JP2001300253A - Deodorizing material and deodorizing device - Google Patents

Deodorizing material and deodorizing device

Info

Publication number
JP2001300253A
JP2001300253A JP2000121286A JP2000121286A JP2001300253A JP 2001300253 A JP2001300253 A JP 2001300253A JP 2000121286 A JP2000121286 A JP 2000121286A JP 2000121286 A JP2000121286 A JP 2000121286A JP 2001300253 A JP2001300253 A JP 2001300253A
Authority
JP
Japan
Prior art keywords
deodorizing
sintered body
activated carbon
carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000121286A
Other languages
Japanese (ja)
Inventor
Norihiro Yaide
乃大 矢出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000121286A priority Critical patent/JP2001300253A/en
Publication of JP2001300253A publication Critical patent/JP2001300253A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To obtain a deodorizing material which ensures the upgraded performance of a biodeodorizing process and also the shortening of an acclimatizing period under the biodeodorizing process as a filler having a highly deodorizing performance obtained by making effective use of limited natural resources and to provide a deodorizing device using the deodorizing material. SOLUTION: This deodorizing material is made up of a sintered body obtained by sintering an inorganic material and a carbonaceous substance applied to the surface of the former. The carbonaceous substance is preferably carbide or active carbon, and further is preferably the one to which an acid, an alkali or an oxidizer is internally added. In the device for deodorizing a smelly gas, the deodorizing material formed of the sintered body obtained by sintering the inorganic material and the carbonaceous substance applied to the surface of the sintered body is used as a filler, and an odorous component contained in the smelly gas is removed by dringing the smelly gas into contact with the deodorizing material. A biodeodorization is acceptable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は下水、し尿あるいは
産業排水等の排水処理時や、排水処理に伴って発生する
有機性汚泥、生ごみ等の有機性廃棄物の処理、処分時に
発生する臭気の脱臭に用いる脱臭材および脱臭装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to odors generated during the treatment of wastewater such as sewage, human waste or industrial wastewater, and the treatment and disposal of organic waste such as organic sludge and garbage generated during wastewater treatment. The present invention relates to a deodorizing material and a deodorizing device used for deodorizing water.

【0002】[0002]

【従来の技術】下水、し尿あるいは産業排水等の排水処
理時や、排水処理に伴って発生する有機性汚泥や生ゴミ
等の有機性廃棄物の処理処分時に惡臭ガスが発生し、こ
れがため、作業環境の改善、周辺住民への環境対策およ
び設備機器への防食防止対策が極めて重要な課題とな
る。脱臭方法としては、酸やアルカリを用いる薬液洗浄
法、活性炭吸着法、あるいは生物脱臭法等が実用化され
ている。
2. Description of the Related Art At the time of wastewater treatment of sewage, human waste or industrial wastewater, or at the time of treatment and disposal of organic waste such as organic sludge and garbage generated by wastewater treatment, odorous gas is generated. Improvement of the working environment, environmental measures for local residents, and measures to prevent corrosion of equipment and equipment are extremely important issues. As a deodorizing method, a chemical cleaning method using an acid or an alkali, an activated carbon adsorption method, a biological deodorizing method, and the like have been put to practical use.

【0003】薬液洗浄法は、酸やアルカリを含む洗浄液
と処理対象の悪臭ガスを接触させることにより、ガス中
の臭気成分を洗浄液に吸収させて脱臭する処理法であ
る。活性炭吸着法は、表面積が大きく、多数の細孔を有
する活性炭に臭気成分を吸着させて、脱臭する処理法で
ある。活性炭には、酸やアルカリ、あるいは、酸化剤を
添着させた添着活性炭も広く使用することができる。
The chemical cleaning method is a treatment method in which a cleaning liquid containing an acid or an alkali is brought into contact with a malodorous gas to be treated so that odor components in the gas are absorbed by the cleaning liquid to deodorize the gas. The activated carbon adsorption method is a treatment method in which an odor component is adsorbed on activated carbon having a large surface area and a large number of pores to deodorize. As the activated carbon, an impregnated activated carbon impregnated with an acid, an alkali, or an oxidizing agent can be widely used.

【0004】生物脱臭法は、悪臭ガスを曝気槽に吹込む
方法、微生物を付着させた充填材(土壌)と悪臭ガスを
接触させて脱臭する土壌脱臭法、および充填塔式脱臭法
の3種に分類される。このうち、土壌脱臭法は、その充
填層に土壌、一般的には黒ぼく土が使用される。黒ぼく
土は、保水性も良く、その中に微生物を多量に保存でき
るために臭気の除去性能が高いが、脱臭設備の運転を継
続すると悪臭ガスの通気抵抗が増加するマイナス面もあ
る。特に、降雨による影響は非常に大きい。したがっ
て、安定した運転を行うために充填層のガス流速を5m
m/秒〜10mm/秒と低く設定する必要がある。
There are three types of biological deodorization methods: a method of blowing a malodorous gas into an aeration tank, a soil deodorization method in which a filler (soil) to which microorganisms are attached is brought into contact with a malodorous gas, and a packed tower type deodorization method. are categorized. Among them, the soil deodorization method uses soil, generally black soil, in the packed bed. Kuroboku soil has good water retention and can store a large amount of microorganisms in it, so it has high odor removal performance. However, continuous operation of the deodorizing equipment has the disadvantage that the ventilation resistance of the odorous gas increases. In particular, the impact of rainfall is very large. Therefore, in order to perform stable operation, the gas flow velocity of the packed bed is set to 5 m.
It is necessary to set as low as m / sec to 10 mm / sec.

【0005】一方、充填塔式脱臭法の充填材は、粒状活
性炭やセラミックス等の無機材料やプラスチック成型品
が使われている。これらの充填材は、土壌脱臭法の充填
材に比べて、悪臭ガスの通気抵抗が改善され、このため
に、充填塔式脱臭法における充填層のガス流速は、土壌
脱臭法の20〜60倍と高い。その充填層に黒ぼく土が
使用される土壌脱臭法は、その設備構造が簡単で維持管
理が容易であることから、早くから実用化され、その実
績が多い。
On the other hand, as a filler in the packed tower type deodorizing method, an inorganic material such as granular activated carbon or ceramics or a plastic molded product is used. These packing materials have improved ventilation resistance of the odorous gas as compared with the packing material of the soil deodorization method. Therefore, the gas flow rate of the packed bed in the packed tower deodorization method is 20 to 60 times that of the soil deodorization method. And high. The soil deodorization method using black soil in the packed bed has been put into practical use from an early stage due to its simple equipment structure and easy maintenance, and has been widely used.

【0006】充填材に粒状活性炭やセラミックス等の無
機材料とプラスチック成形品を使用する充填塔式脱臭法
は、その設備がコンパクトに纏められていることから、
近年その普及がめざましい。上記したように、種々の脱
臭方法が実用化、または提案されているが、低濃度の臭
気を効率よく脱臭する方法は、現時点における技術では
活性炭吸着法が唯一の実用的な脱臭方法である。
The packed tower type deodorization method using a plastic molded article and an inorganic material such as granular activated carbon or ceramics as a filler is because the equipment is compactly arranged.
In recent years, its spread has been remarkable. As described above, various deodorizing methods have been put to practical use or proposed, but the method for efficiently deodorizing low-concentration odors is the only practical deodorizing method using activated carbon adsorption at present.

【0007】[0007]

【発明が解決しようとする課題】前記した土壌脱臭法や
充填塔式脱臭法の脱臭性能は、使用される充填材の性能
によって決まる。そのため低コストで優れた性能を具備
した充填材の開発が望まれる。また、この脱臭法に使用
される充填材は、貴重な資源でもあるために、安価で廃
棄物の再資源化に合致したものが望ましい。生物脱臭法
において、脱臭に関与する微生物の棲息場所としての細
孔を有する活性炭は、理想的な充填材である。活性炭を
充填材にした生物脱臭装置にあって、運転当初は、充填
した活性炭の表面に微生物が付着し易いことから、生物
脱臭の欠点とされている通常は長い馴致期間を短縮化す
ることができる。
The deodorizing performance of the above-mentioned soil deodorizing method and packed tower type deodorizing method is determined by the performance of the filler used. Therefore, development of a filler having excellent performance at low cost is desired. The filler used in this deodorization method is also a valuable resource, and therefore, it is desirable that the filler be inexpensive and suitable for recycling waste. In the biological deodorization method, activated carbon having pores as a habitat for microorganisms involved in deodorization is an ideal filler. In a biological deodorizing device using activated carbon as a filler, at the beginning of operation, microorganisms easily adhere to the surface of the filled activated carbon. it can.

【0008】しかしながら、薬剤を添着していない無添
着活性炭は、その内部に多くの細孔が存在するために、
活性炭内部まで臭気成分を吸着することができるが、活
性炭中心部への臭気成分の拡散が遅いために、活性炭粒
子の中心部付近が有効に使用されていない欠点があっ
た。また、臭気成分と微生物の反応に必要な微生物と臭
気の接触や酸素の供給が、活性炭の内部まで行われない
という問題があった。このため、活性炭の内部にあって
は微生物が棲息できない。このように、微生物は活性炭
表面でのみ棲息して、そこで臭気成分の分解除去に機能
し、活性炭の中心および中心近傍にあっては棲息できな
いため、活性炭の内部が有効に機能していなかった。
[0008] However, non-impregnated activated carbon without a drug impregnated therein has many pores inside,
Although the odor component can be adsorbed to the inside of the activated carbon, the diffusion of the odor component to the center of the activated carbon is slow, so that there is a disadvantage that the vicinity of the center of the activated carbon particles is not effectively used. In addition, there is a problem that the contact between the microorganism and the odor necessary for the reaction between the odor component and the microorganism and the supply of oxygen are not performed to the inside of the activated carbon. For this reason, microorganisms cannot live in activated carbon. As described above, the microorganisms live only on the surface of the activated carbon, function to decompose and remove odor components there, and cannot live in the center and near the center of the activated carbon, so that the inside of the activated carbon did not function effectively.

【0009】また、活性炭を用いる脱臭方法において、
活性炭に薬剤を添着させた薬剤添着活性炭と臭気成分を
接触させて、薬剤と臭気成分を反応させることにより脱
臭処理する方法等があり、アンモニアなどの塩基性臭気
成分を活性炭で効果的に除去するために、酸を活性炭に
添着したり、前述したように無添着活性炭ではその吸着
量が少ない硫化メチルや二硫化メチルなどの中性臭気成
分の除去のために、酸化剤を添着することがなされる。
このように、活性炭に薬剤を添着させた場合には、活性
炭内部の細孔が薬剤で閉塞されてしまうために、活性炭
表面より、中心部近傍の薬剤が十分に臭気成分と接触で
きず、添着した薬剤が有効に機能しないという問題があ
る。このような問題は、高価な活性炭や薬剤の浪費であ
り、かつ貴重な資源の無駄となる。このような事情に鑑
み、本発明の目的は、限りある資源を有効に活用し、脱
臭性能の優れた充填剤を提供し、生物脱臭法の性能向上
を図り、更に生物脱臭法における馴致期間の短縮を図ろ
うとするものである。
[0009] In the deodorizing method using activated carbon,
There is a method of deodorizing treatment by contacting the odor component with the drug-impregnated activated carbon in which the drug is impregnated on the activated carbon, and effectively removing the basic odor component such as ammonia with the activated carbon. Therefore, an acid is impregnated on activated carbon, or an oxidizing agent is impregnated on non-impregnated activated carbon as described above to remove neutral odor components such as methyl sulfide and methyl disulfide, which have a small adsorption amount. You.
In this way, when the drug is impregnated on the activated carbon, the pores inside the activated carbon are blocked by the drug, so that the drug near the center from the activated carbon surface cannot sufficiently contact the odor component, and There is a problem that the used drug does not function effectively. Such a problem is a waste of expensive activated carbon and chemicals, and wastes valuable resources. In view of such circumstances, an object of the present invention is to effectively utilize limited resources, provide a filler having excellent deodorization performance, improve the performance of the biological deodorization method, and further improve the performance of the biological deodorization method. They try to shorten it.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
めの本発明は、以下の各項によって構成される。 (1)無機材料を焼成した焼結体表面に炭素物質を被覆
したことを特徴とする脱臭材。 (2)炭素物質が炭化物あるいは活性炭であることを特
徴とする前記(1)記載の脱臭材。 (3)炭素物質内部に酸、アルカリあるいは酸化剤を添
着したことを特徴とする前記(1)又は(2)記載の脱
臭材。 (4)悪臭ガスを脱臭する装置において、無機材料を焼
成した焼結体表面に炭素物質を被覆した脱臭材を充填し
た充填層を有し、悪臭ガスの導入口及び臭気成分を除去
した処理ガスの排出口を有することを特徴とする脱臭装
置。 (5)悪臭ガスを脱臭する装置において、無機材料を焼
成した焼結体表面に炭素物質を被覆し、それを生物学的
脱臭作用をする微生物を保持した脱臭材を充填した充填
層を有し、前記充填層の上方に散水装置を設け、悪臭ガ
スの導入口を前記充填層の下方に設け、処理ガスの排出
口を前記充填層の上方に設けたことを特徴とする脱臭装
置。
The present invention for solving the above-mentioned problems is constituted by the following items. (1) A deodorizer characterized in that the surface of a sintered body obtained by firing an inorganic material is coated with a carbon material. (2) The deodorizing material according to the above (1), wherein the carbon substance is a carbide or activated carbon. (3) The deodorizing material according to the above (1) or (2), wherein an acid, an alkali or an oxidizing agent is impregnated inside the carbon material. (4) An apparatus for deodorizing a malodorous gas, which has a filling layer filled with a deodorizing material coated with a carbon material on the surface of a sintered body obtained by firing an inorganic material, and has an inlet for a malodorous gas and a processing gas from which an odorous component is removed. A deodorizing device characterized by having a discharge port. (5) An apparatus for deodorizing malodorous gas, which has a filling layer in which a surface of a sintered body obtained by firing an inorganic material is coated with a carbon substance and is filled with a deodorizing material holding microorganisms having a biological deodorizing action. A deodorizing device, wherein a water sprinkler is provided above the packed bed, an introduction port for the malodorous gas is provided below the packed bed, and an outlet for the processing gas is provided above the packed bed.

【0011】[0011]

【発明の実施の形態】発明の実施の形態を詳細に説明す
るが、本発明はこれに限定されない。本発明で用いる無
機焼結体の製造原料は、鋳物砂やその鋳物砂の再生処理
の際に発生する微細な廃鋳物、珪砂、粘土である。その
他にこれらを含む産業廃棄物も原料として使用すること
ができる。本発明の対象臭気成分は、アンモニア、アミ
ン類(例えばトリメチルアミン)、アルデヒド類、揮発
性脂肪酸(酢酸等)、アルコール類(プロピルアルコー
ル、ブチルアルコール)、硫化水素、メチルメルカプタ
ン、硫化メチル、二硫化メチル等である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail, but the present invention is not limited thereto. The raw materials for producing the inorganic sintered body used in the present invention are foundry sand and fine waste castings, silica sand, and clay generated during the regeneration of the foundry sand. In addition, industrial waste containing these can also be used as a raw material. The target odor components of the present invention include ammonia, amines (eg, trimethylamine), aldehydes, volatile fatty acids (such as acetic acid), alcohols (propyl alcohol, butyl alcohol), hydrogen sulfide, methyl mercaptan, methyl sulfide, and methyl disulfide. And so on.

【0012】本発明の脱臭材の母体となる無機焼結体の
製造方法は特に限定しない。例へば、廃鋳物砂のような
無機原料をニーダなどの混練機で混練した後、パン型造
粒機や流動層型造粒機で所定の大きさに造粒する。この
ようにして造粒した造粒物は、次いで、好ましくは自然
乾燥、あるいは熱等により強制乾燥した後、次いで、電
気炉等の加熱炉で800〜1000℃で1時間程度焼成
することにより、無機焼結体が得られる。なお、市販の
セラミックス焼結材を本発明の無機焼結体として使用す
ることもできる。上記の方法で製造された無機焼結体や
市販の焼結した無機造粒物の表面に炭素物質で被覆した
形成体が、本発明の脱臭材である。
The method for producing the inorganic sintered body serving as the base of the deodorizing material of the present invention is not particularly limited. For example, an inorganic raw material such as waste foundry sand is kneaded by a kneader such as a kneader, and then granulated to a predetermined size by a bread granulator or a fluidized bed granulator. The granulated material thus granulated is preferably naturally dried, or forcibly dried by heat or the like, and then fired at 800 to 1000 ° C. for about 1 hour in a heating furnace such as an electric furnace. An inorganic sintered body is obtained. Incidentally, a commercially available ceramic sintered material can be used as the inorganic sintered body of the present invention. The formed body obtained by coating the surface of the inorganic sintered body produced by the above method or a commercially available sintered inorganic granulated material with a carbon material is the deodorizing material of the present invention.

【0013】無機焼結体や焼結した無機造粒物の表面に
炭素物質を被覆によって得られる本発明の脱臭材の製造
方法は、特に限定しないが、無機焼結体の表面全体を連
続的に炭素物質で被覆した吸着材であることが、本発明
の必須の条件である。その一例として、無機焼結体ある
いは市販のセラミックス焼結体と炭素物質とをバインダ
ーとしてタールやピッチ類と混合し、これを乾燥した
後、還元雰囲気中で焼成することにより、炭素物質を被
覆した無機焼結体を製造することができる。炭素物質を
被覆した無機焼結体の形状は、球状または円柱状が好ま
しい。この無機焼結体の粒径は、2〜20mm、均等係
数は1.1から2までの範囲のものが良い。
The method for producing the deodorizing material of the present invention obtained by coating the surface of an inorganic sintered body or a sintered inorganic granulated product with a carbon material is not particularly limited. It is an essential condition of the present invention that the adsorbent is coated with a carbon material. As an example, an inorganic sintered body or a commercially available ceramic sintered body and a carbon material were mixed with tar or pitch as a binder, dried, and then fired in a reducing atmosphere to coat the carbon material. An inorganic sintered body can be manufactured. The shape of the inorganic sintered body coated with the carbon material is preferably spherical or cylindrical. The inorganic sintered body preferably has a particle size of 2 to 20 mm and a uniformity coefficient in the range of 1.1 to 2.

【0014】粒径が2mm以下の場合には、充填層の閉
塞や悪臭ガスの通気抵抗が高くなるとともに、悪臭ガス
の偏流れの原因になり、脱臭性能が低下することにな
る。一方、20mmを超えると、充填材の表面積が少な
くなり、悪臭ガスと充填材が接触する機会が減少するた
めに、脱臭効果が低下する。炭素物質を被覆した焼結体
の粒径は、2〜20mmの範囲が好ましく、均等係数が
1.1から2までの炭素物質を被覆した焼結体のうち、
ある特定の粒径あるいは均等係数の吸着材を単独で使用
しても良いし、あるいは複数の異なる粒径の吸着材を混
合して使用しても良い。
When the particle size is 2 mm or less, the clogging of the packed bed and the ventilation resistance of the odorous gas are increased, and the malodorous gas is caused to flow unevenly, so that the deodorizing performance is reduced. On the other hand, if it exceeds 20 mm, the surface area of the filler decreases, and the chance of contact between the odorous gas and the filler decreases, so that the deodorizing effect decreases. The particle size of the sintered body coated with the carbon material is preferably in the range of 2 to 20 mm, and among the sintered bodies coated with the carbon material having an evenness coefficient of 1.1 to 2,
An adsorbent having a specific particle size or uniformity coefficient may be used alone, or a plurality of adsorbents having different particle sizes may be mixed and used.

【0015】炭素物質を被覆した焼結体において、炭素
物質の被覆量は無機焼結体重量の5〜50%、好ましく
は5〜30%の範囲である。また、炭素物質の被覆の厚
みは焼結体の粒径の1/2〜1/5の範囲である。被覆
量が5%以下、あるいは被覆厚みが焼結体の粒径の1/
5以下では、ガスの吸着や薬剤添着量が少なく脱臭効果
が期待できない。また、被覆量が50重量%、あるいは
被覆厚みが焼結体の粒径の1/2を超えると、高価な炭
素物質が吸着に有効に使用できず、無駄となる。
In the sintered body coated with the carbon material, the coating amount of the carbon material is in the range of 5 to 50%, preferably 5 to 30% of the weight of the inorganic sintered body. The thickness of the coating of the carbon material is in the range of 1/2 to 1/5 of the particle size of the sintered body. The coating amount is 5% or less, or the coating thickness is 1 /
If it is 5 or less, the amount of adsorbed gas and the amount of chemicals attached are small, and the deodorizing effect cannot be expected. On the other hand, if the coating amount is 50% by weight or the coating thickness exceeds 1/2 of the particle size of the sintered body, an expensive carbon substance cannot be effectively used for adsorption and is wasted.

【0016】本発明においては、この炭素物質が炭化物
あるいは活性炭であるものが好ましく、これらはその表
面やその内部に多数の細孔を有するもので、その細孔内
部で臭気成分を吸着除去することができるものである。
本発明の炭化物は、有機物質を酸素から遮断して、還元
雰囲気で加熱して製造されるものであり、金属と炭素の
化合物である炭化物は含まれない。吸着材全体が、吸着
性能の高い活性炭であっても、活性炭中心部への臭気成
分の拡散が徐々に遅くなるために、活性炭中心付近ま
で、臭気成分で活性炭吸着性能が破過していなくても、
活性炭吸着塔出口で規制値を超えることがあり、その場
合には、活性炭全体が十分に使われていなくても、活性
炭を再生処理しなければならない。このように、実用的
には吸着材としては、吸着材の表面から中心部に向かっ
て、数ミリ程度までが有効な吸着範囲と考えられる。も
ちろん、悪臭ガスの通気速度を遅くしたような場合に
は、より活性炭内部まで有効に使用されるが、活性炭吸
着塔を大型化する必要が出てきて、実用的ではない。
In the present invention, it is preferable that the carbon substance is a carbide or activated carbon, which has a large number of pores on its surface or in the inside, and which absorbs and removes odor components inside the pores. Can be done.
The carbide of the present invention is produced by shielding an organic substance from oxygen and heating in a reducing atmosphere, and does not include a carbide which is a compound of metal and carbon. Even if the entire adsorbent is activated carbon with high adsorption performance, the diffusion of the odor component into the activated carbon center gradually slows down, so the activated carbon adsorption performance is not broken by the odor component up to the vicinity of the activated carbon center. Also,
In some cases, the regulated value may be exceeded at the outlet of the activated carbon adsorption tower. In this case, the activated carbon must be regenerated even if the entire activated carbon is not sufficiently used. Thus, practically, as the adsorbent, the effective adsorption range is considered to be about several millimeters from the surface of the adsorbent toward the center. Of course, when the ventilation rate of the offensive odor gas is reduced, the inside of the activated carbon is used more effectively, but it becomes necessary to enlarge the activated carbon adsorption tower, which is not practical.

【0017】炭化物は、木材、ヤシ殻系、石炭系および
石油系の原料を400〜600℃で加熱乾留して得られ
るものが好ましい。本発明における炭化物は好ましく
は、活性炭が良い。活性炭は炭化物より初期の臭気の吸
着除去が良く、品質の安定した活性炭の使用が望まし
い。活性炭は、上記炭化物を薬品や水蒸気で賦活させて
製造される。活性炭製造や活性炭再生時に発生する篩下
や集塵ダストでも良く、資源節約や廃棄物削減の面から
効果的である。また、再生前の活性炭でも良い。
Preferably, the carbide is obtained by heating and distillation of wood, coconut shell, coal and petroleum raw materials at 400 to 600 ° C. The carbon in the present invention is preferably activated carbon. Activated carbon has better initial adsorption and removal of odor than carbides, and it is desirable to use activated carbon with stable quality. Activated carbon is produced by activating the above-mentioned carbide with a chemical or steam. It is possible to use sieved or dust collected during activated carbon production or activated carbon regeneration, which is effective in saving resources and reducing waste. Activated carbon before regeneration may be used.

【0018】さらに、本発明は、炭素物質の内部や表面
に、酸、アルカリあるいは酸化剤等を添着させた添着炭
素物質を用いて、その添着させた薬剤で臭気成分を吸
収、分解することができる。活性炭による臭気成分の吸
着は、活性炭の表面部近傍で行われているために、薬剤
を添着した吸着剤においても、薬剤の有効利用される範
囲は、やはり吸着剤表面部であると考えられる。このた
めに、前記した本発明の炭素物質を被覆した無機焼結体
の炭素物質について、さらにその内部に酸、アルカリあ
るいは酸化剤等を添着させた吸着材により、臭気成分を
中和、吸収、分解除去する方法を行うことができる。
Further, the present invention uses an impregnated carbon substance to which an acid, an alkali or an oxidizing agent is impregnated inside or on the surface of the carbon substance, and absorbs and decomposes the odor component with the impregnated chemical. it can. Since the adsorption of the odor component by the activated carbon is performed in the vicinity of the surface of the activated carbon, the effective use range of the drug even in the adsorbent to which the drug is attached is considered to be the surface of the adsorbent. To this end, the carbon material of the inorganic sintered body coated with the carbon material of the present invention is further neutralized and absorbed by the adsorbent having an acid, alkali, or oxidizing agent impregnated therein. A method of decomposition and removal can be performed.

【0019】炭素物質を被覆した無機焼結体に含浸させ
る薬剤は、すべて水溶性であるものが好ましい。酸とし
ては、リン酸、硫酸等の無機酸が挙げられ、また、アル
カリとしては、水酸化ナトリウム、水酸化カリウム等が
挙げられる。ガス状の酸化剤であるハロゲンガスとして
は、塩素、臭素、ヨウ素が挙げられ、これらハロゲンガ
スと炭素物質を被覆した無機焼結体とを接触させて、ハ
ロゲンガスを炭素物質の内部に保持させたものとするこ
とができる。水溶性の酸化剤としては、ヨウ素、塩素酸
塩、臭素酸塩、ヨウ素酸塩、過塩素酸塩、次亜塩素酸
塩、亜塩素酸塩、亜硝酸塩、過マンガン酸塩、過硫酸ア
ンモニウム、安定化二酸化塩素、および過酸化物等が挙
げられる。
The chemicals for impregnating the inorganic sintered body coated with the carbon material are preferably all water-soluble. Examples of the acid include inorganic acids such as phosphoric acid and sulfuric acid, and examples of the alkali include sodium hydroxide and potassium hydroxide. Examples of the halogen gas that is a gaseous oxidizing agent include chlorine, bromine, and iodine. The halogen gas is brought into contact with an inorganic sintered body coated with a carbon material to hold the halogen gas inside the carbon material. It can be. Water-soluble oxidizing agents include iodine, chlorate, bromate, iodate, perchlorate, hypochlorite, chlorite, nitrite, permanganate, ammonium persulfate, and stable Chlorine dioxide, peroxides and the like.

【0020】これらの酸化剤を所定濃度の水溶液に調製
し、この水溶液に乾燥状態の炭素物質を被覆した無機焼
結体を浸漬させ、炭素物質を被覆した無機焼結体の炭素
物質の内部に酸化剤を浸透させる。余分な酸化剤水溶液
を分離した後、炭素物質を被覆した無機焼結体に薬剤を
保持させた吸着剤を製造する。その他使用できる薬剤と
したは、ヒドラジンやヒドラジン塩が挙げられる。炭素
物質を被覆した無機焼結体に含浸させる薬剤の添加量
は、でき得るかぎり高濃度が好ましいが、炭素物質を被
覆した無機焼結体の最大吸水量は30%であるために、
水溶性薬剤、例えば、リン酸の添加量は乾燥炭素物質を
被覆した無機焼結体当たり10重量%であり、ガス状の
臭素では乾燥炭素物質を被服した無機焼結体当たり10
%であり、比較的水に解け難いヨウ素酸ナトリウムで
は、炭素物質を被服した無機焼結体当たり数重量%であ
る。
These oxidizing agents are prepared in an aqueous solution having a predetermined concentration, and an inorganic sintered body coated with a dry carbon material is immersed in the aqueous solution, and the inside of the carbon material of the inorganic sintered body coated with the carbon material is immersed. Infiltrate the oxidant. After separating the excess aqueous solution of the oxidizing agent, an adsorbent in which the inorganic sintered body coated with the carbon substance holds the agent is manufactured. Other usable drugs include hydrazine and hydrazine salts. The addition amount of the chemical for impregnating the inorganic sintered body coated with the carbon substance is preferably as high as possible, but the maximum water absorption of the inorganic sintered body coated with the carbon substance is 30%.
The amount of the water-soluble agent, for example, phosphoric acid added is 10% by weight per inorganic sintered body coated with a dry carbon material, and 10% per gaseous bromine per inorganic sintered body coated with a dry carbon material.
% Of sodium iodate, which is relatively insoluble in water, is several weight% per inorganic sintered body coated with a carbon material.

【0021】さらに、本発明は、前記した本発明におけ
る炭素物質を被覆した脱臭剤を、生物脱臭法における土
壌脱臭装置の充填材やその他の生物脱臭装置の充填材に
使用しようとするものである。図2は、一過性で散水す
る場合の生物脱臭装置の概略説明図を示し、原ガス(悪
臭ガス)3をカラム1の下方部に供給し、微生物が棲息
する充填材2を保持する充填層を通って頂部から処理ガ
ス5となって大気に流出する。而して、原ガス3が充填
材2を保持する充填層を通過する間に微生物によって原
ガス3中の臭気成分が分解される。この充填層は、炭素
物質で被覆された無機焼結体である充填材によって構成
されている。充填層の高さは通常500mm〜1000
mmの範囲とされる。充填層の上部からは、充填層の充
填材2が乾燥しない程度に、適宜、一過性で工業用水、
生物処理水等を散水ライン6から散水する。充填層を通
過した液は、装置下方部のドレン4から排出される。
Further, the present invention intends to use the deodorant coated with the carbon substance according to the present invention described above as a filler for a soil deodorizer and a filler for other biological deodorizers in a biological deodorization method. . FIG. 2 is a schematic explanatory view of a biological deodorizing apparatus in a case where water is transiently sprinkled, in which a raw gas (odorous gas) 3 is supplied to a lower portion of a column 1 and a packing for holding a packing material 2 in which microorganisms live is shown. From the top through the layer, it becomes the processing gas 5 and flows out to the atmosphere. Thus, the odor components in the raw gas 3 are decomposed by microorganisms while the raw gas 3 passes through the packed bed holding the filler 2. This filling layer is composed of a filler which is an inorganic sintered body coated with a carbon material. The height of the packed layer is usually 500 mm to 1000
mm. From the upper part of the packed bed, it is possible to temporarily and temporarily use industrial water, so that the filler 2 of the packed bed is not dried.
The biological treatment water or the like is sprinkled from the sprinkling line 6. The liquid that has passed through the packed bed is discharged from the drain 4 at the lower part of the apparatus.

【0022】図3は、充填塔式生物脱臭装置の概略説明
図を示し、カラム1の下方部に供給した原ガス(悪臭ガ
ス)3は、微生物が棲息する充填材2を保持する充填層
を通って頂部から処理ガス5となって大気に流出する。
この充填材2を保持する充填層を通過する際に、充填層
に棲息する微生物によって、悪臭ガス中の臭気成分が分
解される。
FIG. 3 is a schematic explanatory view of a packed tower type biological deodorizing apparatus. The raw gas (malodorous gas) 3 supplied to the lower part of the column 1 forms a packed bed holding a packing material 2 in which microorganisms live. The gas passes through the top and becomes the processing gas 5 and flows out to the atmosphere.
When passing through the packed bed holding the filler 2, the odor components in the malodorous gas are decomposed by microorganisms living in the packed bed.

【0023】この充填層は炭素物質で被服された無機焼
結体である充填材によって構成される。充填層の高さは
1塔当たり500〜1000mmである。充填層の上部
からは、充填層の充填材2が乾燥しない程度に、装置の
下方部に滞留する充填材通過液を循環ポンプ7で散水ラ
イン6に移送し、カラム1に散水してもよい。また、工
業用水、生物処理水等を直接、充填層の上部から散水す
ることもできる。散水は連続的あるいは間欠的でもよ
い。散水量は単位処理ガス量当たり1〜5リットル/m
3 −ガスの範囲であり、通常は3リットル/m3 −ガス
である。8は補給水で、循環ポンプ7によるカラム1へ
の給水が不足する場合に、補給する。4はドレンで剰余
の水を排出する。
This filling layer is constituted by a filling material which is an inorganic sintered body coated with a carbon material. The height of the packed bed is 500 to 1000 mm per tower. From the upper part of the packed bed, the filler passing liquid staying in the lower part of the apparatus may be transferred to the water sprinkling line 6 by the circulating pump 7 and sprinkled on the column 1 so that the packing 2 of the packed bed is not dried. . Further, industrial water, biologically treated water, or the like can be directly sprinkled from the upper portion of the packed bed. Sprinkling may be continuous or intermittent. Watering rate is 1-5 liters / m per unit processing gas volume.
It is in the range of 3 -gas, usually 3 l / m 3 -gas. Reference numeral 8 denotes makeup water, which is supplemented when water supply to the column 1 by the circulation pump 7 is insufficient. 4 drains excess water.

【0024】[0024]

【実施例】以下において、本発明を実施例により更に具
体的に説明するが、本発明は、これらの実施例により限
定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0025】実施例1 図1は、実施例1で用いる活性炭吸着装置の概要を説明
する図面である。図1に示す内径150mm、高さ10
00mmのポリ塩化ビニル製のカラムを3筒使用し、そ
れぞれの筒に下記の吸着剤を500mm高さに充填し
て、空筒線速度(LV)0.3m/秒、空筒速度(S
V)2160〔1/h〕で連続試験した。各々の筒に以
下の吸着材を500mm高さに充填した。 第1筒:粒径2〜5mmのヤシ殻活性炭。 第2筒:有効径3mm、均等係数1.2の活性炭を被覆
した無機焼結体。 第3筒:有効径3mm、均等係数1.2の炭化物を被覆
した無機焼結体。
Example 1 FIG. 1 is a drawing for explaining the outline of an activated carbon adsorption apparatus used in Example 1. 150 mm inner diameter and 10 height shown in FIG.
Using three columns of 00 mm polyvinyl chloride columns, each column was filled with the following adsorbent to a height of 500 mm, and the linear velocity (LV) of the cylinder was 0.3 m / sec, and the cylinder velocity (S
V) A continuous test was performed at 2160 [1 / h]. Each cylinder was filled with the following adsorbent to a height of 500 mm. First cylinder: coconut shell activated carbon having a particle size of 2 to 5 mm. Second cylinder: an inorganic sintered body coated with activated carbon having an effective diameter of 3 mm and a uniformity coefficient of 1.2. Third cylinder: an inorganic sintered body coated with carbide having an effective diameter of 3 mm and a uniformity coefficient of 1.2.

【0026】供試した無機焼結体は、以下により調製し
た。粒径約0.075mm以下の廃鋳物砂に水を加へ
て、混練し、造粒機で球状に造粒し、乾燥後800℃で
70分間焼成した。冷却後、篩にて分級して所望の無機
焼結体を得た。前記有効径2.5mmの無機焼結体1部
に、粉末ヤシ殻活性炭0.2部、石油ピッチ0.1部を
添加して混練し、造粒機で球状に造粒後乾燥し、その
後、窒素気流中で800℃で70分焼成して、活性炭を
被覆した無機焼結体を製造した。また、活性炭を被覆し
た無機焼結体も同様にして製造した。いずれも、その有
効径が3mm、均等係数が1.2となるように、篩で分
級して供試した。
The tested inorganic sintered bodies were prepared as follows. Water was added to waste casting sand having a particle size of about 0.075 mm or less, kneaded, granulated into a spherical shape using a granulator, dried, and fired at 800 ° C. for 70 minutes. After cooling, the mixture was classified with a sieve to obtain a desired inorganic sintered body. To 1 part of the inorganic sintered body having an effective diameter of 2.5 mm, 0.2 part of powdered coconut shell activated carbon and 0.1 part of petroleum pitch are added and kneaded, and then granulated by a granulator and then dried. Then, the resultant was fired at 800 ° C. for 70 minutes in a nitrogen stream to produce an inorganic sintered body coated with activated carbon. In addition, an inorganic sintered body coated with activated carbon was produced in the same manner. All were classified and screened so that the effective diameter was 3 mm and the uniformity coefficient was 1.2.

【0027】市販の標準ガスと空気で、硫化水素2pp
m,硫化メチル1ppm、二硫化メチル1ppmに調製
した模擬ガスを試験用原ガスとして、試験に供した。第
1表に通気開始30日後の処理ガスの各臭気成分の濃度
を示す。活性炭を被覆した無機焼結体の硫化水素濃度
は、通気日数が30日でヤシ殻活性炭と同程度であっ
た。安価な炭素物質を使用した炭化物を被覆した無機焼
結体は、硫化水素の除去性が不十分であった。また、い
ずれの吸着材も中性臭気成分である硫化メチルや二硫化
メチルに対する除去効果は低かった。
[0027] A commercially available standard gas and air, hydrogen sulfide 2pp
m, a simulation gas prepared to 1 ppm of methyl sulfide and 1 ppm of methyl disulfide was used for the test as a test raw gas. Table 1 shows the concentration of each odor component of the processing gas 30 days after the start of ventilation. The hydrogen sulfide concentration of the inorganic sintered body coated with the activated carbon was similar to that of the coconut shell activated carbon in 30 days of ventilation. An inorganic sintered body coated with carbide using an inexpensive carbon material had insufficient hydrogen sulfide removal properties. In addition, any of the adsorbents had a low effect on removing neutral odor components such as methyl sulfide and methyl disulfide.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 実施例1に用いたカラムに以下の吸着材を各々500m
m高さに充填し、実施例1に供した模擬ガスを同一条件
で連続的に通気した。 第1筒:粒径2〜5mmの臭素酸ナトリウム添着炭(ヤ
シ殻活性炭)。 第2筒:有効径3mm、均等係数1.2の活性炭を被覆
した無機焼結体に臭素酸ナトリウムを添着した吸着材。 第3筒:有効径3mm、均等係数1.2の炭化物を被覆
した無機焼結体に臭素酸ナトリウムを添着した吸着材。
Example 2 The following adsorbent was added to the column used in Example 1 for 500 m each.
m, and the simulation gas provided in Example 1 was continuously ventilated under the same conditions. First cylinder: sodium bromate impregnated carbon (coconut shell activated carbon) having a particle size of 2 to 5 mm. The second cylinder: an adsorbent obtained by impregnating sodium bromate into an inorganic sintered body coated with activated carbon having an effective diameter of 3 mm and a uniformity coefficient of 1.2. Third cylinder: an adsorbent obtained by impregnating sodium bromate to an inorganic sintered body coated with a carbide having an effective diameter of 3 mm and a uniformity coefficient of 1.2.

【0030】5%臭素酸ナトリウム水溶液20リットル
にヤシ殻活性炭10リットルを約5時間浸漬させた後、
3日間風乾することにより、臭素酸ナトリウム添着炭を
製造し、これを供試した。実施例1で製造した活性炭を
被覆した無機焼結体や炭化物を被覆した無機焼結体につ
いても、同様な方法で薬剤を添着して、吸着材を製造
し、これら吸着材を試験に供した。第2表に通気開始3
0日後の処理ガスの各臭気成分の濃度を示す。第2表の
結果から明らかな様に、炭化物を被覆した無機焼結体お
よび活性炭を被覆した無機焼結体の2種は、臭素酸ナト
リウムを添着した活性炭と同等の脱臭効果のあることが
明らかになった。
After immersing 10 liters of coconut shell activated carbon in 20 liters of a 5% aqueous sodium bromate solution for about 5 hours,
By air-drying for 3 days, a sodium bromate-impregnated carbon was produced and used. For the inorganic sintered body coated with the activated carbon and the inorganic sintered body coated with the carbide produced in Example 1, an adsorbent was produced by applying a chemical agent in the same manner, and these adsorbents were subjected to a test. . Table 2 starts ventilation 3
The concentration of each odor component of the processing gas after 0 days is shown. As is clear from the results in Table 2, it is clear that the two types of inorganic sintered bodies coated with carbide and the inorganic sintered bodies coated with activated carbon have the same deodorizing effect as activated carbon impregnated with sodium bromate. Became.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例3 図2に示すように、内径150mm、高さ1000mm
のポリ塩化ビニル製の3筒の試験カラムに、それぞれ黒
ぼく土、無機焼結体、炭化物で被覆した無機焼結体、活
性炭で被覆した無機焼結体の各充填材を500mm高さ
に充填した。黒ぼく土以外の充填材の粒径は3mm、均
等係数は1.2であった。供試した無機焼結体は、以下
のようにして調製した。粒径約0.075mm以下の廃
鋳物砂に水を加えて混練し、造粒機で球状に造粒、乾燥
後、800℃で70分間焼成した。冷却後、篩により分
級し、有効径2.5mmの無機焼結体を製造した。
Embodiment 3 As shown in FIG. 2, the inner diameter is 150 mm and the height is 1000 mm.
Each of the three test columns made of polyvinyl chloride is filled with black clay, inorganic sintered body, inorganic sintered body coated with carbide, and inorganic sintered body coated with activated carbon to a height of 500 mm. did. The particle size of the filler other than the Andosol was 3 mm and the uniformity coefficient was 1.2. The tested inorganic sintered body was prepared as follows. Water was added to waste casting sand having a particle size of about 0.075 mm or less, kneaded, granulated in a spherical shape with a granulator, dried, and fired at 800 ° C. for 70 minutes. After cooling, the mixture was classified with a sieve to produce an inorganic sintered body having an effective diameter of 2.5 mm.

【0033】上記で調製した有効径2.5mmの無機焼
結体1部に、粉末ヤシ殻活性炭0.2部、石油ピッチ
0.2部を加えて混練し、造粒機で球状に造粒乾燥後、
窒素気流中で800℃で70分間焼成して、活性炭を被
覆した無機焼結体を製造した。また、炭化物を被覆した
無機焼結体については、粉末ヤシ殻活性炭の代わりに粉
末状木炭を添加して、活性炭を被覆した無機焼結体を同
様に製造した。いずれも、その有効径が3mm、均等係
数が1.2となるように、篩で分級したものを供試し
た。市販の標準ガスと空気で調製した模擬ガスを原ガス
として供試した。この原ガスの組成は、硫化水素が2p
pm、メチルメルカプタンが1ppmである。
To 1 part of the above-prepared inorganic sintered body having an effective diameter of 2.5 mm, 0.2 part of powdered coconut shell activated carbon and 0.2 part of petroleum pitch are added and kneaded, and granulated by a granulator. After drying,
It was fired at 800 ° C. for 70 minutes in a nitrogen stream to produce an inorganic sintered body coated with activated carbon. In addition, with respect to the inorganic sintered body coated with carbide, powdered charcoal was added instead of powdered coconut shell activated carbon, and an inorganic sintered body coated with activated carbon was similarly produced. In each case, the samples were classified using a sieve so that the effective diameter was 3 mm and the uniformity coefficient was 1.2. A test gas prepared from commercially available standard gas and air was used as a source gas. The composition of this raw gas is that hydrogen sulfide is 2p
pm, 1 ppm of methyl mercaptan.

【0034】試験の条件は以下の通りである。 空塔線速度 :10mm/秒 散水量(単位処理ガス量当りの散水量):1リットル/m3 散水方式 :間欠散水、1回/日 ガス温度 :20〜25℃ 充填層断面積 :0.2m2 充填層高さ :0.5m 充填容量 :8.8リットル 種汚泥 :下水処理状の余剰汚泥 種汚泥添加量 :500mg/充填容量 補給水 :生物処理水The test conditions are as follows. Superficial linear velocity: 10 mm / sec watering amount (watering amount of unit processing gas amount per): 1 l / m 3 sprinkling method: Intermittent water spray, once / day Gas Temperature: 20-25 ° C. packed bed cross-sectional area: 0. 2m 2 Packed bed height: 0.5m Filling capacity: 8.8 liter Seed sludge: Excess sludge in the form of sewage treatment Seed sludge addition amount: 500 mg / filling capacity Makeup water: Biologically treated water

【0035】種汚泥添加量が、500mg/充填容量と
なるように調製後、原ガスを充填層下部から連続的に通
気し、生物処理水を充填層上部から間欠散水した。約1
週間後に硫化水素除去率が90%となり、馴致が完了し
た。第3表に試験開始1ケ月後の処理ガス(出口ガス)
の臭気成分の濃度を示す。第4表に充填層の圧力損失の
変化を示す。黒ぼく土を充填したカラムの圧力損失は、
試験開始4週間後には1400Paまで上昇し、6週間
目には通気ができなくなった。
After adjusting the amount of seed sludge to be 500 mg / filling capacity, the raw gas was continuously ventilated from the lower part of the packed bed, and biologically treated water was intermittently sprinkled from the upper part of the packed bed. About 1
After a week, the removal rate of hydrogen sulfide became 90%, and the adaptation was completed. Table 3 shows the treated gas (exit gas) one month after the start of the test.
Shows the concentration of the odor component of Table 4 shows changes in the pressure loss of the packed bed. The pressure drop of a column filled with Andosol is
Four weeks after the start of the test, the pressure rose to 1400 Pa, and aeration became impossible in the sixth week.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】実施例4 図3は、本発明の実施例4で使用する生物脱臭装置の概
念を示す図である。図3の生物脱臭装置を用い、以下に
示す条件以外は実施例3と同様の実験を行った。 空筒線速度 : 0.2m/秒 散水量(単位処理ガス量当り): 2リットル/m3 散水方式 : 連続散水 なお、実施例3の黒ぼく土に代えて無機焼結体の粒径と
均等係数に揃えたゼオライトを使用した。
Embodiment 4 FIG. 3 is a view showing the concept of a biological deodorizing apparatus used in Embodiment 4 of the present invention. An experiment similar to that of Example 3 was performed using the biological deodorizer of FIG. 3 except for the following conditions. Superficial linear velocity: 0.2 m / sec watering amount (unit processing amount of gas per): 2 l / m 3 sprinkling method: Continuous watering Incidentally, the particle diameter of the inorganic sintered body in place of the andosol Example 3 Zeolite with uniformity was used.

【0039】いずれの充填材も約1週間後には硫化水素
除去率が90%以上となったが、メチルメルカプタンの
除去率はゼオライトと無機焼結体が約30%、活性炭素
や炭化物を被覆した無機焼結体が80%以上であった。
その後、2ケ月が経過しても、ゼオライトと無機焼結体
のメチルメルカプタン除去率は40〜50%と低かっ
た。表5に試験開始2ケ月後の処理ガス(出口ガス)の
各臭気成分の濃度を示す。
After about one week, all of the fillers had a hydrogen sulfide removal rate of 90% or more, but the removal rate of methyl mercaptan was about 30% for zeolite and inorganic sintered body, and was coated with activated carbon and carbide. The content of the inorganic sintered body was 80% or more.
After two months, the removal rate of methyl mercaptan from the zeolite and the inorganic sintered body was as low as 40 to 50%. Table 5 shows the concentration of each odor component of the processing gas (outlet gas) two months after the start of the test.

【0040】[0040]

【表5】 [Table 5]

【0041】[0041]

【発明の効果】本発明の炭素物質を被覆した無機焼結
体、あるいは、その炭素物質に薬剤を添着した吸着材を
充填材として、また、生物脱臭の充填材に使用すること
により、次の効果を奏する。 (1)活性炭のような高価な資源やエネルギーの節減、
廃棄物削減に寄与する。 (2)臭気の除去に有効な範囲に、吸着性能が高い炭素
物質や薬剤を添着した炭素物質を被覆することによっ
て、添着用薬剤の使用量を減じ、効果的かつ経済的な脱
臭処理を可能として、この種の処理に大きく貢献する。 (3)馴致期間が短縮できる。 (4)微生物が付着し易く、脱臭効果が高い。 (5)充填層の通気抵抗が小さい。
By using an inorganic sintered body coated with the carbon material of the present invention or an adsorbent obtained by impregnating the carbon material with a chemical as a filler and a filler for biological deodorization, It works. (1) Saving expensive resources and energy such as activated carbon,
Contribute to waste reduction. (2) By coating a carbon material with high adsorption performance or a carbon material to which a chemical is impregnated in a range effective for odor removal, the amount of the chemical to be impregnated is reduced, and effective and economical deodorizing treatment is possible. As such, it greatly contributes to this type of processing. (3) The adaptation period can be shortened. (4) Microorganisms easily adhere and have a high deodorizing effect. (5) The airflow resistance of the filling layer is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を行う活性炭吸着装置の概略説明図を示
す。
FIG. 1 is a schematic explanatory view of an activated carbon adsorption device according to the present invention.

【図2】本発明を行う生物脱臭装置の概略説明図を示
す。
FIG. 2 is a schematic explanatory view of a biological deodorizing apparatus according to the present invention.

【図3】本発明を行う生物脱臭装置の概略説明図を示
す。
FIG. 3 is a schematic explanatory view of a biological deodorizing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 カラム 2 充填材 3 原ガス 4 ドレン 5 処理ガス 6 散水ライン 7 循環ポンプ 8 補給水 DESCRIPTION OF SYMBOLS 1 Column 2 Filling material 3 Raw gas 4 Drain 5 Processing gas 6 Sprinkling line 7 Circulation pump 8 Make-up water

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/77 B01D 53/34 116C 53/86 ZAB 53/36 ZABH B01J 20/20 Fターム(参考) 4C080 AA05 BB02 CC03 CC04 CC05 CC08 CC09 CC13 CC15 HH05 JJ03 KK08 LL07 LL10 MM05 MM33 NN01 NN04 NN14 4D002 AA03 AA05 AA06 AA13 AA14 AA32 AA40 AB02 AC10 BA02 BA04 BA17 CA07 DA02 DA17 DA41 DA44 DA59 DA66 HA01 4D048 AA22 AB03 BA14X BA45X CC38 CD02 CD10 EA04 4G066 AA05B AA35B AA42B AA75C BA05 BA09 BA20 CA24 CA25 DA02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) B01D 53/77 B01D 53/34 116C 53/86 ZAB 53/36 ZABH B01J 20/20 F-term (Reference) 4C080 AA05 BB02 CC03 CC04 CC05 CC08 CC09 CC13 CC15 HH05 JJ03 KK08 LL07 LL10 MM05 MM33 NN01 NN04 NN14 4D002 AA03 AA05 AA06 AA13 AA14 AA32 AA40 AB02 AC10 BA02 BA04 BA17 CA07 DA02 DA17 DA41 DA44 DA04 DA66 DA66 DA02 DA17 DA41 DA44 DA02 AA05B AA35B AA42B AA75C BA05 BA09 BA20 CA24 CA25 DA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 無機材料を焼成した焼結体表面に炭素物
質を被覆したことを特徴とする脱臭材。
1. A deodorizing material wherein a surface of a sintered body obtained by firing an inorganic material is coated with a carbon substance.
【請求項2】 炭素物質が炭化物あるいは活性炭である
ことを特徴とする請求項1記載の脱臭材。
2. The deodorizing material according to claim 1, wherein the carbon material is a carbide or activated carbon.
【請求項3】 炭素物質内部に酸、アルカリあるいは酸
化剤を添着したことを特徴とする請求項1または2記載
の脱臭材。
3. The deodorizing material according to claim 1, wherein an acid, an alkali or an oxidizing agent is impregnated inside the carbon material.
【請求項4】 悪臭ガスを脱臭する装置において、無機
材料を焼成した焼結体表面に炭素物質を被覆した脱臭材
を充填した充填層を有し、悪臭ガスの導入口及び臭気成
分を除去した処理ガスの排出口を有することを特徴とす
る脱臭装置。
4. An apparatus for deodorizing a malodorous gas, wherein a surface of a sintered body obtained by firing an inorganic material is provided with a filling layer filled with a deodorizing material coated with a carbon material, and an inlet for the malodorous gas and an odor component are removed. A deodorizing device having a processing gas outlet.
【請求項5】 悪臭ガスを脱臭する装置において、無機
材料を焼成した焼結体表面に炭素物質を被覆し、それを
生物学的脱臭作用をする微生物を保持した脱臭材を充填
した充填層を有し、前記充填層の上方に散水装置を設
け、悪臭ガスの導入口を前記充填層の下方に設け、処理
ガスの排出口を前記充填層の上方に設けたことを特徴と
する脱臭装置。
5. A device for deodorizing a malodorous gas, wherein a surface of a sintered body obtained by firing an inorganic material is coated with a carbon substance, and the surface of the carbon material is filled with a deodorizing material containing microorganisms having a biological deodorizing action. A deodorizing device, wherein a water spray device is provided above the packed bed, an inlet for malodorous gas is provided below the packed bed, and an outlet for processing gas is provided above the packed bed.
JP2000121286A 2000-04-21 2000-04-21 Deodorizing material and deodorizing device Pending JP2001300253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000121286A JP2001300253A (en) 2000-04-21 2000-04-21 Deodorizing material and deodorizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000121286A JP2001300253A (en) 2000-04-21 2000-04-21 Deodorizing material and deodorizing device

Publications (1)

Publication Number Publication Date
JP2001300253A true JP2001300253A (en) 2001-10-30

Family

ID=18631964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000121286A Pending JP2001300253A (en) 2000-04-21 2000-04-21 Deodorizing material and deodorizing device

Country Status (1)

Country Link
JP (1) JP2001300253A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297508A (en) * 2007-06-04 2008-12-11 Hitachi Zosen Corp Biosolid fuel and method for producing biosolid fuel
WO2024009692A1 (en) * 2022-07-06 2024-01-11 株式会社クボタ Deodorant and method for producing deodorant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297508A (en) * 2007-06-04 2008-12-11 Hitachi Zosen Corp Biosolid fuel and method for producing biosolid fuel
WO2024009692A1 (en) * 2022-07-06 2024-01-11 株式会社クボタ Deodorant and method for producing deodorant

Similar Documents

Publication Publication Date Title
JP4063316B2 (en) Deodorization method
KR20190138024A (en) Deodorant and Method for Producing the Same
JP2001300253A (en) Deodorizing material and deodorizing device
JP2007038106A (en) Deodorization method
JP2002095927A (en) Deodorizing method
JP2004024996A (en) Carrier for carrying living body, biological deodorizing apparatus using the same and deodorization method
JP2007202780A (en) Deodorizing/masking device and garbage disposer equipped with the same
JP2000107555A (en) Method for deodorization
JP2006116421A (en) Deodorizing material, manufacturing method therefor and deodorizing method
JP2000041670A (en) Deodorizing system and deodorizing apparatus
JP4639276B2 (en) Deodorant, method for producing the same, and deodorizer
JP2005152033A (en) Deodorant for composite offensive odor
JP3972177B2 (en) Seed filler habituation apparatus, its startup method, and seed filler production method
JP2001137648A (en) Deodorizing method and deodorizing material
JP2001137701A (en) Adsorbent and deodorization method
JP2003117341A (en) Method for treating gas containing ammonia and device therefor
JP2002186829A (en) Method and apparatus for deodorizing malodorous gas
JP2003210931A (en) Method for deodorization treatment
JP3500694B2 (en) Biological deodorizer
JPH01315316A (en) Process and device for deodorizing gas
JP2002085937A (en) Process and equipment for deodorization
JPH05154187A (en) Deodorizing cartridge for storage type toilet for electric train
JPH0767947A (en) Processing method for odor given from marine organism, device and adsorbent therefor
JPH01317525A (en) Deodorization method
JPH07204502A (en) Molded body for deodorization