JP2001304782A - Heat-storing device and heat storage type air conditioner - Google Patents

Heat-storing device and heat storage type air conditioner

Info

Publication number
JP2001304782A
JP2001304782A JP2000115075A JP2000115075A JP2001304782A JP 2001304782 A JP2001304782 A JP 2001304782A JP 2000115075 A JP2000115075 A JP 2000115075A JP 2000115075 A JP2000115075 A JP 2000115075A JP 2001304782 A JP2001304782 A JP 2001304782A
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
heat
coil
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000115075A
Other languages
Japanese (ja)
Inventor
Naomichi Tamura
直道 田村
Moriya Miyamoto
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000115075A priority Critical patent/JP2001304782A/en
Publication of JP2001304782A publication Critical patent/JP2001304782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-storing device for showing a larger heat storage capacity than before using a heat storage coil whose heat transfer area is equal to conventional one. SOLUTION: A heat-storing device A consists of a refrigerant circuit 21 where a compressor 1, a heat source side heat exchanger 2, a beam limiting device 3, and a heat storage coil 10a are successively connected, and a heat storage bath 9 for accommodating the heat storage coil 10a and a heat storage refrigerant 8. In the heat storage coil 10a, the sectional area of a pipe at the refrigerant inlet side at the time of heat storage operation for cooling the heat storage refrigerant 8 is smaller than that at other parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱装置及び蓄熱
式空気調和装置に関するものである。
The present invention relates to a heat storage device and a heat storage type air conditioner.

【0002】[0002]

【従来の技術】図7は、従来の蓄熱式空気調和装置にお
いて、蓄熱槽内に収容されている蓄熱コイルの一例を示
している。この図からわかるように、従来の蓄熱コイル
10はその一端から他端までが同一の構造であった。す
なわち、管の材質、管内径、及び管断面積が全長にわた
って一定の伝熱管で構成されており、そのため蓄熱コイ
ル10は加工が容易であるという利点を有していた。
2. Description of the Related Art FIG. 7 shows an example of a heat storage coil housed in a heat storage tank in a conventional heat storage type air conditioner. As can be seen from this figure, the conventional heat storage coil 10 has the same structure from one end to the other end. In other words, the heat transfer coil 10 has the advantage that the heat storage coil 10 is easy to process because the tube material, the tube inner diameter, and the tube cross-sectional area are configured to be constant over the entire length.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来技術
には以下のような問題があった。すなわち、従来の蓄熱
コイル10を用いて冷房用の蓄熱運転(蓄熱コイル内に
低温の冷媒を流通させ、この冷媒との熱交換により蓄熱
槽内の蓄熱媒体を冷却して冷熱を蓄える運転のこと:以
下同意である)を行う場合、蓄熱コイル10の冷媒入口
付近では冷媒の乾き度が小さいため、管内熱伝達率が小
さくなり、蓄熱媒体と冷媒との熱交換率も小さくなっ
た。そのため、蓄熱コイル10の伝熱面積を有効に利用
することができず、充分な熱交換能力(蓄熱能力)が発
揮されないという問題があった。
However, the prior art has the following problems. That is, a heat storage operation for cooling using the conventional heat storage coil 10 (operation in which a low-temperature refrigerant is circulated in the heat storage coil, and heat exchange with the refrigerant cools the heat storage medium in the heat storage tank to store cold heat. In the case of performing the following, the heat transfer coefficient in the pipe became small and the heat exchange rate between the heat storage medium and the refrigerant also became small because the dryness of the refrigerant near the refrigerant inlet of the heat storage coil 10 was small. Therefore, there is a problem that the heat transfer area of the heat storage coil 10 cannot be effectively used, and a sufficient heat exchange capacity (heat storage capacity) cannot be exhibited.

【0004】一方、蓄熱コイル10が凝縮器として機能
する蓄熱利用冷房運転(蓄熱媒体に蓄えられた冷熱によ
り蓄熱コイル内の冷媒を冷却・凝縮させ、この冷媒を利
用側熱交換器に流通させて、室内を冷房する運転のこ
と:以下同意である)を行う場合には、蓄熱コイル10
の冷媒出口付近で冷媒の乾き度が小さくなるため、管内
熱伝達率が小さくなり、蓄熱媒体と冷媒との熱交換率も
小さくなった。そのため、蓄熱コイル10の伝熱面積を
有効に利用することができず、充分な熱交換能力(凝縮
能力)が発揮されず、冷房能力も小さくなるという問題
があった。また、蓄熱コイル10の内容積が大きい分、
冷媒回路への封入冷媒量が増大するという問題もあっ
た。
On the other hand, the heat storage cooling operation in which the heat storage coil 10 functions as a condenser (cooling and condensing the refrigerant in the heat storage coil by the cold stored in the heat storage medium, and flowing this refrigerant to the use side heat exchanger) , The operation of cooling the interior of the room:
In the vicinity of the refrigerant outlet, the degree of dryness of the refrigerant is reduced, so that the heat transfer coefficient in the pipe is reduced, and the heat exchange rate between the heat storage medium and the refrigerant is also reduced. Therefore, there is a problem that the heat transfer area of the heat storage coil 10 cannot be effectively used, a sufficient heat exchange ability (condensing ability) cannot be exhibited, and a cooling ability also decreases. In addition, since the internal volume of the heat storage coil 10 is large,
There is also a problem that the amount of refrigerant charged in the refrigerant circuit increases.

【0005】本発明は以上のような問題点に鑑みてなさ
れたものであって、伝熱面積が従来と同等の蓄熱コイル
を用いて従来よりも大きい蓄熱能力を発揮する蓄熱装
置、及び、伝熱面積が従来と同等の蓄熱コイルを用いて
従来よりも大きい冷房能力を発揮する蓄熱式空気調和装
置を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has a heat storage device that uses a heat storage coil having a heat transfer area equivalent to that of the related art to exhibit a larger heat storage capacity than the related art. It is an object of the present invention to provide a heat storage type air conditioner that uses a heat storage coil having a heat area equivalent to that of the related art and exhibits a greater cooling capacity than before.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、第1の発明に係る蓄熱装置は、圧縮機、熱源機側熱
交換器、絞り装置、及び蓄熱コイルを順次接続してなる
冷媒回路と、蓄熱コイル及び蓄熱媒体を収容する蓄熱槽
とからなる蓄熱装置において、蓄熱コイルは、蓄熱媒体
を冷却する蓄熱運転時における冷媒入口側の管断面積が
他の部分の管断面積よりも小さくなっているものであ
る。
In order to achieve the above object, a heat storage device according to a first aspect of the present invention comprises a refrigerant circuit in which a compressor, a heat source-side heat exchanger, a throttle device, and a heat storage coil are sequentially connected. And a heat storage device comprising a heat storage coil and a heat storage tank for storing the heat storage medium, wherein the heat storage coil has a smaller pipe cross-sectional area on the refrigerant inlet side during the heat storage operation for cooling the heat storage medium than the other sections. Is what it is.

【0007】また、第2の発明は、前記第1の発明にお
いて、蓄熱コイルを、その途中に位置する分岐部で複数
の分岐管に分岐した構造にするとともに、蓄熱運転時に
おける冷媒入口側に配した非分岐部分の管断面積を冷媒
出口側に配した分岐管の断面積の合計よりも小さくした
ものである。
According to a second aspect of the present invention, in the first aspect, the heat storage coil has a structure in which the heat storage coil is branched into a plurality of branch pipes at a branch portion located in the middle thereof, and is provided on the refrigerant inlet side during the heat storage operation. The pipe cross-sectional area of the non-branched portion is smaller than the total cross-sectional area of the branch pipe disposed on the refrigerant outlet side.

【0008】また、第3の発明は、前記第1の発明にお
いて、蓄熱コイルの、蓄熱運転時における冷媒入口側
に、管内径が他の部分の管内径よりも小さい小径管部を
形成したものである。
According to a third aspect of the present invention, in the first aspect, a small-diameter tube portion having a smaller tube inner diameter than the other portion of the tube is formed on the refrigerant inlet side of the heat storage coil during the heat storage operation. It is.

【0009】また、第4の発明は、前記第2の発明にお
いて、蓄熱コイルの、蓄熱運転時における冷媒入口から
分岐部までの長さを、当該蓄熱コイルの冷媒入口から冷
媒出口までの長さの3/10乃至5/10の長さに設定
したものである。
In a fourth aspect based on the second aspect, the length of the heat storage coil from the refrigerant inlet to the branch portion during the heat storage operation is set to the length from the refrigerant inlet to the refrigerant outlet of the heat storage coil. The length is set to 3/10 to 5/10.

【0010】また、第5の発明に係る蓄熱式空気調和装
置は、圧縮機、熱源機側熱交換器、第一絞り装置、第二
絞り装置、及び利用側熱交換器を順次接続してなる主冷
媒回路と、主冷媒回路の圧縮機吸入側の配管から分岐し
冷媒ポンプ及び蓄熱コイルを経て主冷媒回路の第一絞り
装置と第二絞り装置との間の配管に合流する蓄熱利用回
路と、蓄熱コイル及び蓄熱媒体を収容する蓄熱槽とを備
えた蓄熱式空気調和装置において、蓄熱コイルは、蓄熱
媒体に蓄えられた冷熱を利用する蓄熱利用冷房運転時に
おける冷媒出口側の管断面積が他の部分の管断面積より
も小さくなっているものである。
A regenerative air conditioner according to a fifth aspect of the present invention comprises a compressor, a heat source device side heat exchanger, a first expansion device, a second expansion device, and a use side heat exchanger which are sequentially connected. A main refrigerant circuit, and a heat storage utilization circuit that branches off from a pipe on the compressor suction side of the main refrigerant circuit and joins a pipe between the first throttle device and the second throttle device of the main refrigerant circuit via a refrigerant pump and a heat storage coil. In a regenerative air-conditioning apparatus including a heat storage coil and a heat storage tank that stores a heat storage medium, the heat storage coil has a pipe cross-sectional area on a refrigerant outlet side during a heat storage cooling operation that uses cold heat stored in the heat storage medium. It is smaller than the pipe cross-sectional area of the other parts.

【0011】また、第6の発明は、前記第5の発明にお
いて、蓄熱コイルを、その途中に位置する分岐部で複数
の分岐管に分岐した構造にするとともに、蓄熱利用冷房
運転時における冷媒出口側に配した非分岐部分の管断面
積を冷媒入口側に配した分岐管の断面積の合計よりも小
さくしたものである。
In a sixth aspect based on the fifth aspect, the heat storage coil has a structure in which the heat storage coil is branched into a plurality of branch pipes at a branch portion located in the middle thereof, and a refrigerant outlet during cooling operation utilizing heat storage. The cross-sectional area of the non-branched portion disposed on the refrigerant side is smaller than the total cross-sectional area of the branch pipe disposed on the refrigerant inlet side.

【0012】また、第7の発明は、前記第5の発明にお
いて、蓄熱コイルの、蓄熱利用冷房運転時における冷媒
出口側に、管内径が他の部分の管内径よりも小さい小径
管部を形成したものである。
According to a seventh aspect of the present invention, in the fifth aspect, a small-diameter pipe portion having a pipe inner diameter smaller than that of the other portion is formed on the refrigerant outlet side of the heat storage coil during the cooling operation using heat storage. It was done.

【0013】また、第8の発明は、前記第6の発明にお
いて、蓄熱コイルの、分岐部から蓄熱利用冷房運転時に
おける冷媒出口までの長さを、当該蓄熱コイルの冷媒入
口から冷媒出口までの長さの3/10乃至5/10の長
さに設定したものである。
In an eighth aspect based on the sixth aspect, the length of the heat storage coil from the branch portion to the refrigerant outlet during the cooling operation utilizing heat storage is defined by the distance from the refrigerant inlet to the refrigerant outlet of the heat storage coil. The length is set to 3/10 to 5/10 of the length.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】発明の実施の形態1.図1を用いて、この
実施の形態1に係る蓄熱装置を説明する。同図に示すよ
うに、この蓄熱装置Aは、圧縮機1、熱源機側熱交換器
2、第一絞り装置(絞り装置)3、及び蓄熱コイル10
aを冷媒配管で順次接続して環状に構成された冷媒回路
21と、前記蓄熱コイル10a及び蓄熱媒体(例えば
水)8を収容した蓄熱槽9とを備えている。冷媒回路2
1の、蓄熱コイル10aと圧縮機1との間の冷媒配管に
は第二開閉器11が設けられている。なお、図1には、
この蓄熱装置Aを含んだ蓄熱式熱交換器Bも併記してい
るため、前記以外の構成要素も示されているが、それに
ついては後述する。
Embodiment 1 of the Invention The heat storage device according to the first embodiment will be described with reference to FIG. As shown in the figure, the heat storage device A includes a compressor 1, a heat source device side heat exchanger 2, a first expansion device (an expansion device) 3, and a heat storage coil 10.
and a heat storage tank 9 containing a heat storage coil 10 a and a heat storage medium (for example, water) 8. Refrigerant circuit 2
1, a second switch 11 is provided in a refrigerant pipe between the heat storage coil 10a and the compressor 1. In FIG. 1,
Since the regenerative heat exchanger B including the regenerator A is also shown, other components than those described above are also shown, which will be described later.

【0016】蓄熱コイル10aは伝熱管からなり、蓄熱
媒体8を冷却する冷房用の蓄熱運転時における冷媒入口
側の管断面積(管内冷媒流路の断面積)が他の部分の管
断面積よりも小さくなるように構成されている。より具
体的に説明すると、この実施の形態1の蓄熱コイル10
aは、図2に示すように、その一端側から他端側に向か
う途中に位置する分岐部31において複数(ここでは2
本)の分岐管32,32に分岐した構造を有している。
そして、一端から分岐部31までの非分岐部分33の管
断面積が、分岐部31から先の2本の分岐管32,32
の断面積の合計よりも小さくなっている。(例えば、非
分岐部分33と各分岐管32とを同一規格の伝熱管で構
成した場合、非分岐部分33の管断面積は分岐管32,
32の管断面積の合計の1/2となる。)
The heat storage coil 10a is composed of a heat transfer tube, and the cross-sectional area of the pipe on the refrigerant inlet side (cross-sectional area of the refrigerant flow path in the pipe) during the heat storage operation for cooling the heat storage medium 8 is smaller than the cross-sectional area of the pipe in the other part. Is also reduced. More specifically, the heat storage coil 10 according to the first embodiment will be described.
As shown in FIG. 2, a plurality of (a 2 in this case) are present at the branch portion 31 located halfway from one end to the other end thereof.
The present invention has a structure branched into branch pipes 32, 32).
Then, the pipe cross-sectional area of the non-branch portion 33 from one end to the branch portion 31 is equal to the two branch pipes 32, 32 ahead of the branch portion 31.
Is smaller than the sum of the cross-sectional areas. (For example, when the non-branch portion 33 and each branch pipe 32 are formed of heat transfer tubes of the same standard, the pipe cross-sectional area of the non-branch portion 33 is
It is 1 / of the total of the cross-sectional areas of the tubes. )

【0017】このような蓄熱コイル10aが、その非分
岐部分33を蓄熱運転時における冷媒入口側(第一絞り
装置3寄り)に配するとともに、分岐管32,32を蓄
熱運転時における冷媒出口側(圧縮機1寄り)に配した
状態で、冷媒回路21に介装されている。
Such a heat storage coil 10a arranges the non-branched portion 33 on the refrigerant inlet side (closer to the first expansion device 3) during the heat storage operation, and connects the branch pipes 32, 32 to the refrigerant outlet side during the heat storage operation. (Close to the compressor 1), and is interposed in the refrigerant circuit 21.

【0018】次に、この蓄熱装置Aの動作について説明
する。夜間、蓄熱槽9内に冷熱を蓄える蓄熱運転時に
は、圧縮機1から吐出された高温・高圧のガス冷媒が熱
源機側熱交換器2へ流入し、常温の空気などにより冷却
されて凝縮液化する。熱源機側熱交換器2から流出した
冷媒は第一絞り装置3で減圧された後、蓄熱コイル10
aへ流入し、ここで管内の冷媒と管外の蓄熱媒体8との
熱交換が行われる。そして、蓄熱媒体8を冷却した冷媒
は蒸発ガス化して蓄熱コイル10aから流出した後、第
二開閉器11を通過して圧縮機1に吸入される。
Next, the operation of the heat storage device A will be described. At night, during the heat storage operation in which cold heat is stored in the heat storage tank 9, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source device side heat exchanger 2 and is cooled and condensed and liquefied by air at normal temperature. . The refrigerant flowing out of the heat source unit side heat exchanger 2 is decompressed by the first expansion device 3 and then the heat storage coil 10
a, where heat exchange between the refrigerant inside the pipe and the heat storage medium 8 outside the pipe is performed. Then, the refrigerant that has cooled the heat storage medium 8 is vaporized and gasified, flows out of the heat storage coil 10a, passes through the second switch 11, and is sucked into the compressor 1.

【0019】ここで、図3を参照しつつ、前記蓄熱コイ
ル10aを用いたことによる作用・効果を、従来例との
対比により説明する。蓄熱運転時、蓄熱コイルの冷媒入
口近傍部分では、低温・低圧の乾き度が小さい気液二相
冷媒(又は液冷媒)が管内を流れるので、図3(b)に
示した断面積一定の従来の蓄熱コイル10の場合は、図
3(a)のグラフに実線で示すように冷媒入口側の冷媒
流速が遅くなるために、この部分での管内熱伝達率が小
さくなり、熱交換率も冷媒入口側で小さくなる。
Here, the operation and effect of using the heat storage coil 10a will be described in comparison with a conventional example with reference to FIG. During the heat storage operation, a low-temperature and low-pressure gas-liquid two-phase refrigerant (or liquid refrigerant) flows through the pipe near the refrigerant inlet of the heat storage coil, so that the conventional cross-sectional area shown in FIG. In the case of the heat storage coil 10, the flow rate of the refrigerant at the refrigerant inlet side decreases as indicated by the solid line in the graph of FIG. 3A, so that the heat transfer coefficient in the pipe at this portion decreases, and the heat exchange rate also decreases. It becomes smaller on the entrance side.

【0020】それに対し、図3(c)に示した、この実
施の形態1の蓄熱コイル10aでは、冷媒入口側の管断
面積が相対的に小さく、冷媒出口側の管断面積が相対的
に大きくなっているので、図3(a)のグラフに一点鎖
線で示すように、低温・低圧の乾き度が小さい気液二相
冷媒(又は液冷媒)が管内を流れる冷媒入口付近での冷
媒流速が従来に比べて速くなる。したがって、この部分
における管内熱伝達率が向上し、熱交換率(熱通過率)
も向上する。また、蓄熱媒体8との熱交換により冷媒の
乾き度がある程度大きくなる位置に分岐部31があり、
ここから冷媒出口までは管断面積が大きくなっているの
で、冷媒の蒸発・膨張に伴う流速の増加は抑えられる。
したがって、この部分における圧力損失の増大も抑制さ
れる。
On the other hand, in the heat storage coil 10a of the first embodiment shown in FIG. 3C, the pipe cross-sectional area on the refrigerant inlet side is relatively small, and the pipe cross-sectional area on the refrigerant outlet side is relatively small. As shown by the dashed line in the graph of FIG. 3A, the flow rate of the refrigerant near the refrigerant inlet through which the low-temperature, low-pressure gas-liquid two-phase refrigerant (or liquid refrigerant) flows through the pipe is shown. Is faster than before. Therefore, the heat transfer coefficient in the pipe in this part is improved, and the heat exchange rate (heat transmission rate)
Also improve. Further, a branch portion 31 is provided at a position where the degree of dryness of the refrigerant is increased to some extent by heat exchange with the heat storage medium 8,
Since the pipe cross-sectional area is large from here to the refrigerant outlet, an increase in flow velocity due to evaporation and expansion of the refrigerant is suppressed.
Therefore, an increase in pressure loss in this portion is also suppressed.

【0021】以上のように、この実施の形態1では、冷
媒の乾き度が小さい蓄熱コイルの入口側の部分での熱交
換率を大きくすることができるため、従来の蓄熱コイル
10と同等の伝熱面積を有する蓄熱コイル10aを用い
て、従来よりも大きい熱交換能力(蓄熱能力)を得るこ
とができる。
As described above, in the first embodiment, since the heat exchange rate at the inlet side of the heat storage coil where the degree of dryness of the refrigerant is small can be increased, the same transfer as that of the conventional heat storage coil 10 can be achieved. By using the heat storage coil 10a having a heat area, it is possible to obtain a larger heat exchange capacity (heat storage capacity) than before.

【0022】発明の実施の形態2.この実施の形態2に
係る蓄熱装置では、前記実施の形態1の蓄熱コイル10
aに代えて、図4に示す蓄熱コイル10bが用いられて
いる。なお、それ以外の冷媒回路の構成等は実施の形態
1と同一であるため、説明を省略する。
Embodiment 2 of the Invention In the heat storage device according to the second embodiment, the heat storage coil 10 according to the first embodiment is used.
Instead of a, a heat storage coil 10b shown in FIG. 4 is used. The other configuration of the refrigerant circuit and the like are the same as those in the first embodiment, and thus the description thereof is omitted.

【0023】蓄熱コイル10bは、その一端から途中ま
でが小径管部34で構成されている。小径管部34は、
管内径が、他の部分35の管内径よりも小さくなってい
る部分である。このような蓄熱コイル10bが、その小
径管部34を蓄熱運転時における冷媒入口側(第一絞り
装置3寄り)に配した状態で、冷媒回路21に介装され
ている。
The heat storage coil 10b is composed of a small-diameter tube portion 34 from one end to the middle. The small diameter pipe section 34
This is a portion where the inner diameter of the pipe is smaller than the inner diameter of the other portion 35. Such a heat storage coil 10b is interposed in the refrigerant circuit 21 in a state where the small-diameter tube portion 34 is disposed on the refrigerant inlet side (closer to the first expansion device 3) during the heat storage operation.

【0024】この実施の形態2では、以上のような蓄熱
コイル10bを用いることにより、冷房用の蓄熱運転時
に低温・低圧の乾き度の小さい冷媒が流れる冷媒入口側
(小径管部34)の管断面積を他の部分35の管断面積
よりも小さくしているので、冷媒入口側における冷媒流
速を速くすることができて、前記実施の形態1と同様の
効果が得られる。
In the second embodiment, by using the above-described heat storage coil 10b, the pipe on the refrigerant inlet side (small-diameter pipe section 34) through which the low-temperature, low-pressure, low-dryness refrigerant flows during the heat storage operation for cooling. Since the cross-sectional area is smaller than the cross-sectional area of the pipe of the other portion 35, the flow velocity of the refrigerant at the refrigerant inlet side can be increased, and the same effect as in the first embodiment can be obtained.

【0025】発明の実施の形態3.この実施の形態3に
係る蓄熱装置では、前記実施の形態1と基本的に同様の
冷媒回路及21び蓄熱コイル10aが用いられているた
め、前記図1及び図2を援用して説明する。この実施の
形態3で特徴的なことは、蓄熱コイル10aの分岐部3
1の位置が特定されていることである。
Embodiment 3 of the Invention In the heat storage device according to the third embodiment, a refrigerant circuit and a heat storage coil 10a that are basically the same as those in the first embodiment are used, and thus the description will be made with reference to FIGS. The feature of the third embodiment is that the branch portion 3 of the heat storage coil 10a
1 is specified.

【0026】すなわち、ここでは蓄熱コイル10aの蓄
熱運転時における冷媒入口36から分岐部31までの長
さが、蓄熱コイル10aの冷媒入口36から冷媒出口3
7までの長さの3/10乃至5/10の長さに設定され
ている。なお、一般的に蓄熱コイルは蛇行状に屈曲した
形状を有しているが、ここで言う「長さ」とは、蓄熱コ
イルの屈曲形状を辿るようにして計測した長さのことで
あり、言い換えれば屈曲している蓄熱コイルを真っ直ぐ
に伸ばした場合の長さのことである。また、この実施の
形態では分岐管32が2本あるが、分岐部31から冷媒
出口37までの分岐管32の長さは、両分岐管32とも
同一であるものとする。
That is, here, the length from the refrigerant inlet 36 to the branch portion 31 during the heat storage operation of the heat storage coil 10a is changed from the refrigerant inlet 36 to the refrigerant outlet 3 of the heat storage coil 10a.
The length is set to 3/10 to 5/10 of the length up to 7. In general, the heat storage coil has a meandering bent shape, but the “length” referred to here is a length measured by following the bent shape of the heat storage coil, In other words, it is the length when the bent heat storage coil is straightened. Further, in this embodiment, there are two branch pipes 32, but the length of the branch pipes 32 from the branch part 31 to the refrigerant outlet 37 is the same for both the branch pipes 32.

【0027】次に、この実施の形態3の効果について説
明する。先ず、図2の蓄熱コイル10aにおいて、冷媒
入口36から冷媒出口37までのコイル全長は一定であ
るという前提で、分岐部31の位置を冷媒入口36側か
ら冷媒出口37側に移動させていった場合の、熱交換
率、伝熱面積、及び蓄熱能力の変化を、図5を参照しつ
つ説明する。なお、図5(a)、(b)、(c)の各グ
ラフにおいて、横軸の数字は、分岐部31の位置に応じ
て変化する冷媒入口36から分岐部31までの長さ(す
なわち非分岐部分33の長さ)を、冷媒入口36から冷
媒出口37までの長さ(すなわち蓄熱コイル10aの全
長)で除した値を示している。
Next, the effect of the third embodiment will be described. First, in the heat storage coil 10a of FIG. 2, the position of the branch portion 31 was moved from the refrigerant inlet 36 side to the refrigerant outlet 37 side on the assumption that the entire coil length from the refrigerant inlet 36 to the refrigerant outlet 37 was constant. The change of the heat exchange rate, the heat transfer area, and the heat storage capacity in this case will be described with reference to FIG. In each of the graphs of FIGS. 5A, 5B, and 5C, the numbers on the horizontal axis represent the length from the refrigerant inlet 36 to the branch 31 (that is, the non- A value obtained by dividing the length of the branch portion 33 by the length from the refrigerant inlet 36 to the refrigerant outlet 37 (that is, the total length of the heat storage coil 10a) is shown.

【0028】図5(b)に示したように、蓄熱コイル1
0aの平均熱交換率は、分岐部31が冷媒出口37に近
付くほど(すなわち、管断面積が小さい非分岐部分33
の占める比率が大きくなるほど)向上してゆく。また、
それとは反対に、蓄熱コイル10aの総伝熱面積は、分
岐部31が冷媒出口37に近付くほど減少してゆく。そ
して、前記総伝熱面積をA、前記平均熱交換率をK、熱
交換する蓄熱媒体(水)と冷媒との温度差をΔTとした
場合、A×K×ΔTで示される蓄熱能力(熱交換能力)
は、図5(a)に示したように、グラフの横軸の値が4
/10となる位置に分岐部31がある場合に最大とな
り、その前後では低下する。しかし、その低下のしかた
は急激ではないため、前記の値が3/10〜5/10と
なる範囲内に分岐部31があれば、ほぼ最大の蓄熱能力
が発揮されると言える。
As shown in FIG. 5B, the heat storage coil 1
0a, the closer the branch portion 31 is to the refrigerant outlet 37 (that is, the non-branch portion 33 having a smaller pipe cross-sectional area).
The higher the ratio of occupied) increases. Also,
Conversely, the total heat transfer area of the heat storage coil 10a decreases as the branch portion 31 approaches the refrigerant outlet 37. When the total heat transfer area is A, the average heat exchange rate is K, and the temperature difference between the heat storage medium (water) and the refrigerant for heat exchange is ΔT, the heat storage capacity (heat capacity) represented by A × K × ΔT Exchange capacity)
Indicates that the value on the horizontal axis of the graph is 4 as shown in FIG.
The maximum value is obtained when the branch portion 31 is located at a position where / 10, and decreases before and after that. However, since the decrease is not rapid, it can be said that if the branch portion 31 is within the range where the above value is 3/10 to 5/10, almost the maximum heat storage capacity is exhibited.

【0029】以上のようなことから、この実施の形態3
のように、蓄熱コイル10aの冷媒入口36から分岐部
31までの長さを、冷媒入口36から冷媒出口37まで
の長さの3/10乃至5/10の長さに設定することに
より、伝熱面積が従来と同等の蓄熱コイルを用いて、特
に大きい蓄熱能力を発揮させることが可能となる。ま
た、図5(c)のグラフからわかるように、その場合の
圧力損失は比較的小さいので、圧力損失増大による弊害
は招かずに済む。
From the above, this Embodiment 3
By setting the length from the refrigerant inlet 36 to the branch portion 31 of the heat storage coil 10a to 3/10 to 5/10 of the length from the refrigerant inlet 36 to the refrigerant outlet 37 as shown in FIG. Using a heat storage coil having a heat area equivalent to that of the related art, it is possible to exhibit a particularly large heat storage capacity. Further, as can be seen from the graph of FIG. 5C, the pressure loss in that case is relatively small, so that no adverse effect due to the increase in the pressure loss can be avoided.

【0030】発明の実施の形態4.以下、この発明の実
施の形態4に係る蓄熱式空気調和装置を説明する。図1
に示すように、この蓄熱式空気調和装置Bは、圧縮機
1、熱源機側熱交換器2、第一絞り装置3、第二絞り装
置4、及び利用側熱交換器5を順次接続してなる主冷媒
回路22と、前記主冷媒回路22の圧縮機1吸入側のガ
ス配管(冷媒配管)から分岐し、冷媒ポンプ6、第一開
閉器7、及び蓄熱コイル10aを順次経て、前記主冷媒
回路22の第一絞り装置3と第二絞り装置4との間の液
配管(冷媒配管)に合流する蓄熱利用回路23とを備え
ている。また、前記蓄熱利用回路23の第一開閉器7と
蓄熱コイル10aとの間のガス配管(冷媒配管)から分
岐し、第二開閉器11を介して圧縮機1の吸入側ガス配
管(冷媒配管)に合流する第一接続配管24と、前記蓄
熱利用回路23の冷媒ポンプ6と第一開閉器7との間の
吐出ガス配管(冷媒配管)から分岐し、第三開閉器12
を介して前記主冷媒回路22の圧縮機1と熱源機側熱交
換器2との間の吐出ガス配管(冷媒配管)に合流する第
二接続配管25と、前記蓄熱コイル10a及び蓄熱媒体
8を収容する蓄熱槽9とを備えている。
Embodiment 4 of the Invention Hereinafter, a regenerative air conditioner according to Embodiment 4 of the present invention will be described. FIG.
As shown in the figure, the regenerative air conditioner B is configured by sequentially connecting a compressor 1, a heat source device side heat exchanger 2, a first expansion device 3, a second expansion device 4, and a use side heat exchanger 5. The main refrigerant circuit 22 is branched from a gas pipe (refrigerant pipe) on the suction side of the compressor 1 of the main refrigerant circuit 22, and sequentially passes through a refrigerant pump 6, a first switch 7, and a heat storage coil 10a. A heat storage utilization circuit 23 that joins a liquid pipe (refrigerant pipe) between the first expansion device 3 and the second expansion device 4 of the circuit 22 is provided. Further, a branch from a gas pipe (refrigerant pipe) between the first switch 7 and the heat storage coil 10a of the heat storage utilization circuit 23, and a suction-side gas pipe (refrigerant pipe) of the compressor 1 through the second switch 11. ), And a branch from a discharge gas pipe (refrigerant pipe) between the refrigerant pump 6 and the first switch 7 of the heat storage utilization circuit 23 and the third switch 12
And a second connection pipe 25 that joins a discharge gas pipe (refrigerant pipe) between the compressor 1 of the main refrigerant circuit 22 and the heat source unit side heat exchanger 2 through the heat storage coil 10 a and the heat storage medium 8. And a heat storage tank 9 for housing.

【0031】なお、この蓄熱式空気調和装置Bは、前記
実施の形態1で説明した蓄熱装置Aを含んだ構成となっ
ており、蓄熱コイル10aをはじめとする各構成要素
と、冷房用の蓄熱運転における冷媒の流れ等は前記実施
の形態1と同様であるため、説明を省略する。
The regenerative air conditioner B includes the regenerator A described in the first embodiment. The regenerative air conditioner B includes the regenerative coil A and other components such as the regenerative coil for cooling. The flow and the like of the refrigerant in the operation are the same as those in the first embodiment, and the description is omitted.

【0032】次いで、蓄熱式空気調和装置Bの動作につ
いて説明する。昼間の蓄熱利用冷房運転には2つのパタ
ーンがある。1つ目のパターンは前記蓄熱コイル10a
のみを凝縮器として用いる放冷運転であり、もう1つの
パターンは蓄熱コイル10aと熱源機側熱交換器2とを
凝縮器として併用する併用冷房運転である。
Next, the operation of the regenerative air conditioner B will be described. There are two patterns of daytime heat storage cooling operation. The first pattern is the heat storage coil 10a.
A cooling operation using only the condenser as the condenser, and another pattern is a combined cooling operation using the heat storage coil 10a and the heat source unit side heat exchanger 2 as the condenser.

【0033】放冷運転では、第一絞り装置3及び第二開
閉器11を閉じた状態で圧縮機1及び冷媒ポンプ6を運
転する。圧縮機1から吐出された高温・高圧のガス冷媒
は第三開閉器12を通過した後、冷媒ポンプ6から吐出
された高温・高圧のガス冷媒と合流し、第一開閉弁7を
経て蓄熱コイル10aへ流入し、蓄熱媒体8により冷却
されて凝縮液化する。蓄熱コイル10aから流出した液
冷媒は、第二絞り装置4で減圧された後、利用側熱交換
器5へ流入する。そして、冷媒は利用側熱交換器5で蒸
発しガス化して流出し、圧縮機1及び冷媒ポンプ6に吸
入される。
In the cooling operation, the compressor 1 and the refrigerant pump 6 are operated with the first expansion device 3 and the second switch 11 closed. After passing through the third switch 12, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 merges with the high-temperature and high-pressure gas refrigerant discharged from the refrigerant pump 6 and passes through the first on-off valve 7 to the heat storage coil. It flows into 10a, is cooled by the heat storage medium 8, and is condensed and liquefied. The liquid refrigerant flowing out of the heat storage coil 10a is decompressed by the second expansion device 4, and then flows into the use-side heat exchanger 5. Then, the refrigerant evaporates and gasifies in the use side heat exchanger 5, flows out, and is sucked into the compressor 1 and the refrigerant pump 6.

【0034】一方、併用冷房運転では、第二開閉器11
及び第三開閉器12を閉じた状態で圧縮機1及び冷媒ポ
ンプ6を運転する。圧縮機1から吐出された高温・高圧
のガス冷媒は、熱源機側熱交換器2へ流入し、常温の空
気などにより冷却されて凝縮液化される。熱源機側熱交
換器2から流出した冷媒は第一絞り装置3により減圧さ
れる。また、冷媒ポンプ6から吐出された高温・高圧の
ガス冷媒は、第一開閉器7を経て蓄熱コイル10aに流
入し、蓄熱媒体8により冷却されて凝縮液化する。そし
て、この蓄熱利用回路23側の液冷媒は、前記第一絞り
装置3により減圧された主冷媒回路22側の液冷媒と合
流し、この合流した冷媒は第二絞り装置4で減圧された
後、利用側熱交換器5へ流入する。そして、冷媒は蒸発
しガス化して利用側熱交換器5から流出し、圧縮機1お
よび冷媒ポンプ6に吸入される。
On the other hand, in the combined cooling operation, the second switch 11
The compressor 1 and the refrigerant pump 6 are operated with the third switch 12 closed. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the heat source device side heat exchanger 2, and is cooled and condensed and liquefied by air at normal temperature. The refrigerant flowing out of the heat source unit side heat exchanger 2 is decompressed by the first expansion device 3. The high-temperature and high-pressure gas refrigerant discharged from the refrigerant pump 6 flows into the heat storage coil 10a via the first switch 7, and is cooled and condensed and liquefied by the heat storage medium 8. Then, the liquid refrigerant on the heat storage utilization circuit 23 side joins with the liquid refrigerant on the main refrigerant circuit 22 side depressurized by the first expansion device 3, and the merged refrigerant is decompressed by the second expansion device 4. , Flows into the use side heat exchanger 5. Then, the refrigerant evaporates and gasifies, flows out of the use side heat exchanger 5, and is sucked into the compressor 1 and the refrigerant pump 6.

【0035】ところで、前記したように、この蓄熱式空
気調和装置Bでは、蓄熱コイルとして前記図2に示した
蓄熱コイル10aが用いられている。ただし、以上のよ
うな蓄熱利用冷房運転時(放冷運転時及び併用冷房運転
時)には、蓄熱コイル10a内を流れる冷媒の流れ方向
は、図2に破線矢印で示すように、前記蓄熱運転時とは
逆方向となる。すなわち、冷媒は先ず各分岐管32へ流
入し、分岐部31で合流した後、非分岐部分33を通っ
て流出することになる。したがって、蓄熱コイル10a
は、冷媒出口側の管断面積が他の部分の管断面積よりも
小さい構成となる。
As described above, in the thermal storage type air conditioner B, the thermal storage coil 10a shown in FIG. 2 is used as the thermal storage coil. However, during the cooling operation using the heat storage (during the cooling operation and the combined cooling operation) as described above, the flow direction of the refrigerant flowing through the heat storage coil 10a is as shown by the broken arrow in FIG. It is the opposite direction of time. That is, the refrigerant first flows into each branch pipe 32, merges at the branch part 31, and then flows out through the non-branch part 33. Therefore, the heat storage coil 10a
Has a configuration in which the cross-sectional area of the pipe on the refrigerant outlet side is smaller than the cross-sectional areas of the pipes in other portions.

【0036】ここで、図6を参照しつつ、前記蓄熱コイ
ル10aを用いたことによる作用・効果を、従来例との
対比により説明する。蓄熱利用冷房運転時、蓄熱コイル
の冷媒入口付近では圧縮機1及び冷媒ポンプ6からの高
温・高圧の乾き度が大きい冷媒が流れるが、蓄熱媒体8
との熱交換で冷媒は徐々に凝縮液化してゆくため、蓄熱
コイルの冷媒出口付近では、管内を乾き度の小さい冷媒
が流れることになる。そのため、図6(b)に示した、
全長にわたって断面積一定の従来の蓄熱コイル10を用
いた場合は、図6(a)のグラフに実線で示すように冷
媒出口側で冷媒流速が遅くなるために、この部分での管
内熱伝達率が小さくなり、熱交換率も冷媒出口側で小さ
くなる。
Here, the operation and effect of using the heat storage coil 10a will be described with reference to FIG. 6 in comparison with a conventional example. During the cooling operation using heat storage, a high-temperature and high-pressure refrigerant having a high dryness flows from the compressor 1 and the refrigerant pump 6 near the refrigerant inlet of the heat storage coil.
Since the refrigerant gradually condenses and liquefies due to heat exchange with the refrigerant, a refrigerant having a low dryness flows through the pipe near the refrigerant outlet of the heat storage coil. Therefore, as shown in FIG.
When the conventional heat storage coil 10 having a constant cross-sectional area over the entire length is used, the flow rate of the refrigerant decreases at the refrigerant outlet side as shown by the solid line in the graph of FIG. And the heat exchange rate also decreases on the refrigerant outlet side.

【0037】それに対し、図6(c)に示した蓄熱コイ
ル10aの場合は、冷媒入口側の管断面積が相対的に大
きく、冷媒出口側の管断面積が相対的に小さくなってい
るので、図6(a)のグラフに一点鎖線で示すように、
低温・低圧の乾き度の小さい気液二相冷媒が管内を流れ
る冷媒出口付近での冷媒流速が従来よりも速くなる。し
たがって、この部分における管内熱伝達率が向上し、熱
交換率(熱通過率)も向上する。また、蓄熱媒体8との
熱交換により冷媒の乾き度がある程度小さくなる位置に
分岐部31があり、乾き度の大きい冷媒が流れる冷媒入
口から分岐部31までは管断面積が大きくなっているの
で、この部分における圧力損失の増大は抑制される。
On the other hand, in the case of the heat storage coil 10a shown in FIG. 6C, the pipe cross-sectional area on the refrigerant inlet side is relatively large and the pipe cross-sectional area on the refrigerant outlet side is relatively small. As shown by the dashed line in the graph of FIG.
The refrigerant flow velocity near the refrigerant outlet where the low-temperature, low-pressure, low-dryness gas-liquid two-phase refrigerant flows through the pipe becomes higher than before. Therefore, the heat transfer coefficient in the pipe in this portion is improved, and the heat exchange rate (heat transmission rate) is also improved. Further, the branch portion 31 is located at a position where the degree of dryness of the refrigerant is reduced to some extent by heat exchange with the heat storage medium 8, and the pipe cross-sectional area from the refrigerant inlet through which the refrigerant having a large degree of dryness flows to the branch portion 31 is large. The increase in pressure loss in this portion is suppressed.

【0038】以上のように、この実施の形態4では、冷
媒の乾き度が小さい蓄熱コイルの出口側の部分での熱交
換率を大きくすることができるため、従来の蓄熱コイル
10と同等の伝熱面積を有する蓄熱コイル10aを用い
て、従来よりも大きい熱交換能力(凝縮能力)が得ら
れ、冷房能力を向上させることができる。
As described above, in the fourth embodiment, since the heat exchange rate at the outlet side of the heat storage coil where the degree of dryness of the refrigerant is small can be increased, the power transfer equivalent to that of the conventional heat storage coil 10 can be achieved. By using the heat storage coil 10a having a heat area, a greater heat exchange capacity (condensing capacity) than before can be obtained, and the cooling capacity can be improved.

【0039】また、蓄熱コイル10aは途中で管断面積
が小さくなるので、図6(d)に示したように、コイル
全体の内容積も従来の蓄熱コイル10に比べて小さくな
っている。したがって、この蓄熱コイル10aを用いれ
ば、蓄熱式空気調和装置全体の冷媒回路に封入される冷
媒の総量を削減できるという効果も得られる。
Further, since the tube cross-sectional area of the heat storage coil 10a is reduced in the middle, the internal volume of the entire coil is smaller than that of the conventional heat storage coil 10 as shown in FIG. Therefore, the use of the heat storage coil 10a also has the effect of reducing the total amount of refrigerant sealed in the refrigerant circuit of the entire heat storage type air conditioner.

【0040】発明の実施の形態5.この実施の形態5に
係る蓄熱式空気調和装置では、前記実施の形態4の蓄熱
コイル10aに代えて、図4に示した蓄熱コイル10b
が用いられている。なお、それ以外の構成は実施の形態
4と同一であるため、説明を省略する。
Embodiment 5 of the Invention In the heat storage type air conditioner according to the fifth embodiment, the heat storage coil 10b shown in FIG.
Is used. The other configuration is the same as that of the fourth embodiment, and the description is omitted.

【0041】蓄熱コイル10bは、前記実施の形態2で
説明した通り、その一端から途中までが小径管部34で
構成されている。このような蓄熱コイル10bが、その
小径管部34を蓄熱利用冷房運転時における冷媒出口側
に配した状態で、蓄熱利用回路23に介装されている。
As described in the second embodiment, the heat storage coil 10b is constituted by the small-diameter tube portion 34 from one end to the middle. Such a heat storage coil 10b is interposed in the heat storage utilization circuit 23 in a state where the small-diameter tube portion 34 is arranged on the refrigerant outlet side during the heat storage utilization cooling operation.

【0042】そして、これにより、蓄熱利用冷房運転時
に低温・低圧の乾き度が小さい冷媒が流れる冷媒出口側
(小径管部34)の管断面積を他の部分35の管断面積
よりも小さくしているので、冷媒出口側における冷媒流
速を速くすることができて、前記実施の形態4と同様の
効果が得られる。
Thus, the cross-sectional area of the refrigerant at the refrigerant outlet side (small-diameter pipe portion 34) through which the low-temperature and low-pressure refrigerant having a small dryness flows during the cooling operation utilizing the heat storage is made smaller than the cross-sectional area of the other portions 35. Therefore, the flow velocity of the refrigerant at the refrigerant outlet side can be increased, and the same effect as in the fourth embodiment can be obtained.

【0043】発明の実施の形態6.この実施の形態6に
係る蓄熱式空気調和装置では、前記実施の形態3と同様
に分岐部31の位置が設定された蓄熱コイル10aが用
いられている。ただし、蓄熱利用冷房運転時には蓄熱コ
イル内の冷媒流れ方向が実施の形態3で説明した蓄熱運
転時とは逆方向となるため、この実施の形態6では、蓄
熱コイル10aの、分岐部31から蓄熱利用冷房運転時
における冷媒出口までの長さ(非分岐部分33の長さ)
が、蓄熱コイル10aの冷媒入口から冷媒出口までの長
さの3/10乃至5/10に設定されていることにな
る。
Embodiment 6 of the Invention In the heat storage type air conditioner according to the sixth embodiment, the heat storage coil 10a in which the position of the branch portion 31 is set is used as in the third embodiment. However, in the cooling operation using heat storage, the flow direction of the refrigerant in the heat storage coil is opposite to that in the heat storage operation described in the third embodiment. Therefore, in the sixth embodiment, heat is stored from the branch portion 31 of the heat storage coil 10a. Length to refrigerant outlet during use cooling operation (length of non-branched portion 33)
Is set to 3/10 to 5/10 of the length from the refrigerant inlet to the refrigerant outlet of the heat storage coil 10a.

【0044】この場合も、蓄熱コイル10aの平均熱交
換率は、蓄熱コイル10aの全長に対して非分岐部分3
3の占める比率が大きくなるほど向上してゆくが、それ
とは反対に、蓄熱コイル10aの総伝熱面積は、非分岐
部分33の占める比率が大きくなるほど減少してゆく。
そして、前記総伝熱面積をA、前記平均熱交換率をK、
熱交換する蓄熱媒体(水)と冷媒との温度差をΔTとし
た場合、A×K×ΔTで示される凝縮能力(熱交換能
力)は、非分岐部分33の長さをコイル全長の4/10
とした場合に最大になるとともに、非分岐部分33の長
さがコイル全長の3/10〜5/10となる範囲で、前
記最大の凝縮能力とほぼ同等の凝縮能力が発揮される。
Also in this case, the average heat exchange rate of the heat storage coil 10a is smaller than the total length of the heat storage coil 10a by the non-branch portion 3
As the ratio occupied by 3 increases, the total heat transfer area of the heat storage coil 10a decreases as the ratio occupied by the non-branched portion 33 increases.
And the total heat transfer area is A, the average heat exchange rate is K,
Assuming that the temperature difference between the heat storage medium (water) for heat exchange and the refrigerant is ΔT, the condensing capacity (heat exchange capacity) represented by A × K × ΔT is obtained by dividing the length of the non-branched portion 33 by 4/4 of the total coil length. 10
In the range where the length of the non-branched portion 33 is 3/10 to 5/10 of the entire length of the coil, a condensing ability substantially equal to the maximum condensing ability is exhibited.

【0045】以上のようなことから、この実施の形態6
のように、蓄熱コイル10aの分岐部31から蓄熱利用
冷房運転時における冷媒出口までの長さを、冷媒入口か
ら冷媒出口までの長さの3/10乃至5/10の長さに
設定することにより、伝熱面積が従来と同等の蓄熱コイ
ルを用いて、特に大きい冷房能力を発揮することが可能
な蓄熱式空気調和装置が得られる。
From the above, this Embodiment 6
As described above, the length from the branch portion 31 of the heat storage coil 10a to the refrigerant outlet during the cooling operation utilizing heat storage is set to 3/10 to 5/10 of the length from the refrigerant inlet to the refrigerant outlet. Accordingly, a heat storage type air conditioner capable of exhibiting particularly large cooling capacity can be obtained using a heat storage coil having a heat transfer area equivalent to that of a conventional heat storage coil.

【0046】[0046]

【発明の効果】以上に説明したように、第1の発明に係
る蓄熱装置は、蓄熱運転時に乾き度の小さい冷媒が流れ
る蓄熱コイル冷媒入口側の管断面積を小さくしたので、
この部分における冷媒流速を増大させて管内熱伝達率を
向上させ、冷媒と蓄熱媒体との熱交換率を向上させるこ
とができる。また、蓄熱コイルの他の部分では管断面積
が大きくなるので、従来と同等の伝熱面積を確保できる
とともに、圧力損失の増大を抑制することができる。し
たがって、伝熱面積が従来と同等の蓄熱コイルを用い
て、従来よりも大きい蓄熱能力を発揮する蓄熱装置が得
られる。
As described above, in the heat storage device according to the first aspect of the present invention, the cross-sectional area of the heat storage coil at the inlet side of the heat storage coil is reduced during the heat storage operation.
By increasing the flow rate of the refrigerant in this portion, the heat transfer coefficient in the pipe can be improved, and the heat exchange rate between the refrigerant and the heat storage medium can be improved. Further, since the cross-sectional area of the tube is increased in other portions of the heat storage coil, a heat transfer area equivalent to that of the related art can be secured, and an increase in pressure loss can be suppressed. Therefore, it is possible to obtain a heat storage device that uses a heat storage coil having a heat transfer area equivalent to that of the related art and exhibits a larger heat storage capacity than the related art.

【0047】また、第2の発明に係る蓄熱装置は、蓄熱
コイルを途中で分岐する構造にしたことにより、従来と
同等の伝熱面積の蓄熱コイルを用いて蓄熱能力が従来よ
りも大きい蓄熱装置が得られる。
The heat storage device according to the second aspect of the present invention has a structure in which the heat storage coil is branched in the middle, so that the heat storage device having a heat storage capacity greater than that of the conventional heat storage device using a heat storage coil having the same heat transfer area as the conventional one. Is obtained.

【0048】また、第3の発明に係る蓄熱装置は、蓄熱
コイルの冷媒入口側に小径管部を形成したことにより、
従来と同等の伝熱面積の蓄熱コイルを用いて蓄熱能力が
従来よりも大きい蓄熱装置が得られる。
In the heat storage device according to the third invention, a small-diameter pipe portion is formed on the refrigerant inlet side of the heat storage coil.
By using a heat storage coil having a heat transfer area equivalent to that of the conventional heat storage device, a heat storage device having a higher heat storage capacity than the conventional heat storage device can be obtained.

【0049】また、第4の発明に係る蓄熱装置は、蓄熱
コイルを途中で分岐する構造にするとともに、その冷媒
入口から分岐部までの長さを冷媒入口から冷媒出口まで
の長さの3/10乃至5/10に設定したことにより、
伝熱面積が従来と同等の蓄熱コイルを用いて、特に大き
い蓄熱能力を発揮させることができる。
Further, the heat storage device according to the fourth invention has a structure in which the heat storage coil is branched on the way, and the length from the refrigerant inlet to the branch portion is 3/3 of the length from the refrigerant inlet to the refrigerant outlet. By setting 10 to 5/10,
A particularly large heat storage capacity can be exhibited by using a heat storage coil having a heat transfer area equivalent to that of a conventional heat storage coil.

【0050】また、第5の発明に係る蓄熱式空気調和装
置は、蓄熱利用冷房運転時に乾き度の小さい冷媒が流れ
る蓄熱コイル冷媒出口側の管断面積を小さくしたので、
この部分における冷媒流速を増大させて管内熱伝達率を
向上させ、冷媒と蓄熱媒体との熱交換率を向上させるこ
とができる。また、蓄熱コイルの他の部分では管断面積
が大きくなるので、従来と同等の伝熱面積を確保できる
とともに、圧力損失の増大を抑制することができる。し
たがって、伝熱面積が従来と同等の蓄熱コイルを用い
て、従来よりも大きい冷房能力を発揮する蓄熱式空気調
和装置が得られる。さらに、蓄熱コイル冷媒出口側の管
断面積を小さくすることにより、蓄熱コイルの内容積が
小さくなるので、冷媒回路に封入される冷媒の量を減ら
すこともできる。
Also, in the regenerative air conditioner according to the fifth invention, the cross-sectional area of the refrigerant at the outlet of the regenerative coil through which the refrigerant having a low dryness flows during the regenerative cooling operation is reduced.
By increasing the flow rate of the refrigerant in this portion, the heat transfer coefficient in the pipe can be improved, and the heat exchange rate between the refrigerant and the heat storage medium can be improved. Further, since the cross-sectional area of the tube is increased in other portions of the heat storage coil, a heat transfer area equivalent to that of the related art can be secured, and an increase in pressure loss can be suppressed. Therefore, it is possible to obtain a heat storage type air conditioner that uses a heat storage coil having a heat transfer area equivalent to that of the related art and exerts a greater cooling capacity than before. Furthermore, since the internal volume of the heat storage coil is reduced by reducing the pipe cross-sectional area on the heat storage coil refrigerant outlet side, the amount of refrigerant sealed in the refrigerant circuit can also be reduced.

【0051】また、第6の発明に係る蓄熱空気調和装置
は、蓄熱コイルを途中で分岐する構造にしたことによ
り、従来と同等の伝熱面積の蓄熱コイルを用いて、冷房
能力が従来よりも大きく、封入冷媒量が少ない蓄熱式空
気調和装置が得られる。
Further, the heat storage air conditioner according to the sixth aspect of the present invention has a structure in which the heat storage coil is branched in the middle, so that the heat storage coil having the same heat transfer area as the conventional one is used, and the cooling capacity is higher than the conventional one. A regenerative air conditioner that is large and has a small amount of charged refrigerant can be obtained.

【0052】また、第7の発明に係る蓄熱空気調和装置
は、蓄熱コイルの冷媒出口側に小径管部を形成したこと
により、従来と同等の伝熱面積の蓄熱コイルを用いて、
冷房能力が従来よりも大きく、封入冷媒量が少ない蓄熱
式空気調和装置が得られる。
In the heat storage air conditioner according to the seventh invention, the small-diameter pipe portion is formed on the refrigerant outlet side of the heat storage coil.
A regenerative air conditioner having a larger cooling capacity and a smaller amount of enclosed refrigerant than before can be obtained.

【0053】また、第8の発明に係る蓄熱空気調和装置
は、蓄熱コイルを途中で分岐する構造にするとともに、
その分岐部から冷媒出口までの長さを冷媒入口から冷媒
出口までの長さの3/10乃至5/10の長さに設定し
たことにより、特に大きい冷房能力を発揮させることが
できる。
The heat storage air conditioner according to the eighth invention has a structure in which the heat storage coil is branched on the way.
By setting the length from the branch portion to the coolant outlet to be 3/10 to 5/10 of the length from the coolant inlet to the coolant outlet, a particularly large cooling capacity can be exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1に係る蓄熱装置及び実
施の形態4に係る蓄熱式空気調和装置を示す冷媒回路図
である。
FIG. 1 is a refrigerant circuit diagram showing a heat storage device according to Embodiment 1 of the present invention and a heat storage type air conditioner according to Embodiment 4.

【図2】 本発明の実施の形態1及び実施の形態4に用
いる蓄熱コイルの斜視図である。
FIG. 2 is a perspective view of a heat storage coil used in Embodiments 1 and 4 of the present invention.

【図3】 蓄熱コイルの断面積の変化による蓄熱運転時
の熱交換率等の変化を説明する説明図である。
FIG. 3 is an explanatory diagram illustrating a change in a heat exchange rate and the like during a heat storage operation due to a change in a cross-sectional area of a heat storage coil.

【図4】 本発明の実施の形態2及び実施の形態5に用
いる蓄熱コイルの斜視図である。
FIG. 4 is a perspective view of a heat storage coil used in Embodiments 2 and 5 of the present invention.

【図5】 蓄熱コイルの分岐部の位置を変えることによ
る蓄熱能力等の変化を説明する説明図である。
FIG. 5 is an explanatory diagram illustrating a change in heat storage capacity and the like caused by changing a position of a branch portion of a heat storage coil.

【図6】 蓄熱コイルの断面積の変化による蓄熱利用冷
房運転時の熱交換率等の変化を説明する説明図である。
FIG. 6 is an explanatory diagram illustrating a change in a heat exchange rate and the like during a cooling operation using heat storage due to a change in the cross-sectional area of the heat storage coil.

【図7】 従来の蓄熱コイルの斜視図である。FIG. 7 is a perspective view of a conventional heat storage coil.

【符号の説明】 A 蓄熱装置、B 蓄熱式空気調和装置、1 圧縮機、
2 熱源機側熱交換器、3 第一絞り装置、4 第二絞
り装置、5 利用側熱交換器、6 冷媒ポンプ、8 蓄
熱媒体、9 蓄熱槽、10a,10b 蓄熱コイル、2
1 冷媒回路、22 主冷媒回路、23 蓄熱利用回
路、31 分岐部、32 分岐管、33非分岐部分、3
4 小径管部。
[Description of Signs] A heat storage device, B heat storage type air conditioner, 1 compressor,
2 heat source side heat exchanger, 3 first throttle device, 4 second throttle device, 5 use side heat exchanger, 6 refrigerant pump, 8 heat storage medium, 9 heat storage tank, 10a, 10b heat storage coil, 2
1 refrigerant circuit, 22 main refrigerant circuit, 23 heat storage utilization circuit, 31 branch, 32 branch pipe, 33 non-branch, 3
4 Small diameter pipe section.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源機側熱交換器、絞り装置、
及び蓄熱コイルを順次接続してなる冷媒回路と、前記蓄
熱コイル及び蓄熱媒体を収容する蓄熱槽とからなる蓄熱
装置において、前記蓄熱コイルは、前記蓄熱媒体を冷却
する蓄熱運転時における冷媒入口側の管断面積が他の部
分の管断面積よりも小さくなっていることを特徴とする
蓄熱装置。
1. A compressor, a heat exchanger on a heat source side, a throttling device,
And a refrigerant circuit formed by sequentially connecting the heat storage coils, and a heat storage device including a heat storage tank that stores the heat storage coils and the heat storage medium, wherein the heat storage coils are disposed on a refrigerant inlet side during a heat storage operation for cooling the heat storage medium. A heat storage device characterized in that the pipe cross-sectional area is smaller than the pipe cross-sectional areas of other parts.
【請求項2】 蓄熱コイルを、その途中に位置する分岐
部で複数の分岐管に分岐した構造にするとともに、蓄熱
運転時における冷媒入口側に配した非分岐部分の管断面
積を冷媒出口側に配した前記分岐管の断面積の合計より
も小さくしてなる請求項第1項に記載の蓄熱装置。
2. A heat storage coil having a structure in which the heat storage coil is branched into a plurality of branch pipes at a branch portion located in the middle thereof, and a pipe cross-sectional area of a non-branch portion disposed on a refrigerant inlet side during a heat storage operation is changed to a refrigerant outlet side. 2. The heat storage device according to claim 1, wherein the sum of the cross-sectional areas of the branch pipes disposed in the heat storage device is smaller than the total cross-sectional area.
【請求項3】 蓄熱コイルの、蓄熱運転時における冷媒
入口側に、管内径が他の部分の管内径よりも小さい小径
管部を形成してなる請求項第1項に記載の蓄熱装置。
3. The heat storage device according to claim 1, wherein a small-diameter pipe portion having a pipe inner diameter smaller than the pipe inner diameters of other portions is formed on the refrigerant inlet side of the heat storage coil during the heat storage operation.
【請求項4】 蓄熱コイルの、蓄熱運転時における冷媒
入口から分岐部までの長さを、当該蓄熱コイルの前記冷
媒入口から冷媒出口までの長さの3/10乃至5/10
の長さに設定してなる請求項第2項に記載の蓄熱装置。
4. The length of the heat storage coil from the refrigerant inlet to the branch portion during the heat storage operation is 3/10 to 5/10 of the length from the refrigerant inlet to the refrigerant outlet of the heat storage coil.
The heat storage device according to claim 2, wherein the length is set to:
【請求項5】 圧縮機、熱源機側熱交換器、第一絞り装
置、第二絞り装置、及び利用側熱交換器を順次接続して
なる主冷媒回路と、前記主冷媒回路の前記圧縮機吸入側
の配管から分岐し冷媒ポンプ及び蓄熱コイルを経て前記
主冷媒回路の前記第一絞り装置と前記第二絞り装置との
間の配管に合流する蓄熱利用回路と、前記蓄熱コイル及
び蓄熱媒体を収容する蓄熱槽とを備えた蓄熱式空気調和
装置において、前記蓄熱コイルは、前記蓄熱媒体に蓄え
られた冷熱を利用する蓄熱利用冷房運転時における冷媒
出口側の管断面積が他の部分の管断面積よりも小さくな
っていることを特徴とする蓄熱式空気調和装置。
5. A main refrigerant circuit in which a compressor, a heat source device side heat exchanger, a first expansion device, a second expansion device, and a use side heat exchanger are sequentially connected, and the compressor of the main refrigerant circuit. A heat storage utilization circuit that branches from a suction side pipe and joins a pipe between the first expansion device and the second expansion device of the main refrigerant circuit through a refrigerant pump and a heat storage coil; and the heat storage coil and the heat storage medium. In the regenerative air conditioner provided with a heat storage tank to house therein, the heat storage coil has a tube cross-sectional area on the refrigerant outlet side of the other portion in the heat storage utilizing cooling operation using the cold stored in the heat storage medium. A regenerative air conditioner characterized by having a smaller cross-sectional area.
【請求項6】 蓄熱コイルを、その途中に位置する分岐
部で複数の分岐管に分岐した構造にするとともに、蓄熱
利用冷房運転時における冷媒出口側に配した非分岐部分
の管断面積を冷媒入口側に配した前記分岐管の断面積の
合計よりも小さくしてなる請求項第5項に記載の蓄熱式
空気調和装置。
6. A structure in which a heat storage coil is branched into a plurality of branch pipes at a branch part located in the middle thereof, and a pipe cross-sectional area of a non-branch portion disposed on a refrigerant outlet side during cooling operation using heat storage is changed by a refrigerant. The regenerative air conditioner according to claim 5, wherein the total cross-sectional area of the branch pipe disposed on the inlet side is smaller than the total cross-sectional area.
【請求項7】 蓄熱コイルの、蓄熱利用冷房運転時にお
ける冷媒出口側に、管内径が他の部分の管内径よりも小
さい小径管部を形成してなる請求項第5項に記載の蓄熱
式空気調和装置。
7. The heat storage type according to claim 5, wherein a small-diameter pipe portion having a pipe inner diameter smaller than the pipe inner diameters of the other portions is formed on the refrigerant outlet side of the heat storage coil during the heat storage utilizing cooling operation. Air conditioner.
【請求項8】 蓄熱コイルの、分岐部から蓄熱利用冷房
運転時における冷媒出口までの長さを、当該蓄熱コイル
の冷媒入口から前記冷媒出口までの長さの3/10乃至
5/10の長さに設定してなる請求項第6項に記載の蓄
熱式空気調和装置。
8. The length of the heat storage coil from the branch portion to the refrigerant outlet during the cooling operation using heat storage is 3/10 to 5/10 of the length from the refrigerant inlet to the refrigerant outlet of the heat storage coil. The regenerative air conditioner according to claim 6, wherein the air conditioner is set to:
JP2000115075A 2000-04-17 2000-04-17 Heat-storing device and heat storage type air conditioner Pending JP2001304782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115075A JP2001304782A (en) 2000-04-17 2000-04-17 Heat-storing device and heat storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115075A JP2001304782A (en) 2000-04-17 2000-04-17 Heat-storing device and heat storage type air conditioner

Publications (1)

Publication Number Publication Date
JP2001304782A true JP2001304782A (en) 2001-10-31

Family

ID=18626783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115075A Pending JP2001304782A (en) 2000-04-17 2000-04-17 Heat-storing device and heat storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2001304782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566430B2 (en) * 2002-03-28 2009-07-28 Helmut Katschnig Apparatus for sterilizing, pasteurizing, and/or disinfecting a pumpable or free flowing medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566430B2 (en) * 2002-03-28 2009-07-28 Helmut Katschnig Apparatus for sterilizing, pasteurizing, and/or disinfecting a pumpable or free flowing medium

Similar Documents

Publication Publication Date Title
JP3045382B2 (en) Refrigeration cycle device with two evaporation temperatures
JP4832563B2 (en) Refrigeration system
JP2835325B2 (en) Refrigeration system and heat exchanger for condensation
KR100549063B1 (en) Refrigerator
JP3465574B2 (en) Refrigeration air conditioner and equipment selection method
JP2001304782A (en) Heat-storing device and heat storage type air conditioner
JP5485602B2 (en) Refrigeration system
JP3007455B2 (en) Refrigeration cycle device
JP3492422B2 (en) Cooler operation method
JP2006003023A (en) Refrigerating unit
WO2010041453A1 (en) Refrigeration device
JP2008089252A (en) Cooling apparatus
JP2009085539A (en) Refrigerator
KR20030089818A (en) Device for prevention dewing of refrigerator
JP2002122365A (en) Refrigerating system
JP3256856B2 (en) Refrigeration system
JPH04257660A (en) Two stage compression refrigerating cycle device
JPH08178450A (en) Air conditioner
JPH01208675A (en) Heat pump type hot water, heating and cooling machine
KR100357091B1 (en) Heat exchange structure of refrigerating cycle for air conditioner
JP2000205686A (en) Refrigerating cycle for air conditioner
JPH0579731A (en) Air conditioner
JP2002022312A (en) Refrigerant gas cooled condenser and refrigerating cycle system
JPH10141815A (en) Air conditioner
JPH0791752A (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629