
A cylinder (1) having a closed structure is provided, and a hydrogen gas absorption / desorption tube (5) is connected to the cylinder (1). The inside of the cylindrical body (1) is filled with a powdery hydrogen storage alloy (2), and a heating medium pipe (3) reciprocates a plurality of times in the hydrogen storage alloy (2). The two ends thereof have a heat medium inlet (31) and a heat medium outlet (32) protruding outside from the cylindrical body (1). Here, the heating medium pipe (3) is, as shown in the figure, an inlet pipe section (3a) through which the heating medium flows first among a plurality of pipe sections extending in parallel with each other, and is a cylindrical body (1).
After extending horizontally at the upper corner of the cylinder, it reciprocates in the cylinder (1), reaches the lower corner of the cylinder (1), and then returns to the return pipe (3).
Returning again to the upper part of the cylindrical body (1) through c), the outlet pipe (3b) through which the heat medium finally flows is adjacent to the inlet pipe (3a) and in the opposite direction to the inlet pipe (3a). Is growing. A plurality of heat transfer fins through which a heat medium pipe (3) penetrates are provided inside the cylindrical body (1).
(4) are arranged at regular intervals in the tube axis direction.

【0014】上記水素吸蔵合金容器(10)においては、熱
媒入口(31)から熱媒配管(30)へ温水を供給することによ
って、水素吸蔵合金(2)が加熱され、水素吸蔵合金(2)
中の水素が水素ガス吸放出管(5)から放出される。逆
に、熱媒入口(31)から熱媒配管(30)へ冷水を供給するこ
とによって、水素吸蔵合金(2)が冷却され、水素ガス吸
放出管(5)から供給される水素が水素吸蔵合金(2)中に
吸収される。従って、図4の如く一対の水素吸蔵合金容
器(10)(10)を水素ガス吸放出管(5)により互いに連結し
てなる水素ガス利用システムにおいて、一方の水素吸蔵
合金容器(10)をを加熱すると同時に他方の水素吸蔵合金
容器(10)を冷却することによって、一方の水素吸蔵合金
容器(10)から他方の水素吸蔵合金容器(10)へ水素ガスが
移動し、その後、冷却と加熱を逆転させることによっ
て、逆向きに水素ガスが移動する。尚、一方の水素吸蔵
合金容器(10)に充填すべき水素吸蔵合金と、他方の水素
吸蔵合金容器(10)に充填すべき水素吸蔵合金は、互いに
平衡水素圧力の異なるものが採用されている。
In the hydrogen storage alloy container (10), hot water is supplied from the heat medium inlet (31) to the heat medium pipe (30), whereby the hydrogen storage alloy (2) is heated, and the hydrogen storage alloy (2) is heated. )
The hydrogen inside is released from the hydrogen gas absorption / desorption tube (5). Conversely, by supplying cold water from the heat medium inlet (31) to the heat medium pipe (30), the hydrogen storage alloy (2) is cooled, and the hydrogen supplied from the hydrogen gas storage / release pipe (5) is used to store hydrogen. Absorbed in alloy (2). Therefore, as shown in FIG. 4, in a hydrogen gas utilization system in which a pair of hydrogen storage alloy containers (10) and (10) are connected to each other by a hydrogen gas storage and release tube (5), one of the hydrogen storage alloy containers (10) is used. By heating and simultaneously cooling the other hydrogen storage alloy container (10), hydrogen gas moves from one hydrogen storage alloy container (10) to the other hydrogen storage alloy container (10), and then cooling and heating are performed. By reversing, the hydrogen gas moves in the opposite direction. The hydrogen storage alloy to be filled in one hydrogen storage alloy container (10) and the hydrogen storage alloy to be filled in the other hydrogen storage alloy container (10) have different equilibrium hydrogen pressures. .

【0015】上記水素吸蔵合金容器(10)においては、入
口配管部(3a)と出口配管部(3b)とが隣接して配置されて
いるため、出口配管部(3b)と入口配管部(3a)の間の熱伝
達によって、入口配管部(3a)と出口配管部(3b)の温度差
が縮小され、水素吸蔵合金の局所的な体積膨張が抑制さ
れる。これによって、水素吸蔵合金容器に作用する繰返
し応力が緩和され、水素吸蔵合金容器の変形や破壊が防
止されるのである。
In the hydrogen storage alloy container (10), since the inlet pipe (3a) and the outlet pipe (3b) are arranged adjacent to each other, the outlet pipe (3b) and the inlet pipe (3a) are arranged adjacent to each other. ), The temperature difference between the inlet pipe section (3a) and the outlet pipe section (3b) is reduced, and local volume expansion of the hydrogen storage alloy is suppressed. As a result, the repetitive stress acting on the hydrogen storage alloy container is reduced, and the deformation and destruction of the hydrogen storage alloy container are prevented.

【0016】発明者らは、上記本発明の水素吸蔵合金容
器(10)の効果を実証するべく、熱媒配管(3)の入口配管
部(3a)と出口配管部(3b)の間の熱伝達が水素吸蔵合金の
反応に及ぼす影響を、計算機シミュレーションによって
調べると共に、水素吸蔵合金の体積膨張と筒体(1)に作
用する応力の関係を、実験によって調べた。
In order to demonstrate the effect of the hydrogen storage alloy container (10) of the present invention, the inventors have studied the heat transfer between the inlet pipe (3a) and the outlet pipe (3b) of the heat medium pipe (3). The effect of the transfer on the reaction of the hydrogen storage alloy was examined by computer simulation, and the relationship between the volume expansion of the hydrogen storage alloy and the stress acting on the cylinder (1) was examined by experiments.

【0017】シミュレーション 局所的な体積膨張の原因となる合金容器内の反応率分布
を定量的に把握するために、図3に示す如く熱媒流れ方
向に分割したモデルを作成し、2つの水素吸蔵合金容器
(11)(11)間で、下記数1に示す複数の基礎式を用いた水
素吸蔵合金反応シミュレーションを行なった。
Simulation In order to quantitatively grasp the reaction rate distribution in the alloy vessel that causes local volume expansion, a model divided in the flow direction of the heat medium as shown in FIG. Alloy container
(11) Between (11), a hydrogen storage alloy reaction simulation using a plurality of basic formulas shown in the following equation 1 was performed.

【0018】[0018]

【数1】 (Equation 1)

【0019】ここで、合金反応速度式は別途実験により
得られた実験式を、合金特性式はP−C−T曲線特性フ
ィッティングモデル式を採用し、時間差分法により反応
特性を解析した。
Here, an empirical formula obtained by a separate experiment was used as the alloy reaction rate equation, and a PCT curve characteristic fitting model equation was adopted as the alloy characteristic equation, and the reaction characteristics were analyzed by a time difference method.

【0020】更に本発明の水素吸蔵合金容器(10)の構造
と局所的な反応率分布との関係を把握するために、図4
に示す如きモデルを作成し、2つの水素吸蔵合金容器(1
0)(10)間の熱伝達係数HA(HA=熱伝達量Q/温度差
ΔT)による、局所的反応率の変化を解析した。
Further, in order to grasp the relationship between the structure of the hydrogen storage alloy container (10) of the present invention and the local reaction rate distribution, FIG.
A model as shown in Fig. 3 was created and two hydrogen storage alloy containers (1
Changes in the local reaction rate due to the heat transfer coefficient HA between 0 and (10) (HA = heat transfer amount Q / temperature difference ΔT) were analyzed.

【0021】図5は、最も局所的反応率が増大するn=
1のセルにおいて、熱伝達係数HAが水素吸蔵量の時間
的変化に及ぼす影響を示したグラフである。このグラフ
から、HA=0の場合(図3のモデルに相当)に対し、H
A>0の場合(図4のモデルに相当)では、HAの増大と
ともに局所的な水素吸蔵量の増大が緩和されることがわ
かる。特に、有効水素移動量が0.8wt%となるポイン
トでは、HAが20(W/K)のとき、水素吸蔵量の増大
が大幅に緩和され、HAが50(W/K)以上では、緩和
の効果が低減する。
FIG. 5 shows that n =
5 is a graph showing the effect of the heat transfer coefficient HA on the temporal change of the hydrogen storage amount in the cell No. 1. From this graph, when HA = 0 (corresponding to the model in FIG. 3), H
In the case of A> 0 (corresponding to the model in FIG. 4), it can be seen that the local increase in the amount of hydrogen storage is alleviated with the increase in HA. In particular, at the point where the effective hydrogen transfer amount is 0.8 wt%, the increase in the hydrogen storage amount is greatly reduced when HA is 20 (W / K), and is reduced when HA is 50 (W / K) or more. Effect is reduced.

【0022】この結果から、熱媒配管(3)の入口配管部
(3a)と出口配管部(3b)を、両配管部間の熱伝達係数が2
0(W/K)程度、或いはそれ以上となる様な間隔に設置
すれば、局所的な水素吸蔵合金の膨張を大幅に緩和する
ことが出来ると言える。
From these results, it can be seen that the inlet pipe portion of the heat medium pipe (3)
(3a) and the outlet pipe section (3b), the heat transfer coefficient between both pipe sections is 2
It can be said that by setting the interval at about 0 (W / K) or more, local expansion of the hydrogen storage alloy can be greatly reduced.

【0023】実験 実験では、外径18mm、厚さ1mmの円筒状の水素吸
蔵合金容器(10)を水平に設置し、水素の吸放出サイクル
を行なって、その際の体積膨張によって容器が受ける応
力を測定した。図6は、熱伝達係数HAをパラメータと
して、水素吸蔵合金容器(10)の各セルの応力をグラフ化
したものである。このグラフから明らかな様に、HA=
0の場合(図3のモデルに相当)では、最大応力がステン
レス鋼や銅の許容応力を大きく上回るのに対し、HA>
0の場合(図4のモデルに相当)では、HAの増大ととも
に最大応力が緩和されており、例えばHAが20(W/
K)のときの最大応力は、ステンレス鋼の許容応力より
も低くなる。
Experiment In the experiment, a cylindrical hydrogen storage alloy container (10) having an outer diameter of 18 mm and a thickness of 1 mm was placed horizontally, and a hydrogen absorption / desorption cycle was performed. Was measured. FIG. 6 is a graph showing the stress of each cell of the hydrogen storage alloy container (10) using the heat transfer coefficient HA as a parameter. As is clear from this graph, HA =
In the case of 0 (corresponding to the model in FIG. 3), the maximum stress greatly exceeds the allowable stress of stainless steel or copper, whereas HA>
In the case of 0 (corresponding to the model in FIG. 4), the maximum stress is relaxed with an increase in HA, for example, when HA is 20 (W / W /
The maximum stress in the case of K) is lower than the allowable stress of stainless steel.

【0024】この結果から、熱媒配管(3)の入口配管部
(3a)と出口配管部(3b)を互いに隣接させて配置し、両配
管部間の熱伝達係数を20(W/K)程度、或いはそれ以
上に設定することによって、筒体(1)に作用する応力を
大幅に緩和することが出来、ステンレス鋼或いは銅製の
筒体(1)の変形や破壊を防止することが出来ると言え
る。
From these results, it can be seen that the inlet pipe portion of the heat medium pipe (3)
(3a) and the outlet pipe part (3b) are arranged adjacent to each other, and the heat transfer coefficient between the two pipe parts is set to about 20 (W / K) or more, so that the cylindrical body (1) is formed. It can be said that the acting stress can be remarkably reduced, and the deformation and destruction of the stainless steel or copper cylinder (1) can be prevented.

【0025】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、熱媒配管(3)の出口配管部
(3b)のみを入口配管部(3a)に隣接させる構造に限らず、
出口側の複数の配管部を入口側の配管部に隣接させる構
造の採用も可能である。これによって、水素吸蔵合金全
体の均熱化を図ることが出来る。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, the outlet pipe section of the heat medium pipe (3)
Not only the structure in which only (3b) is adjacent to the inlet pipe (3a),
It is also possible to adopt a structure in which a plurality of pipe sections on the outlet side are adjacent to the pipe sections on the inlet side. This makes it possible to equalize the temperature of the entire hydrogen storage alloy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る水素吸蔵合金容器の断面図であ
る。
FIG. 1 is a cross-sectional view of a hydrogen storage alloy container according to the present invention.

【図2】従来の水素吸蔵合金容器の断面図である。FIG. 2 is a cross-sectional view of a conventional hydrogen storage alloy container.

【図3】従来の水素吸蔵合金容器を用いた水素ガス利用
システムのモデルを表わす図である。
FIG. 3 is a diagram illustrating a model of a hydrogen gas utilization system using a conventional hydrogen storage alloy container.

【図4】本発明の水素吸蔵合金容器を用いた水素ガス利
用システムのモデルを表わす図である
FIG. 4 is a diagram showing a model of a hydrogen gas utilization system using the hydrogen storage alloy container of the present invention.

【図5】入口配管部と出口配管部の間の熱伝達係数をパ
ラメータとして、水素吸蔵量の時間変化を表わすグラフ
である。
FIG. 5 is a graph showing a temporal change of a hydrogen storage amount using a heat transfer coefficient between an inlet pipe portion and an outlet pipe portion as a parameter.

【図6】入口配管部と出口配管部の間の熱伝達係数をパ
ラメータとして、筒体に作用する応力の分布を表わすグ
ラフである。
FIG. 6 is a graph showing a distribution of stress acting on a cylindrical body using a heat transfer coefficient between an inlet pipe portion and an outlet pipe portion as a parameter.

【符号の説明】[Explanation of symbols]

(1) 筒体 (10) 水素吸蔵合金容器 (11) 水素吸蔵合金容器 (2) 水素吸蔵合金 (3) 熱媒配管 (31) 熱媒入口 (32) 熱媒出口 (3a) 入口配管部 (3b) 出口配管部 (4) 伝熱フィン (5) 水素ガス吸放出管 (1) Cylindrical body (10) Hydrogen storage alloy container (11) Hydrogen storage alloy container (2) Hydrogen storage alloy (3) Heat medium pipe (31) Heat medium inlet (32) Heat medium outlet (3a) Inlet pipe ( 3b) Outlet piping (4) Heat transfer fin (5) Hydrogen gas absorption / release pipe

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 17/12 C01B 3/00 F17C 11/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F25B 17/12 C01B 3/00 F17C 11/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素ガス吸放出管(5)が接続された筒体
(1)の内部に、水素吸蔵合金の収納室が形成されると共
に、該合金収納室中を同一方向に伸びる複数の配管部を
互いに直接に接続してなる熱媒配管(3)が設置され、該
熱媒配管(3)の両端は筒体(1)から外部へ突出して熱媒
入口(31)と熱媒出口(32)とを有している水素吸蔵合金容
器において、前記熱媒配管(3)を構成する複数の配管部
の内、熱媒が最初に流れる入口配管部(3a)と、熱媒が最
後に流れる出口配管部(3b)とは、互いに隣接しているこ
とを特徴とする水素吸蔵合金容器。
1. A cylinder connected to a hydrogen gas absorption / desorption tube (5).
Inside (1), a storage chamber for the hydrogen storage alloy is formed, and a heat medium pipe (3) is provided, which is formed by directly connecting a plurality of pipe sections extending in the same direction in the alloy storage chamber to each other. A hydrogen storage alloy container having a heat medium inlet (31) and a heat medium outlet (32) at both ends of the heat medium pipe (3) protruding from the cylindrical body (1) to the outside; (3) Out of a plurality of pipe sections, the inlet pipe section (3a) through which the heat medium flows first and the outlet pipe section (3b) through which the heat medium flows last are adjacent to each other. Hydrogen storage alloy container.
【請求項2】 合金収納室には、前記複数の配管部が貫
通する複数枚の伝熱フィン(4)が、管軸方向に沿って配
列されている請求項1に記載の水素吸蔵合金容器。
2. The hydrogen storage alloy container according to claim 1, wherein a plurality of heat transfer fins (4) through which the plurality of pipes penetrate are arranged along the pipe axis direction in the alloy storage chamber. .
【請求項3】 合金収納室には、粉末状の水素吸蔵合金
が充填される請求項1又は請求項2に記載の水素吸蔵合
金容器。
3. The hydrogen storage alloy container according to claim 1, wherein the alloy storage chamber is filled with a powdery hydrogen storage alloy.
【請求項4】 筒体(1)はステンレス鋼製であって、熱
媒配管(3)の入口配管部(3a)と出口配管部(3b)とは、相
互間の熱伝達係数が20W/K以上となる様に間隔が設
定されている請求項1乃至請求項3の何れかに記載の水
素吸蔵合金容器。
4. The tubular body (1) is made of stainless steel, and a heat transfer coefficient between the inlet pipe section (3a) and the outlet pipe section (3b) of the heat medium pipe (3) is 20 W /. The hydrogen storage alloy container according to any one of claims 1 to 3, wherein an interval is set so as to be K or more.
【請求項5】 水素吸蔵合金を収納した一対の筒体(1)
(1)が水素ガス吸放出管(5)を介して互いに連結され、
各筒体(1)の内部には、水素吸蔵合金の収納室が形成さ
れると共に、該合金収納室中を同一方向に伸びる複数の
配管部を互いに直接に接続してなる熱媒配管(3)が設置
され、該熱媒配管(3)の両端は筒体(1)から外部へ突出
して熱媒入口(31)と熱媒出口(32)とを有している水素ガ
ス利用システムにおいて、各筒体(1)の合金収納室内に
設置された熱媒配管(3)は、前記複数の配管部の内、熱
媒が最初に流れる入口配管部(3a)と、熱媒が最後に流れ
る出口配管部(3b)とが、互いに隣接していることを特徴
とする水素ガス利用システム。
5. A pair of cylinders (1) containing a hydrogen storage alloy.
(1) are connected to each other via a hydrogen gas absorption / desorption tube (5),
A storage chamber for the hydrogen storage alloy is formed inside each cylinder (1), and a plurality of pipes extending in the same direction in the alloy storage chamber are directly connected to each other by a heat medium pipe (3). ) Is installed, and both ends of the heat medium pipe (3) project from the cylinder (1) to the outside and have a heat medium inlet (31) and a heat medium outlet (32). The heat medium pipe (3) installed in the alloy storage chamber of each cylinder (1) has an inlet pipe part (3a) through which the heat medium flows first among the plurality of pipe parts, and a heat medium flows last. A hydrogen gas utilization system, wherein the outlet pipe section (3b) is adjacent to each other.
JP9092528A 1997-04-10 1997-04-10 Hydrogen storage alloy container Expired - Fee Related JP2957515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092528A JP2957515B2 (en) 1997-04-10 1997-04-10 Hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092528A JP2957515B2 (en) 1997-04-10 1997-04-10 Hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JPH10288419A JPH10288419A (en) 1998-10-27
JP2957515B2 true JP2957515B2 (en) 1999-10-04

Family

ID=14056858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092528A Expired - Fee Related JP2957515B2 (en) 1997-04-10 1997-04-10 Hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP2957515B2 (en)

Also Published As

Publication number Publication date
JPH10288419A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Teggar et al. Performance enhancement of latent heat storage systems by using extended surfaces and porous materials: A state-of-the-art review
US4599867A (en) Hydrogen storage cell
Alqahtani et al. Thermal performance analysis of a metal hydride reactor encircled by a phase change material sandwich bed
Masoumpour-Samakoush et al. Impact of innovative fin combination of triangular and rectangular fins on melting process of phase change material in a cavity
Lin et al. Improvement of thermal performance of novel heat exchanger with latent heat storage
CN106767082A (en) Packaged type based on pulsating heat pipe stores heat-releasing device and its stores exothermic processes
Chibani et al. The performance of hydrogen desorption from a metal hydride with heat supply by a phase change material incorporated in porous media (metal foam): heat and mass transfer assessment
JP2008020177A (en) Heat storage system
Petrik et al. Heat exchange in condensation of R227 coolant on inclined tubes placed in a granular BED
JP2957515B2 (en) Hydrogen storage alloy container
CN202032931U (en) Single-face corrugated plate type pulsating heat pipe
JPS5848480Y2 (en) Hydrogen storage device using metal hydride
CN208269700U (en) Unitized exchanger
JP4953194B2 (en) Hydrogen storage tank
JP3046975B2 (en) Hydrogen storage container
CN201974081U (en) Heat-exchanging device with heat-pipe thermal spreader for refrigerative air-conditioning system
JP4001025B2 (en) Water heater
JP2569654B2 (en) Heat storage device
CN216869272U (en) Pressure-bearing cold and heat storage device for enhancing heat exchange
CN210602930U (en) Heat pipe and heat exchanger
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger
JPS6334487A (en) Hydrogenated metal heat exchanger
JPH01121694A (en) Heating medium pipe for heat exchanger
Dadda et al. Numerical Simulation of Fins' Effect on the Performance of a Metal Hydride Reactor
CN2109540U (en) Low boiling point in-tube boiling heat exchanger

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees