JP2003014883A - Double pipe structure in steam generator - Google Patents

Double pipe structure in steam generator

Info

Publication number
JP2003014883A
JP2003014883A JP2001204377A JP2001204377A JP2003014883A JP 2003014883 A JP2003014883 A JP 2003014883A JP 2001204377 A JP2001204377 A JP 2001204377A JP 2001204377 A JP2001204377 A JP 2001204377A JP 2003014883 A JP2003014883 A JP 2003014883A
Authority
JP
Japan
Prior art keywords
tube
sodium
plenum
double
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001204377A
Other languages
Japanese (ja)
Inventor
Masanori Takemoto
正典 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2001204377A priority Critical patent/JP2003014883A/en
Publication of JP2003014883A publication Critical patent/JP2003014883A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double pipe structure of a steam generator of sodium heating reducing the frequency of sodium-water reaction events. SOLUTION: The steam generator vertically arranges double pipes 8 filled with heat medium of liquid metal which is heavier than sodium, in the medium layer 14 between a pipe wall 13 contacting sodium and a pipe wall 12 contacting water/steam by penetrating an upper plenum 9 and a lower plenum 10. Protection pipes 15 are provided to open the upper end of the medium layer 14 of the double pipes to the upper plenum 9 and close the connection to the lower plenum 10 by surrounding the lower end of the medium layer 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ナトリウムと水の
間で熱交換して高圧蒸気を発生する蒸気発生器の二重管
構造に関し、特に液体金属冷却高速増殖炉に用いる二重
管蒸気発生器の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a double-tube structure of a steam generator which exchanges heat between sodium and water to generate high-pressure steam, and more particularly to a double-tube steam generation used in a liquid metal cooling fast breeder reactor. Regarding the structure of the vessel.

【0002】[0002]

【従来の技術】液体金属冷却高速増殖炉では、ナトリウ
ムと水の接触を防止するため、ナトリウムを内包する系
統・機器と水を内包する系統・機器とが近接して配置さ
れる場合には、原則として、・両者の間に、三重の物理
的障壁を設ける設計、または・両者の間に、漏洩媒体処
理対策を施した二重の物理的障壁を設ける設計、がなさ
れる。しかしながら、液体金属冷却高速増殖炉の蒸気発
生器には一重壁伝熱管が用いられる場合が多く、上記設
計原則の例外とされていた。もちろん、蒸気発生器にお
いても、ナトリウム−水反応に対する信頼性を確保する
ため、三重壁伝熱管または漏洩媒体処理対策を備えた二
重壁伝熱管が用いられる場合がある。
2. Description of the Related Art In a liquid metal cooling fast breeder reactor, in order to prevent contact between sodium and water, when a system / equipment containing sodium and a system / equipment containing water are placed in close proximity, As a general rule, a triple physical barrier is designed between them, or a double physical barrier is installed between the two, which is a leakage medium treatment measure. However, a single wall heat transfer tube is often used in a steam generator of a liquid metal cooled fast breeder reactor, which was an exception to the above design principle. Of course, also in the steam generator, in order to secure the reliability against the sodium-water reaction, a triple-walled heat transfer tube or a double-walled heat transfer tube provided with measures for treating the leakage medium may be used.

【0003】二重壁伝熱管は、壁の間に熱伝達性の良い
熱媒体を充填して使用する。熱媒体としてヘリウムガス
を使用することが多いが、溶融金属などの液体を用いる
こともある。特開昭54−16762には、熱媒体とし
てヘリウムガスあるいは水銀などの液体金属を使用して
中間層に封じ込めた二重管を使用した蒸気発生器が開示
されている。熱媒体を管壁間に封じ込めた二重管蒸気発
生器は、二重伝熱管の構成が容易で姿勢の制約もなく熱
媒体の封入も確実に行われ封入媒体量も小さい。しか
し、管壁が破損して高圧蒸気が浸入しても破損を検出す
ることが困難である。
The double-walled heat transfer tube is used by filling a space between the walls with a heat transfer medium having a good heat transfer property. Helium gas is often used as the heating medium, but liquid such as molten metal may be used. Japanese Unexamined Patent Publication No. 54-16762 discloses a steam generator using a double tube in which a liquid metal such as helium gas or mercury is used as a heat medium and enclosed in an intermediate layer. In the double-tube steam generator in which the heat medium is enclosed between the tube walls, the structure of the double heat transfer tube is easy, the heat medium is surely enclosed without any restriction on the posture, and the amount of the enclosed medium is small. However, even if the pipe wall is damaged and high-pressure steam enters, it is difficult to detect the damage.

【0004】二重壁伝熱管を垂直に設けた蒸気発生器で
は、蒸気発生器の上端と下端で水・蒸気側管板(蒸気出
口管板と給水入口管板)とナトリウム側管板(上部ナト
リウム管板と下部ナトリウム管板)の間にプレナムを形
成したものがある。二重管の外管と内管の間に形成され
る内外管間隙すなわち中間層をプレナムに開放してい
る。図6は、従来の蒸気発生器における二重管構造の下
端部を示す断面図である。内管が給水入口管板に溶接さ
れ、外管が下部ナトリウム管板に溶接され、内管と外管
の中間層が下部プレナムに開放されている。
In a steam generator in which a double-walled heat transfer tube is installed vertically, water / steam side tube plate (steam outlet tube plate and feed water inlet tube plate) and sodium side tube plate (upper part) are provided at the upper and lower ends of the steam generator. There is a plenum formed between the sodium tube plate and the lower sodium tube plate. An inner-outer tube gap or an intermediate layer formed between the outer tube and the inner tube of the double tube is opened to the plenum. FIG. 6 is a cross-sectional view showing a lower end portion of a double pipe structure in a conventional steam generator. The inner tube is welded to the feedwater inlet tubesheet, the outer tube is welded to the lower sodium tubesheet, and the middle layer of the inner and outer tubes is open to the lower plenum.

【0005】しかし、プレナムに二重管の中間層を連通
させた構造を有する蒸気発生器では、水・蒸気側管壁に
破損が生じたときには100気圧以上の高圧蒸気が中間
層に噴入するため、水・蒸気は中間層を伝って上部プレ
ナムと下部プレナムに浸入し、プレナムに浸入した水・
蒸気はプレナムに接続された他の二重管の中間層に流入
する。したがって、どこかの伝熱管でナトリウム側管壁
が破損していた場合は、プレナムに浸入した水・蒸気が
破損箇所からナトリウム側に浸入してナトリウム−水反
応を生起することになる。
However, in a steam generator having a structure in which a double tube intermediate layer is connected to a plenum, when water / steam side tube wall is damaged, high-pressure steam of 100 atm or more is injected into the intermediate layer. Therefore, water / steam penetrates the upper plenum and lower plenum through the middle layer, and the water / steam that enters the plenum
The steam enters the middle layer of another double tube connected to the plenum. Therefore, if the sodium-side tube wall is broken in any heat transfer tube, the water / steam that has entered the plenum will enter the sodium side from the damaged part and cause a sodium-water reaction.

【0006】これに対して、内外管間隙に水・蒸気より
重い鉛ビスマス溶融体などの液体金属を充填すれば、上
部プレナムに抜けた水・蒸気が他の伝熱管に浸入しな
い。また、液体金属用のプレナムと中間層を連通させる
ことにより、蒸気側の管壁が破損して水・蒸気が浸入し
たときは水等を上部プレナムに集めて検出することがで
き、ナトリウム側の管壁が破損して液体金属熱媒体が漏
出したときはプレナムの液面が低下することにより検出
することができる。
On the other hand, if the space between the inner and outer tubes is filled with a liquid metal such as a lead-bismuth melt, which is heavier than water / steam, the water / steam that has escaped to the upper plenum will not penetrate into other heat transfer tubes. In addition, by connecting the plenum for liquid metal and the intermediate layer, when the pipe wall on the steam side is damaged and water / steam invades, water etc. can be collected and detected in the upper plenum, and the sodium side When the pipe wall is broken and the liquid metal heat transfer medium leaks out, it can be detected by lowering the liquid level of the plenum.

【0007】なお、鉛ビスマスなど熱媒体金属がナトリ
ウムと混合しにくい場合は、ナトリウム側に漏出した液
体金属を窪みに溜めて検出することにより、漏出事故を
迅速に検出することができる。特に鉛ビスマスは、融点
が低く熱伝達効率が高くナトリウムや水と反応しにくい
上、比重が大きいため水頭圧が大きくなり特に加圧をし
なくてもナトリウムが中間層に浸入することがない。
When the heat medium metal such as lead bismuth is difficult to mix with sodium, the leak accident can be quickly detected by collecting the liquid metal leaking to the sodium side in the recess and detecting it. In particular, lead bismuth has a low melting point, a high heat transfer efficiency, is difficult to react with sodium and water, and has a large specific gravity, so that the head pressure is large, and sodium does not penetrate into the intermediate layer without applying pressure.

【0008】しかし、液体金属用プレナムに二重管の中
間層を連通させた構造を有する蒸気発生器においても、
下部プレナムに浸入した水・蒸気は他の二重管の中間層
を通って上部プレナムに抜ける。したがって、同時にど
こかの伝熱管でナトリウム側管壁が破損した場合、ある
いは水・蒸気側管壁が破損する前にナトリウム側管板が
破損していた場合は、下部プレナムに浸入した水・蒸気
が破損箇所からナトリウム側に浸入してナトリウム−水
反応を生起することになる。
However, even in the steam generator having a structure in which the intermediate layer of the double pipe is connected to the plenum for liquid metal,
Water and steam that have entered the lower plenum pass through the middle layer of other double pipes and escape to the upper plenum. Therefore, if the sodium side tube wall is damaged at some heat transfer tube at the same time, or if the sodium side tube sheet is damaged before the water / steam side tube wall is damaged, the water / steam that has entered the lower plenum Will enter the sodium side from the damaged part and cause a sodium-water reaction.

【0009】管壁が破損する頻度は1年当たり炉ごとに
10−6から10−2回とされるので、二重壁伝熱管を
上下のプレナムで結合した蒸気発生器でナトリウム−水
反応事象が発生する頻度は小さく見ても10−6回程度
と見積もられる。原子炉の設計基準により事象発生頻度
が10−7回/炉・年以上では設計基準内事象として事
象が発生することを前提にして設計しなければならない
とされるので、もう2桁以上事象発生頻度を低減するこ
とが好ましい。
Since the frequency of tube wall breakage is 10 −6 to 10 −2 times per furnace per year, a sodium-water reaction event occurs in a steam generator in which double-walled heat transfer tubes are connected by upper and lower plenums. The frequency of occurrence of is estimated to be about 10 −6 times even if it is small. According to the design criteria of a nuclear reactor, it is necessary to design on the assumption that an event will occur as an event within the design criteria at an event occurrence frequency of 10 −7 times / reactor / year or more. It is preferable to reduce the frequency.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明が解決
しようとする課題は、ナトリウム加熱の蒸気発生器にお
いて、ナトリウム−水反応事象発生頻度を低減させる二
重管構造を提供することである。
SUMMARY OF THE INVENTION The problem to be solved by the present invention is to provide a double tube structure for reducing the frequency of sodium-water reaction events in a sodium-heated steam generator.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明の二重管構造は、ナトリウムに接する管壁と
水・蒸気に接する管壁に挟まれた中間層にナトリウムよ
り重い液体金属の熱媒体を充填した二重管を上部プレナ
ムと下部プレナムを貫通して垂直に配設した蒸気発生器
において、二重管の中間層の上端を上部プレナムに開放
すると共に、中間層の下端部にその中間層を囲繞して下
部プレナムとの流通を遮断する保護管を設けたことを特
徴とする。なお、流通遮断用保護管は縦割りした円筒部
材を溶接したものであってもよく、また、蛇腹管であっ
てもよい。
In order to solve the above problems, the double pipe structure of the present invention is a liquid metal heavier than sodium in the intermediate layer sandwiched between the pipe wall in contact with sodium and the pipe wall in contact with water / steam. In a steam generator in which a double tube filled with the heat medium of (1) is vertically arranged through the upper plenum and the lower plenum, the upper end of the intermediate layer of the double tube is opened to the upper plenum, and the lower end of the intermediate layer is It is characterized in that a protective tube is provided around the intermediate layer to block the flow with the lower plenum. The flow-blocking protection tube may be formed by welding a vertically divided cylindrical member, or may be a bellows tube.

【0012】本発明における蒸気発生器の二重管構造を
用いると、二重管の内外管間隙にナトリウムより重い液
体金属を充填するため、上部プレナムを経由する水・蒸
気の回り込みがなくなる。また、伝熱管の下端部に保護
管を設けて下部プレナムに水・蒸気が浸入しないように
したので、下部プレナムを経由した回り込みもなくな
る。本発明を適用した蒸気発生器におけるナトリウム−
水反応事象発生頻度は、数1000本の二重壁伝熱管を
備えた蒸気発生器では同じ伝熱管の水・蒸気側とナトリ
ウム側の両方に破損が生ずる場合に限られるのでほぼ1
−9回/炉・年程度と見積もることができる。この値
は設計基準において基準外事象として取り扱うことがで
き、装置コストや保全コストを低減することが可能にな
る。
When the double pipe structure of the steam generator according to the present invention is used, the gap between the inner and outer pipes of the double pipe is filled with the liquid metal heavier than sodium, so that water and steam do not circulate through the upper plenum. Moreover, since a protection tube is provided at the lower end of the heat transfer tube to prevent water and steam from entering the lower plenum, there is no wraparound via the lower plenum. Sodium in a steam generator to which the present invention is applied
The frequency of water reaction events is almost 1 in a steam generator equipped with several thousand double-walled heat transfer tubes, because it is limited to the case where damage occurs on both the water / steam side and sodium side of the same heat transfer tube.
0 can be estimated to be -9 times / furnace-years or so. This value can be treated as a nonstandard event in the design standard, and it becomes possible to reduce the equipment cost and maintenance cost.

【0013】なお、保護管として、縦割りした円筒部材
を溶接したものを用いれば、多数の伝熱管が密集した蒸
気発生器でも突き合わせ溶接を用いて比較的容易に伝熱
管を管板に取り付けることができる。また、保護管に蛇
腹管を用いる場合も、狭いプレナム空間でも比較的容易
に保護管を管板に固定することができる。
If a vertically divided cylindrical member is welded as the protective tube, it is possible to relatively easily attach the heat transfer tube to the tube sheet by butt welding even in a steam generator in which many heat transfer tubes are densely packed. You can Also, when a bellows tube is used as the protective tube, the protective tube can be fixed to the tube sheet relatively easily even in a narrow plenum space.

【0014】[0014]

【発明の実施の形態】以下実施例を用いて本発明を詳細
に説明する。図1は、本発明の蒸気発生器の二重管構造
の実施例を模式的に表した断面図、図2は本実施例の二
重管の下端部を拡大して示す断面図、図3は本実施例に
用いる保護管の分解図、図4は本実施例の二重管の上端
部を拡大して示す断面図、図5は保護管の別例を示す断
面図である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to examples. FIG. 1 is a sectional view schematically showing an embodiment of a double pipe structure of a steam generator of the present invention, FIG. 2 is an enlarged sectional view showing a lower end portion of the double pipe of the present embodiment, and FIG. Is an exploded view of the protective tube used in the present embodiment, FIG. 4 is an enlarged sectional view showing the upper end portion of the double tube of the present embodiment, and FIG. 5 is a sectional view showing another example of the protective tube.

【0015】図1に模式的に示した蒸気発生器は、数1
000本の二重壁伝熱管を垂直に配した径3m長さ25
m程度の熱交換器である。シェル側に原子炉から帰還し
た約550℃のナトリウムが供給され、チューブ側の水
を加熱して約500℃(176atm)程度の蒸気にし
て蒸気タービンに送って発電に利用する。蒸気発生器
は、胴1を備え原子炉からの液体ナトリウムが上側のノ
ズルから供給され下側のノズルから帰るようになってい
る。胴1の上端部に蒸気が溜まる上部水室2と下端部に
給水が供給される下部水室3を備える。上部水室2の底
には蒸気出口管板4が形成され、下部水室3の天井には
給水入口管板6が形成されている。また、胴1の天井に
は上部ナトリウム管板5が、底には下部ナトリウム管板
7が設けられている。蒸気出口管板4と上部ナトリウム
管板5の間には上部プレナム9が形成され、給水入口管
板6と下部ナトリウム管板7の間には下部プレナム10
が形成されている。
The steam generator shown schematically in FIG.
000 double wall heat transfer tubes arranged vertically with a diameter of 3 m and a length of 25
It is a heat exchanger of about m. Sodium at about 550 ° C returned from the nuclear reactor is supplied to the shell side, and the water on the tube side is heated to form steam at about 500 ° C (176 atm) and sent to a steam turbine for power generation. The steam generator is equipped with a shell 1 so that liquid sodium from the reactor is supplied from the upper nozzle and returned from the lower nozzle. An upper water chamber 2 for accumulating steam at the upper end of the body 1 and a lower water chamber 3 for supplying water to the lower end are provided. A steam outlet tube sheet 4 is formed on the bottom of the upper water chamber 2, and a water supply inlet tube sheet 6 is formed on the ceiling of the lower water chamber 3. Further, an upper sodium tube sheet 5 is provided on the ceiling of the body 1 and a lower sodium tube sheet 7 is provided on the bottom thereof. An upper plenum 9 is formed between the steam outlet tube sheet 4 and the upper sodium tube sheet 5, and a lower plenum 10 is formed between the feed water inlet tube sheet 6 and the lower sodium tube sheet 7.
Are formed.

【0016】上部水室2と下部水室3の間には伝熱管8
が渡されている。伝熱管8は内管12と外管13からな
る二重壁伝熱管で、内管12は蒸気出口管板4と給水入
口管板6に接続されている。また、外管13は上端部が
上部ナトリウム管板5に接続され、下端部が給水入口管
板6に接続されている。内管12の内に水・蒸気が流通
し、外管13の外側をナトリウムが流動する。また、内
管12と外管13の間にたとえば0.4mm程度の幅を
有する内外管間隙14が形成され、ナトリウムより重い
鉛ビスマスなどの液体金属が充填される。蒸気発生器は
胴1に設けられた支持スカート11により架構に垂直に
据え付ける。
A heat transfer tube 8 is provided between the upper water chamber 2 and the lower water chamber 3.
Has been passed. The heat transfer tube 8 is a double-walled heat transfer tube including an inner tube 12 and an outer tube 13, and the inner tube 12 is connected to the steam outlet tube plate 4 and the feed water inlet tube plate 6. The upper end of the outer tube 13 is connected to the upper sodium tube plate 5, and the lower end is connected to the water supply inlet tube plate 6. Water and steam circulate in the inner pipe 12, and sodium flows outside the outer pipe 13. Further, an inner-outer tube gap 14 having a width of, for example, about 0.4 mm is formed between the inner tube 12 and the outer tube 13, and is filled with a liquid metal such as lead bismuth which is heavier than sodium. The steam generator is installed vertically on the frame by means of a support skirt 11 provided on the barrel 1.

【0017】図2は二重壁伝熱管8の下端部における取
り付け状態を示す断面図である。内管12は給水入口管
板6に設けられたスタブ16に内管の内側から突き合わ
せ溶接し、外管13は外側から下部ナトリウム管板7に
設けられたスタブ17に突き合わせ溶接される。さら
に、下部プレナム10の位置で、図3に示すような2つ
割にされた円筒部材を、内管12を挟んで合わせて軸方
向に溶接で接続して円筒型にし、さらに、端面を下部ナ
トリウム管板7の伝熱管用孔の下側縁に形成されたスタ
ブ19と給水入口管板6の対応する位置に上側に向けて
設けられたスタブ18に周方向に溶接して、内管12を
囲繞する保護管15とする。保護管15は、内外管間隙
14と下部プレナム10の間に遮蔽壁を形成して、各個
の内外管間隙14に充填する熱媒体が下部プレナム10
で連通しないようにするものである。
FIG. 2 is a cross-sectional view showing a mounted state at the lower end of the double-walled heat transfer tube 8. The inner pipe 12 is butt-welded to the stub 16 provided on the feed water inlet pipe plate 6 from the inside of the inner pipe, and the outer pipe 13 is butt-welded to the stub 17 provided on the lower sodium pipe plate 7 from the outside. Further, at the position of the lower plenum 10, cylindrical members divided into two as shown in FIG. 3 are joined together by sandwiching the inner pipe 12 and connected by welding in the axial direction to form a cylindrical shape, and further, the end face is lower. The stub 19 formed on the lower edge of the heat transfer tube hole of the sodium tube sheet 7 and the stub 18 provided on the upper side at the corresponding position of the feed water inlet tube sheet 6 are circumferentially welded to each other to form the inner tube 12 And the protective tube 15 surrounding the. The protection tube 15 forms a shielding wall between the inner and outer tube gaps 14 and the lower plenum 10 so that the heat medium filling each of the inner and outer tube gaps 14 is filled with the lower plenum 10.
It is intended to prevent communication.

【0018】図4は、二重壁伝熱管8の上端部における
取り付け状態を示す断面図である。内管12は蒸気出口
管板4に角肉溶接し、外管13は上部ナトリウム管板5
に角肉溶接する。内外管間隙14は上部プレナム9と連
絡しており、内外管間隙14に充填される液体金属は上
部プレナム9に溢れ出て、上部に液面を形成するように
なっている。伝熱管8の取り付けは、たとえば蒸気発生
器の中心位置から順次外側に向かって施工する。
FIG. 4 is a cross-sectional view showing a mounting state at the upper end portion of the double wall heat transfer tube 8. The inner tube 12 is welded to the steam outlet tube plate 4 by fillet welding, and the outer tube 13 is welded to the upper sodium tube plate 5.
Weld the square meat. The inner-outer tube gap 14 communicates with the upper plenum 9, and the liquid metal filling the inner-outer tube gap 14 overflows into the upper plenum 9 to form a liquid surface on the upper part. The heat transfer tubes 8 are attached, for example, sequentially from the center position of the steam generator toward the outside.

【0019】本実施例の伝熱管構造を備えた蒸気発生器
は、たとえば鉛ビスマスなどのナトリウム及び水・蒸気
より重い液体金属を内外管間隙14に充填して使用す
る。内外管間隙14は上部プレナム9で相互に連絡され
ているが、下端部はそれぞれ保護管15で封鎖されてい
て、下部プレナム10に流出することがない。したがっ
て、内管12が破損して高圧蒸気が内外管間隙14に浸
入して上部プレナム9に上昇し、一旦、鉛ビスマスなど
の液体金属の表面上に浮上すると、再び伝熱管8に戻る
ことがない。また、水・蒸気が内外管間隙14を下方に
移動しても保護管15のため下部プレナム10を通して
他の伝熱管に流通することがない。このため、他の伝熱
管の外管13が破損しても水・蒸気がナトリウムと接触
することがなく、ナトリウム−水反応事象が発生しな
い。
The steam generator having the heat transfer tube structure of this embodiment is used by filling the inner and outer tube gaps 14 with a liquid metal heavier than sodium and water / steam, such as lead bismuth. The inner and outer tube gaps 14 are connected to each other by the upper plenum 9, but the lower ends thereof are closed by protective tubes 15, respectively, so that they cannot flow out to the lower plenum 10. Therefore, when the inner tube 12 is damaged, high-pressure steam enters the inner-outer tube gap 14, rises to the upper plenum 9, and once floats on the surface of liquid metal such as lead bismuth, it may return to the heat transfer tube 8 again. Absent. Even if water / steam moves downward in the inner / outer tube gap 14, it does not flow through the lower plenum 10 to other heat transfer tubes because of the protection tube 15. Therefore, even if the outer tube 13 of the other heat transfer tube is damaged, water / steam does not come into contact with sodium, and a sodium-water reaction event does not occur.

【0020】すなわち、本実施例の蒸気発生器において
は、同じ二重壁伝熱管8の内管12と外管13が共に破
損したときにしかナトリウム−水反応が発生しない。し
たがって、数1000本の伝熱管を有する蒸気発生器で
は、ナトリウム−水反応事象発生頻度は、ほぼ3桁低減
することになり、普通の状態では10−9回/炉・年程
度と見積もることができる。このため、本実施例の蒸気
発生器におけるナトリウム−水反応事象は設計基準外事
象となるので、装置コストや保全コストが低減する。
That is, in the steam generator of this embodiment, the sodium-water reaction occurs only when both the inner tube 12 and the outer tube 13 of the same double-walled heat transfer tube 8 are damaged. Therefore, in a steam generator having several thousand heat transfer tubes, the sodium-water reaction event occurrence frequency will be reduced by about 3 orders of magnitude, and it can be estimated that it is about 10-9 times / reactor / year under normal conditions. it can. For this reason, the sodium-water reaction event in the steam generator of the present embodiment is an event outside the design criteria, so the device cost and maintenance cost are reduced.

【0021】なお、鉛ビスマスは比重が10余りあり内
外管間隙14における水頭圧が大きいので、外管13が
破損したときにはナトリウム側に流出する。また、破損
位置によっては水頭圧が不足する心配があるときにはプ
レナムを加圧しておいてもよい。なお、このような破損
事故は、鉛ビスマスの液面降下により検出することがで
きる。また、ナトリウム中に漏出した鉛ビスマスを検出
することにより外管の破損を検出することもできる。
Since lead bismuth has a specific gravity of about 10 and a large water head pressure in the inner / outer tube gap 14, it flows out to the sodium side when the outer tube 13 is damaged. The plenum may be pressurized if there is a risk of insufficient head pressure depending on the location of damage. It should be noted that such a damage accident can be detected by the liquid level drop of lead-bismuth. Further, it is also possible to detect breakage of the outer tube by detecting lead bismuth leaked into sodium.

【0022】図5は、本実施例にベローズ式の保護管を
使用した場合の二重壁伝熱管の下端部における取り付け
状態を示す断面図で、図5(a)は保護管を取り付ける
途中の工程を示し、(b)は完成状態を示す。伝熱管を
溶接する前に、内管12の先端を下部プレナムに突出さ
せるときに伸縮可能な蛇腹式の筒形保護管22を通すよ
うにセットする。内管12は給水入口管板6に設けられ
たスタブ16に内管の内側から突き合わせ溶接し、外管
13は外側から下部ナトリウム管板7に設けられたスタ
ブ17に突き合わせ溶接される。
FIG. 5 is a cross-sectional view showing a mounting state at the lower end of the double-walled heat transfer tube when a bellows type protection tube is used in this embodiment, and FIG. The process is shown, and (b) shows the completed state. Before welding the heat transfer tube, it is set so that the bellows-type tubular protective tube 22 that can be expanded and contracted when the tip of the inner tube 12 is projected to the lower plenum. The inner pipe 12 is butt-welded to the stub 16 provided on the feed water inlet pipe plate 6 from the inside of the inner pipe, and the outer pipe 13 is butt-welded to the stub 17 provided on the lower sodium pipe plate 7 from the outside.

【0023】蛇腹式保護管22は図5(a)に示すよう
に縮めた状態で上端縁を下部ナトリウム管板7の下側縁
に形成されたスタブ19に溶接し、次いで、図5(b)
に示すように蛇腹を伸ばして下端縁を給水入口管板6の
スタブ18に溶接する。蛇腹式保護管22は、内管12
と外管13に挟まれた内外管間隙14と下部プレナム1
0の間に遮蔽壁を形成して、各個の内外管間隙14に充
填する熱媒体が下部プレナム10で連通しないようにす
る。蛇腹式保護管22は、図2に示した保護管15と比
較すると溶接箇所が少なくなるため、現場施工の信頼性
が向上する。
As shown in FIG. 5 (a), the bellows type protection tube 22 is welded at its upper end edge to a stub 19 formed on the lower edge of the lower sodium tube sheet 7, and then in FIG. 5 (b). )
The bellows are extended and the lower end edge is welded to the stub 18 of the water supply inlet tube sheet 6 as shown in FIG. The bellows type protection tube 22 is the inner tube 12
Inner / outer tube gap 14 and lower plenum 1 sandwiched between outer tube 13 and outer tube 13
A shield wall is formed between the inner and outer tube gaps 0 so that the heat medium filling each of the inner and outer tube gaps 14 does not communicate with the lower plenum 10. Since the bellows-type protection tube 22 has fewer welded portions than the protection tube 15 shown in FIG. 2, the reliability of on-site construction is improved.

【0024】上記実施例では、液体金属冷却高速増殖炉
の蒸気発生器を対象としてナトリウム−水反応事象頻度
を低減することを目的とする場合について説明したが、
本発明は熱交換する流体同士が接触することにより好ま
しくない反応を起こす装置において二重壁伝熱管を使用
する場合であれば適用することができ、大きな効果を発
揮することが明らかである。
In the above embodiment, the case of aiming to reduce the frequency of sodium-water reaction events has been described for the steam generator of the liquid metal cooled fast breeder reactor.
It is apparent that the present invention can be applied to a device in which a double-walled heat transfer tube is used in a device that causes an unfavorable reaction due to contact between fluids for heat exchange, and exhibits a great effect.

【0025】[0025]

【発明の効果】本発明の蒸気発生器の二重管構造を用い
ると、混合しては困るような2種の流体を扱う熱交換器
において、2種の流体の接触反応の発生頻度を著しく低
減することができ、プラントの設備費を低減し高い安全
性を確保することができる。
EFFECTS OF THE INVENTION By using the double tube structure of the steam generator of the present invention, in a heat exchanger handling two kinds of fluids which are difficult to mix, the frequency of contact reaction of the two kinds of fluids is remarkably increased. It is possible to reduce the facility cost of the plant and secure high safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸気発生器の二重管構造の実施例を模
式的に表した断面図である。
FIG. 1 is a cross-sectional view schematically showing an example of a double pipe structure of a steam generator of the present invention.

【図2】本実施例の二重管の下端部を拡大して示す断面
図である。
FIG. 2 is an enlarged cross-sectional view showing a lower end portion of the double pipe of this embodiment.

【図3】本実施例に用いる保護管の分解図である。FIG. 3 is an exploded view of a protection tube used in this example.

【図4】本実施例の二重管の上端部を拡大して示す断面
図である。
FIG. 4 is an enlarged sectional view showing an upper end portion of the double pipe of the present embodiment.

【図5】本実施例に用いる保護管の別例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing another example of the protection tube used in this embodiment.

【図6】従来の二重管下端部を示す断面図である。FIG. 6 is a cross-sectional view showing a lower end portion of a conventional double pipe.

【符号の説明】[Explanation of symbols]

1 胴 2 上部水室 3 下部水室 4 蒸気出口管板 5 上部ナトリウム管板 6 給水入口管板 7 下部ナトリウム管板 8 伝熱管 9 上部プレナム 10 下部プレナム 11 支持スカート 12 内管 13 外管 14 内外管間隙(中間層) 15,22 保護管 16,17,18,19 スタブ 1 torso 2 Upper water chamber 3 Lower water chamber 4 Steam outlet tube sheet 5 Upper sodium tube sheet 6 Water supply inlet tube plate 7 Lower sodium tube sheet 8 heat transfer tubes 9 Upper plenum 10 Lower Plenum 11 Support skirt 12 inner tube 13 outer tube 14 Inner and outer tube gap (middle layer) 15,22 Protection tube 16, 17, 18, 19 stub

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 9/18 G21C 1/02 GDFE G21C 1/02 GDF G21D 1/00 S ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F28F 9/18 G21C 1/02 GDFE G21C 1/02 GDF G21D 1/00 S

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ナトリウムに接する管壁と水・蒸気に接
する管壁に挟まれた中間層にナトリウムより重い液体金
属の熱媒体を充填した二重管を上部プレナムと下部プレ
ナムを貫通して垂直に配設した蒸気発生器において、前
記二重管の中間層の上端を前記上部プレナムに開放し、
該中間層の下端部に該中間層を囲繞して前記下部プレナ
ムとの流通を遮断する保護管を設けたことを特徴とする
二重管構造。
1. A double tube in which an intermediate layer sandwiched between a tube wall in contact with sodium and a tube wall in contact with water / steam is filled with a heating medium made of a liquid metal heavier than sodium, and vertically penetrates through an upper plenum and a lower plenum. In the steam generator arranged in, the upper end of the intermediate layer of the double tube is opened to the upper plenum,
A double pipe structure, wherein a protective tube is provided at a lower end portion of the intermediate layer so as to surround the intermediate layer and block a flow with the lower plenum.
【請求項2】 前記保護管が縦割りした円筒部材を溶接
したものであることを特徴とする請求項1記載の二重管
構造。
2. The double pipe structure according to claim 1, wherein the protective pipe is formed by welding a vertically divided cylindrical member.
【請求項3】 前記保護管が蛇腹管であることを特徴と
する請求項1記載の二重管構造。
3. The double pipe structure according to claim 1, wherein the protection pipe is a bellows pipe.
JP2001204377A 2001-07-05 2001-07-05 Double pipe structure in steam generator Pending JP2003014883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204377A JP2003014883A (en) 2001-07-05 2001-07-05 Double pipe structure in steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204377A JP2003014883A (en) 2001-07-05 2001-07-05 Double pipe structure in steam generator

Publications (1)

Publication Number Publication Date
JP2003014883A true JP2003014883A (en) 2003-01-15

Family

ID=19040857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204377A Pending JP2003014883A (en) 2001-07-05 2001-07-05 Double pipe structure in steam generator

Country Status (1)

Country Link
JP (1) JP2003014883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775569A (en) * 2018-05-03 2018-11-09 中广核研究院有限公司 A kind of steam generator for metal fast reactor
CN110038315A (en) * 2019-04-02 2019-07-23 天津科技大学 The tube type falling-film vaporising device of a variety of media can be handled simultaneously
CN112002447A (en) * 2019-05-11 2020-11-27 中山大学 Reactor core heat deriving device of solid nuclear reactor with intrinsic safety characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108775569A (en) * 2018-05-03 2018-11-09 中广核研究院有限公司 A kind of steam generator for metal fast reactor
CN110038315A (en) * 2019-04-02 2019-07-23 天津科技大学 The tube type falling-film vaporising device of a variety of media can be handled simultaneously
CN112002447A (en) * 2019-05-11 2020-11-27 中山大学 Reactor core heat deriving device of solid nuclear reactor with intrinsic safety characteristic

Similar Documents

Publication Publication Date Title
US4216821A (en) Pump/heat exchanger
KR101038399B1 (en) Steam generator for the sodium cooled fast reactor with an on-line leak detection system
JPS62158901A (en) Double tube type steam generator
US3245464A (en) Liquid metal heated vapor generator
US3520356A (en) Vapor generator for use in a nuclear reactor
JP3139856B2 (en) Tube heat exchanger
US4836274A (en) Liquid alkali metal-water, tube-in-shell steam generators
JP2003014883A (en) Double pipe structure in steam generator
US3989100A (en) Industrial technique
US4612976A (en) Steam generator for a nuclear reactor cooled with liquid metal
US3805890A (en) Helical coil heat exchanger
US5167907A (en) Process for plugging a tube of a straight-tube heat exchanger
CN106531241B (en) Double-walled heat exchanger tube and liquid-metal reactor double-wall pipe heat transmission equipment
US4585058A (en) Heat exchanger having a bundle of straight tubes
RU2200990C2 (en) Nuclear steam-generating plant with pressurized water reactor
KR101081124B1 (en) Steam generator for the sodium cooled fast reactor with an on-line leak detection system
KR790001198B1 (en) Consolidated nuclear steam generator
JPH0240958B2 (en)
JPH06323777A (en) Heat exchanger and manufacture thereof
JP2915469B2 (en) Liquid metal cooled reactor cooling system
JPH01193595A (en) Heat transfer tube filled with flame spray coating metal
JPS6358001A (en) Steam generator
JPH0275801A (en) Steam generator
KR100282371B1 (en) heat transmitter
JPS6365201A (en) Steam generator