JP2001299090A - Method for diagnosing growth of plant - Google Patents

Method for diagnosing growth of plant

Info

Publication number
JP2001299090A
JP2001299090A JP2000116481A JP2000116481A JP2001299090A JP 2001299090 A JP2001299090 A JP 2001299090A JP 2000116481 A JP2000116481 A JP 2000116481A JP 2000116481 A JP2000116481 A JP 2000116481A JP 2001299090 A JP2001299090 A JP 2001299090A
Authority
JP
Japan
Prior art keywords
growth
value
plant
diagnosis
tree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000116481A
Other languages
Japanese (ja)
Other versions
JP3346373B2 (en
Inventor
Miyoshi Sagawa
美佳 佐川
Kunio Takahashi
邦夫 高橋
Kenichi Mineuchi
健一 峰内
Kenji Kurata
憲次 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2000116481A priority Critical patent/JP3346373B2/en
Publication of JP2001299090A publication Critical patent/JP2001299090A/en
Application granted granted Critical
Publication of JP3346373B2 publication Critical patent/JP3346373B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new method for the diagnosis of the growth of a plant based on indices and analysis capable of more clearly and widely showing diagnostic result of the growth of plant while solving the problems of the conventional growth diagnosis using second order differentiation method such as a large number of evaluation factors necessary for the diagnosis. SOLUTION: The growth of a plant is diagnosed by irradiating the leaf of the plant with a laser beam, measuring the intensity of the generated fluorescence, making a graph of the variation of the fluorescent intensity with time, integrating the fluorescent intensity on the graph and comparing the result with preparatorily determined standard values comprising the normal activation value (NV) and the limit growth value (LB).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物、例えば樹木
の葉にレーザ光を照射したときに葉から生じる蛍光をレ
ーザ励起蛍光法 (Laser Induced Fluorescence: LIF
法) によって計測し、得られたデータでもってその植物
の生育状態を診断する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser-induced fluorescence (LIF) method that irradiates a plant, for example, a tree, with a laser beam when the leaf is irradiated with laser light.
The present invention relates to a method for diagnosing the growth state of a plant based on the data obtained by the measurement.

【0002】[0002]

【従来の技術】従来、樹木の生育状態の診断は、専門の
管理業者の永年の経験的知識によるところが大きく、簡
便かつ客観的手法での生育状態の評価は困難であった。
また、樹木外観の変化、つまり葉の変色や落葉などの変
化が現れるまで、その生育状態の悪化を検出することが
できない。
2. Description of the Related Art Hitherto, diagnosis of a tree growth state is largely based on long-term empirical knowledge of a specialized management company, and it has been difficult to evaluate the growth state by a simple and objective method.
Further, until a change in the appearance of the tree, that is, a change such as discoloration of the leaves or fallen leaves, appears, deterioration of the growth state cannot be detected.

【0003】したがって、樹木の生育、移植に当たって
は専門の管理業者の経験によって、樹木の生育の良否の
選別を行っている。しかし、そのような経験は永年にか
けて蓄積されるもので、一朝一夕に獲得できるものでは
ない。しかも、樹木の生育・管理に携わる人達の高齢化
によって、そのような経験・知識の獲得・継承は今後ま
すます難しくなる。
[0003] Therefore, in the growth and transplantation of trees, the quality of tree growth is selected based on the experience of a specialized management company. However, such experience accumulates over the years and cannot be obtained overnight. Moreover, the aging of the people involved in the growth and management of trees will make it more difficult to acquire and pass on such experience and knowledge in the future.

【0004】一方、最近の都市空間のように、人工的な
自然空間が屋外の公園などにおいてはもちろん、アトリ
ウムというような屋内空間においても再現され、樹木の
植栽を行うことが広く行われるようになってきている。
そのような環境下では、常に手入れを怠らず、生育状態
の悪い樹木があれば、直ちに植え替えるなどして、常に
生育状態を良好なものとする必要がある。
On the other hand, artificial natural spaces such as recent urban spaces are reproduced not only in outdoor parks and the like but also in indoor spaces such as atriums, so that tree planting is widely performed. It is becoming.
In such an environment, it is necessary to always maintain good condition by always taking care of the trees and replanting immediately if there is a tree with poor growth.

【0005】したがって、樹木の生育状態を何等かの手
段でもって容易にかつ客観的に判断できる技術の開発が
求められている。◇例えば、特許第2,943,796 号におい
て本件出願人は、レーザ光線の照射によって発生する蛍
光の強度を計測し、得られる蛍光強度曲線によって植物
の生育状況を診断する方法を開示した。
[0005] Therefore, there is a need for the development of a technique that can easily and objectively determine the growth state of a tree by some means. For example, in Japanese Patent No. 2,943,796, the present applicant has disclosed a method of measuring the intensity of fluorescence generated by irradiation with a laser beam, and diagnosing the growth state of a plant based on the obtained fluorescence intensity curve.

【0006】ところで、上述の公報の説明からも分かる
ように、光照射によって植物の葉から発生する蛍光の強
度が時間によって変化することは、Kautsky 効果あるい
はクロロフィルの誘導期現象として知られており、それ
らの現象と光合成活性、つまり植物の生育状態との相関
が知られている。葉緑体の単離や、アデニレートの抽出
など面倒な操作なしに光合成活性を計測できることか
ら、Kautsky 効果を利用した光合成活性の計測法は、植
物の簡便な生育状態の判断手法として考えられている。
[0006] By the way, as can be seen from the above-mentioned publication, the fact that the intensity of the fluorescence generated from the leaves of a plant due to light irradiation changes with time is known as the Kautsky effect or the chlorophyll induction phase phenomenon. The correlation between these phenomena and photosynthetic activity, that is, the growth state of plants, is known. Since the photosynthetic activity can be measured without troublesome operations such as isolation of chloroplasts and extraction of adenylate, the method of measuring photosynthetic activity using the Kautsky effect is considered as a simple method for determining the growth state of plants. .

【0007】図1は、Kautsky 効果をモデル化して示す
グラフであり、図示例では20分間暗所においた葉に、光
の代わりにレーザを照射しており、レーザ照射後から蛍
光が発生し、まず、定常状態のOの位置から点I、Dを
経て蛍光強度は上昇し、最初の最大値Pに到ってから蛍
光強度は減少を開始し、点SおよびMを経て、再び定常
状態Tに至る。
FIG. 1 is a graph showing a model of the Kautsky effect. In the illustrated example, the leaves in the dark place were irradiated with laser instead of light for 20 minutes, and fluorescence was generated after the laser irradiation. First, the fluorescence intensity increases from the position O in the steady state via the points I and D, starts decreasing after reaching the first maximum value P, passes through the points S and M, and returns to the steady state T again. Leads to.

【0008】上述の特許はこのようにして得られた蛍光
強度曲線の変曲点を求め、その出現時間でもって植物の
生育を診断するのである。
In the above-mentioned patent, the inflection point of the fluorescence intensity curve thus obtained is determined, and the growth time of the plant is diagnosed based on the appearance time.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、経験的
にも、そのような解析方法をもって実際の植物活性の診
断を行おうとする場合、実用上の簡便さを考慮すると、
更なる改善が必要であることが判明した。
However, empirically, when diagnosing actual plant activity using such an analysis method, considering practical simplicity,
It has been found that further improvements are needed.

【0010】すなわち、特許第2,943,796 号公報に開示
された発明では、LIF 法によって植物から得られた蛍光
強度の減少線の変曲点を求め、その変曲点の出現時間か
ら生育診断を行っている。その解析手順には2次微分法
を使用し、診断時には、a、Ipという2つの評価因子を
用いている。
That is, in the invention disclosed in Japanese Patent No. 2,943,796, an inflection point of a line of decrease in fluorescence intensity obtained from a plant is obtained by the LIF method, and a growth diagnosis is performed from the appearance time of the inflection point. I have. The secondary differentiation method is used for the analysis procedure, and two evaluation factors, a and Ip, are used at the time of diagnosis.

【0011】このような2次微分法による診断を試行し
た結果、以下のような解決すべき点のあることがわかっ
た。 (i) 評価因子 (a、Ip) が多い。 (ii)明確な変化の評価には適しているが、微少な変化に
は対応できない場合がある。 (iii) 極度のストレスを受けたときのフラットな蛍光強
度の変化を評価できない場合がある。
As a result of trial of the diagnosis by such a second-order differentiation method, it was found that there were the following points to be solved. (i) There are many evaluation factors (a, Ip). (ii) Appropriate for evaluating clear changes, but may not be able to respond to small changes. (iii) In some cases, it is not possible to evaluate a flat change in fluorescence intensity when subjected to extreme stress.

【0012】ここに、本発明の課題は、上述のような2
次微分法を用いて行う植物の生育診断における評価因子
が多い等の問題点を解消でき、植物の生育診断をより明
確に広範囲に示す指標と解析法に基づく新たな生育診断
法を提供することである。
[0012] Here, the object of the present invention is to solve the above two problems.
To provide a new growth diagnosis method based on indices and analytical methods that can solve problems such as a large number of evaluation factors in plant growth diagnosis using the second derivative method and that clearly and broadly show plant growth diagnosis. It is.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上述の課
題を解決すべく種々検討を重ねた結果、植物の葉の生育
状態をレーザ誘起蛍光法(LIF法) によって計測し、その
結果から、積分法による解析で診断基準値を求め、その
基準で植物の生育状態を診断することが有効であること
を知り、本発明を完成した。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems, and as a result, measured the growth state of the leaves of the plant by a laser-induced fluorescence method (LIF method). Thus, the present inventors have found that it is effective to determine a diagnostic reference value by analysis using the integration method and to diagnose the growth state of a plant based on the reference value, and have completed the present invention.

【0014】ここに、本発明は次の通りである。 (1) 植物の葉にレーザ光線を照射し、発生する蛍光の強
度を測定して、例えば時間に対する蛍光強度の変化をグ
ラフ化し、得られたグラフの蛍光強度の積分値を求める
などの手法により、時間に対する蛍光強度の積分値を求
め、該積分値と、予め求めておいた基準値との比較によ
り上記植物の生育を診断することを特徴とする植物の生
育診断方法。 (2) 前記基準値が正常活性値(NV)と生育限界値(L
B)とであり、前記積分値が該正常活性値より小さけれ
ば生育状態を正常と判断し、前記積分値が該生育限界値
より大きければ生育状態不良と判断することを特徴とす
る上記(1) 記載の植物の生育診断方法。
Here, the present invention is as follows. (1) By irradiating the leaves of the plant with a laser beam, measuring the intensity of the generated fluorescence, for example, by graphing the change in the fluorescence intensity with respect to time, and obtaining an integrated value of the fluorescence intensity of the obtained graph, etc. A method of diagnosing the growth of the plant by calculating an integrated value of the fluorescence intensity with respect to time and comparing the integrated value with a predetermined reference value. (2) The reference value is a normal activity value (NV) and a growth limit value (L
B), wherein if the integrated value is smaller than the normal activity value, the growth state is determined to be normal, and if the integrated value is larger than the growth limit value, the growth state is determined to be poor. The method for diagnosing the growth of a plant according to the above.

【0015】[0015]

【発明の実施の形態】本発明は、上述のように LIF法に
よる計測結果から得た蛍光強度曲線の積分値(Iv)を求
め、正常活性値(NV)と生育限界値(LB)という2つの基準
値との比較によって、生育状態を診断する。
DETAILED DESCRIPTION OF THE INVENTION As described above, according to the present invention, the integral value (Iv) of the fluorescence intensity curve obtained from the measurement result by the LIF method is determined and referred to as a normal activity value (NV) and a growth limit value (LB). The growth status is diagnosed by comparison with two reference values.

【0016】すでに述べたように、樹木の生育状態とク
ロロフィル蛍光誘導期現象の関係に関しては、これまで
の研究で、樹木の生育状態が悪化した際の誘導期現象の
蛍光強度曲線が、以下のように変化することが分かって
いる。
As described above, regarding the relationship between the growth state of a tree and the chlorophyll fluorescence induction period phenomenon, in a previous study, the fluorescence intensity curve of the induction period phenomenon when the growth state of the tree deteriorated was as follows. Are known to change.

【0017】まず、生育が良好なときには、図2(a) に
示すように、蛍光強度はピークを示した後、緩やかなS
字を描いて減衰する。生育状況が悪化すると、ピークラ
インが徐々に緩やかになり、図2(b) に示すように、ピ
ーク後の減衰曲線がS字を示さなくなり、上部方向に膨
らみ、減衰する割合が小さくなる。
First, when growth is good, as shown in FIG. 2 (a), the fluorescence intensity shows a peak,
Draw and decay. When the growth condition deteriorates, the peak line gradually becomes gentler, and as shown in FIG. 2 (b), the attenuation curve after the peak does not show an S-shape, swells upward, and the rate of attenuation decreases.

【0018】最終的には、蛍光強度の減衰曲線が減衰し
なくなり、図2(c) に示すようにフラットなラインを描
くことになる。ここに、本発明によれば、上述の図2
(a) 〜(c) の生育状態の変化に伴う蛍光強度変化の特徴
すべてを解析対象とすることができる。
Finally, the decay curve of the fluorescence intensity does not attenuate, and a flat line is drawn as shown in FIG. 2 (c). Here, according to the present invention, FIG.
All the characteristics of the change in the fluorescence intensity accompanying the change in the growth state in (a) to (c) can be analyzed.

【0019】まず、本発明にかかる解析手順によれば、
誘導期現象として観察される蛍光強度の減衰曲線は、最
小値を0、ピークP出現時間 (約1.0 秒) を1として規
格化する。
First, according to the analysis procedure according to the present invention,
The fluorescence intensity decay curve observed as an induction period phenomenon is normalized with the minimum value being 0 and the peak P appearance time (about 1.0 second) being 1.

【0020】このとき、図3に示すように、減衰曲線と
時間軸X軸で囲まれた範囲の面積S( 図中、斜線領域と
して示す) を求めるが、相対蛍光強度をf(t)とおくと、
下記式(3) が得られる。
At this time, as shown in FIG. 3, an area S (shown as a hatched area in the figure) in a range surrounded by the decay curve and the time axis X axis is obtained, and the relative fluorescence intensity is represented by f (t). After all,
The following equation (3) is obtained.

【0021】 本発明においてこの値を積分値(Iv:Integral value) と
言う。なお、このときの積分領域の時間は上述の図2
(a) 〜(c) の蛍光強度変化を区別して表示できる最短時
間として決める。図示例では24秒としている。
[0021] In the present invention, this value is called an integral value (Iv: Integral value). The time of the integration region at this time is as shown in FIG.
The change in fluorescence intensity of (a) to (c) is determined as the shortest time that can be displayed in a distinguished manner. In the illustrated example, it is set to 24 seconds.

【0022】蛍光強度曲線の作成領域は、前述の特許と
同様に以下のような手順で行う。 (1) 葉を採取して試料ホルダーにセットし、ホルダー内
で暗処理する。 (2) 暗処理後、レーザ光を照射し、葉からの蛍光を取得
する。
The region where the fluorescence intensity curve is created is performed in the following procedure as in the above-mentioned patent. (1) Collect the leaves, set them in the sample holder, and perform dark treatment in the holder. (2) After darkening, irradiate with laser light to obtain fluorescence from leaves.

【0023】クロロフィル蛍光の誘導期現象は3〜5分
間ほど続くが、本発明では24秒間の誘導期現象で診断可
能である。ここに、本発明によれば、診断指標(Diagnos
is Index) を予め設定しておき、上記積分値Ivと比較す
ることで植物の生育状況を判断する。
The induction phase phenomenon of chlorophyll fluorescence lasts for about 3 to 5 minutes, but in the present invention, it can be diagnosed by the induction phase phenomenon of 24 seconds. Here, according to the present invention, the diagnostic index (Diagnos
is Index) is set in advance, and the growth state of the plant is determined by comparing with the integral value Iv.

【0024】ここに、上記診断指標の定義および決定方
法は次の通りである。本発明の好適実施例で樹木の生育
状態を診断するために、以下の2つの値を基準とする診
断指標を定めるのが好ましい。
Here, the definition and determination method of the diagnostic index are as follows. In order to diagnose the growth condition of a tree in the preferred embodiment of the present invention, it is preferable to determine a diagnostic index based on the following two values.

【0025】(i)正常活性値:Normal Vitality value(N
V) ・・・生育状態が正常であることを示す基準値。 (ii) 生育限界値:Life Boundary value(LB) ・・・生
育の限界を示す基準値。
(I) Normal activity value: Normal Vitality value (N
V) A reference value indicating that the growth state is normal. (ii) Growth limit value: Life Boundary value (LB): A reference value indicating the growth limit.

【0026】これらの関係は図4に模式的に示すが、積
分値Ivが上記正常活性値(NV)以下であれば、植物の生育
状況は正常と判断し、生育限界値(LB)以上であれば、生
育状況は不良であって、樹木は枯死に至ると診断され
る。
These relationships are schematically shown in FIG. 4. If the integrated value Iv is equal to or less than the above-mentioned normal activity value (NV), the growth condition of the plant is determined to be normal, and if the integrated value Iv is equal to or greater than the growth limit value (LB). If so, the growth is poor and the tree is diagnosed as dead.

【0027】正常活性値と生育限界値の間の領域のとき
には、樹木の生育は保たれているが最良とは言えず、何
らかの手入れを必要とすると診断する。このときの正常
活性値および生育限界値は次のようにして予め求めてお
くのである。なお、これらの操作は樹木の種類毎に行
う。このような基準値はいくつかの基準によって各種の
基準値が設定可能であるが、本発明の場合には、葉内糖
濃度の変化と上記積分値Ivとの相関に基づき、基準値を
設定することができる。以下、その設定操作を説明す
る。
In the region between the normal activity value and the growth limit value, it is diagnosed that the growth of the tree is maintained but is not the best and some care is required. The normal activity value and growth limit value at this time are determined in advance as follows. These operations are performed for each tree type. Such a reference value can be set to various reference values by several criteria, but in the case of the present invention, the reference value is set based on the correlation between the change in the intracellular sugar concentration and the integrated value Iv. can do. Hereinafter, the setting operation will be described.

【0028】なお、以下において、植物として、生育状
態が比較的判断しにくいと考えられている樹木、特にモ
ッコクを例にとって本発明を説明する。 (1) 温湿度制御可能な植物育成チャンバー内にモッコク
を搬入し、光を与えず (暗黒化) 生育させた (24℃、40
%RH、01x)。 (2) LIF 法による蛍光強度計測と葉内糖濃度計測は、
(1) の搬入開始直前から開始し、搬入後は2〜4日おき
に継続して行った。計測手順は、葉を採取してLIF法に
よりIv値を計測し、計測の終了した葉は破砕し、抽出、
精製して、高速液体クロマトグラフィにより葉内糖濃度
を計測した。
In the following, the present invention will be described by taking as an example a tree whose growth state is considered to be relatively difficult to determine, particularly mocktail. (1) The mocktail was carried into a plant growth chamber where temperature and humidity could be controlled and grown without light (darkening) (24 ° C, 40
% RH, 01x). (2) Fluorescence intensity measurement and leaf sugar concentration measurement by LIF method
It started immediately before the start of (1), and continued every 2 to 4 days after the start. In the measurement procedure, the leaves were collected, the Iv value was measured by the LIF method, and the leaves after the measurement were crushed, extracted,
After purification, the sugar concentration in leaves was measured by high performance liquid chromatography.

【0029】なお、葉内糖分はサッカロースにより決定
した。このようにして計測された暗黒化での葉内糖濃度
と積分値Ivの変化を図5に示す。
The sugar content in the leaves was determined by saccharose. FIG. 5 shows the changes in the sugar concentration in leaves and the integrated value Iv in the darkening measured in this manner.

【0030】葉内糖濃度の低下から、生育状態の悪化し
ていく様子を捉えることができた。葉内糖濃度の低下
は、光合成速度の低下を示し、低下後の生育が困難であ
ることを意味する。したがって、診断の基準値を以下の
ように考えることができる。
From the decrease in the sugar concentration in the leaves, it was possible to grasp that the growth state was deteriorating. A decrease in the sugar concentration in the leaf indicates a decrease in the rate of photosynthesis, which means that growth after the decrease is difficult. Therefore, the diagnostic reference value can be considered as follows.

【0031】NV・・・最も植物の活性が高い夏期におけ
る屋外での生育状態 LB・・・暗所に置いた後、葉内糖濃度が低下時の生育状
態 図6は、図5を模式化して示すグラフであり、図中、NV
点において葉内糖濃度が低下を開始し、LB点において葉
内糖濃度は最小値となる。このときの模式図内のNV、LB
の表記に従い、以下のように診断基準値を設定すること
ができる。
NV: Growth state outdoors in summer when the activity of the plant is the highest. LB: Growth state when the sugar concentration in leaves decreases after being placed in a dark place. FIG. 6 is a schematic diagram of FIG. Is a graph shown in FIG.
At the point, the intra-leaf sugar concentration starts to decrease, and at the LB point, the intra-leaf sugar concentration becomes the minimum value. NV and LB in the schematic diagram at this time
, The diagnostic reference value can be set as follows.

【0032】診断基準値:NV=15、LB=17このように本
発明によれば、診断のための2つの基準値 (NV、LB) を
求めることができ、求められた基準値には、以下のよう
な意味がある。
Diagnosis reference values: NV = 15, LB = 17 As described above, according to the present invention, two reference values (NV, LB) for diagnosis can be obtained. It has the following meaning:

【0033】NV・・・基準値以下であれば、正常な活性
を維持することが可能 LB・・・基準値以下であれば、樹木の生育を維持するこ
とが可能 また、モッコク以外の樹木で同様の実験を実施したとこ
ろ、診断基準値が異なることも判明した。すなわち、診
断基準値は樹種によって異なることから、予め各樹種毎
の基準値を求めておいてそれに基づいて診断を行うのが
よい。
NV: normal activity can be maintained if the value is equal to or less than the reference value. LB: tree growth can be maintained if the value is equal to or less than the reference value. When a similar experiment was performed, it was also found that the diagnostic reference value was different. That is, since the diagnostic reference value differs depending on the tree species, it is preferable to obtain a reference value for each tree species in advance and make a diagnosis based on the reference value.

【0034】[0034]

【実施例】(実施例1)本例では蛍光強度の減衰曲線を作
成し、これに基づいて本発明にしたがって積分法により
生育診断を行った。比較例として、前述の特許第2,943,
769 号にかかる方法による2次微分法による生育診断を
行った。
EXAMPLES (Example 1) In this example, a decay curve of the fluorescence intensity was prepared, and based on this, growth diagnosis was performed by the integration method according to the present invention. As a comparative example, the aforementioned Patent No. 2,943,
Growth diagnosis was performed by the second derivative method according to the method of No. 769.

【0035】結果は、図7(a) 、(b) 、(c) にそれぞれ
グラフで示す。図中、○印で示すIv値は本発明により得
られた積分値を示し、△印で示すa値は比較例による2
次微分係数を示す。黒丸は葉内糖濃度を示す。
The results are shown in graphs in FIGS. 7 (a), (b) and (c). In the figure, the Iv value indicated by a circle indicates the integrated value obtained by the present invention, and the a value indicated by a triangle indicates the value of 2 according to the comparative example.
Shows the second derivative. Black circles indicate the sugar concentration in leaves.

【0036】これらの結果からは、次の点が判明した。 (i) 夏期 (図7(b))において、2次微分係数a、積分値
Ivとも暗所に置いた後に一定の傾向を示した。 (ii) 春期 (図7(a))および秋期 (図7(c)) におい
て、暗所に置いた後、2次微分係数aでは一定の傾向が
みられないのに対し、積分値Ivは値の増加する傾向がみ
られた。
From these results, the following points were found. (i) In the summer (Fig. 7 (b)), the second derivative a and the integral
Both ivs showed a certain tendency after being placed in the dark. (ii) In the spring period (Fig. 7 (a)) and the autumn period (Fig. 7 (c)), after being placed in a dark place, the second derivative a does not show a constant tendency, whereas the integral value Iv is There was a tendency for the value to increase.

【0037】これらの試験はヤマモモおよびモッコクの
両種について行ったが、図8(a) に示すように、2次微
分係数aに樹種の違いは現れなかった。しかし、図8
(b) に示すように積分値Ivではヤマモモとモッコクの違
いが検出できた。
These tests were carried out on both species of the bayberry and mocktail. As shown in FIG. 8 (a), there was no difference between the tree species in the second derivative a. However, FIG.
As shown in (b), a difference between the bayberry and mockup was detected in the integrated value Iv.

【0038】これらの結果は表1にまとめて示すが、誘
導期現象の解析法として2つの解析法を比較すると、2
次微分法より積分法の方が、多くの状況を評価できるこ
とがわかった。
These results are summarized in Table 1. As a result of comparing the two analysis methods as an analysis method for the induction period phenomenon, 2
It has been found that the integration method can evaluate more situations than the second differentiation method.

【0039】この積分法の長所は、2次微分法を用いた
解析結果ではストレスが生じていることが判明しても、
それ以上の詳細な評価ができなかった春期および秋期に
おいて、ストレスに対する樹木の反応が検出できること
である。
The advantage of this integration method is that even if the analysis results using the second-order differentiation method indicate that stress has occurred,
The ability to detect tree responses to stress in spring and fall, where further detailed assessment was not possible.

【0040】また、積分法では、樹種の違いが検出で
き、これによって、樹種ごとの評価基準が得られ、樹種
に応じた診断が可能となる。
In the integration method, differences in tree species can be detected, whereby evaluation criteria for each tree species can be obtained, and diagnosis according to the tree species can be made.

【0041】[0041]

【表1】 [Table 1]

【0042】(実施例2)春期に、樹高およそ3mのヤマ
モモを屋内に設置し、屋外設置のヤマモモと生育状態を
比較した。
(Example 2) In the spring, a bayberry having a height of about 3 m was installed indoors, and the growth state was compared with a bayberry installed outdoors.

【0043】 屋内環境条件: 温度24℃、湿度40%、樹冠頂上の照度1700lx ヤマモモ診断基準値:正常活性値(NV)=21、生育限界値(LB)=24 これらの結果を図9にグラフで示す。Indoor environmental conditions: temperature of 24 ° C., humidity of 40%, illuminance at the top of the tree canopy 1700 lx diagnostic reference value of bayberry: normal activity value (NV) = 21, growth limit value (LB) = 24 These results are graphed in FIG. Indicated by

【0044】その結果、屋内に設置したヤマモモは、実
験開始から30日を過ぎる頃から落葉が始まり、生育不良
であった。積分値(Iv)もLBを越える値を示した。それに
対して、屋外のヤマモモは新葉の萌芽が観察されるなど
し、生育良好であった。積分値もNV付近あるいは下まわ
る値を示した。
As a result, the leaves of the bayberry installed indoors began to fall from 30 days after the start of the experiment, and the growth was poor. The integral (Iv) also exceeded LB. On the other hand, the outdoor bayberry showed good growth with sprouting of new leaves observed. The integrated value also showed a value near or below NV.

【0045】[0045]

【発明の効果】本発明によれば、LIF 法による葉から蛍
光強度の減衰曲線を積分法で解析することによって、簡
便に植物の生育状態を診断することができる。また、植
物種特有の診断基準値を求めることによって、より正確
な診断が可能になったので、植物の生育管理が極めて細
かく、正確にできるようになり、植物の活性を充分引き
出すことができる。
According to the present invention, the growth state of a plant can be easily diagnosed by analyzing the decay curve of the fluorescence intensity from a leaf by the LIF method by an integration method. Further, by obtaining a diagnostic reference value specific to a plant species, more accurate diagnosis has been made possible. Therefore, the growth management of the plant can be extremely finely and accurately performed, and the activity of the plant can be sufficiently brought out.

【0046】したがって、本発明を実施することによ
り、植栽樹管理の簡略化をはかることができ、専門業者
に依ることなく、樹木管理コストの削減につながる。ま
た、リモートセンシングによる樹木の生育診断技術とし
て応用することも可能である。
Therefore, by implementing the present invention, the management of planted trees can be simplified, and the tree management cost can be reduced without depending on a specialized company. In addition, it can be applied as a tree growth diagnosis technology by remote sensing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】kautsky 効果をモデル化して示すグラフであ
る。
FIG. 1 is a graph showing a model of a kautsky effect.

【図2】図2(a) 〜(c)は、樹木の生育状態と誘導期現
象の関係を示すグラフである。
2 (a) to 2 (c) are graphs showing the relationship between the growth state of trees and the induction period phenomenon.

【図3】積分領域を示すグラフである。FIG. 3 is a graph showing an integration region.

【図4】診断指標と診断基準値 (NV、LB) を示す図であ
る。
FIG. 4 is a diagram showing a diagnostic index and a diagnostic reference value (NV, LB).

【図5】夏期:7〜9月における暗処理後の葉内糖濃度
およびIvの変化 (モッコク) を示すグラフである。
FIG. 5 is a graph showing changes (mocks) in sugar concentration in leaves and Iv after dark treatment in summer: July to September.

【図6】診断基準値の設定を示す図5の模式的グラフで
ある。
FIG. 6 is a schematic graph of FIG. 5 showing the setting of a diagnostic reference value.

【図7】図7(a) は春期、図7(b) は夏期、図7(c)は
秋期のそれぞれの暗処理後の2次微分係数a、積分値I
v、葉内糖濃度の変化を示すグラフである。
FIG. 7 (a) shows the second derivative a and the integrated value I after dark processing in spring, FIG. 7 (b) in summer, and FIG. 7 (c) in autumn, respectively.
v, a graph showing the change in sugar concentration in leaves.

【図8】図8(a) は樹種による暗処理後の2次微分係数
aの変化、図8(b) は積分値Ivの変化を示すグラフであ
る。
FIG. 8 (a) is a graph showing a change in a secondary differential coefficient a after dark processing by a tree species, and FIG. 8 (b) is a graph showing a change in an integral value Iv.

【図9】実験開始後のヤマモモの積分値Ivの変化を示す
グラフである。
FIG. 9 is a graph showing a change in an integrated value Iv of a bayberry after the start of an experiment.

フロントページの続き (71)出願人 500178164 蔵田 憲次 神奈川県厚木市森の里3−12−2−502 (72)発明者 佐川 美佳 茨城県つくば市和台41番地 新菱冷熱工業 株式会社中央研究所内 (72)発明者 高橋 邦夫 千葉県木更津市清見台南5−10−13 (72)発明者 峰内 健一 千葉県木更津市祇園3−15−8 (72)発明者 蔵田 憲次 神奈川県厚木市森の里3−12−2−502 Fターム(参考) 2G043 AA03 BA16 CA07 EA01 FA03 FA07 GA08 GB21 JA01 KA09 LA01 NA01 Continuing from the front page (71) Applicant 500178164 Kenji Kurata 3-12-2-502 Morinosato, Atsugi City, Kanagawa Prefecture (72) Inventor Mika Sagawa 41 Wadai, Tsukuba City, Ibaraki Prefecture Shinryo Corporation (72) ) Inventor Kunio Takahashi 5-10-13, Kiyomidaiminami, Kisarazu-shi, Chiba (72) Inventor Kenichi Minei 3-15-8, Gion, Kisarazu-shi, Chiba (72) Inventor Kenji Kurata 3-12-, Morinosato, Atsugi-shi, Kanagawa 2-502 F term (reference) 2G043 AA03 BA16 CA07 EA01 FA03 FA07 GA08 GB21 JA01 KA09 LA01 NA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 植物の葉にレーザ光線を照射し、発生す
る蛍光の強度を測定して、時間に対する蛍光強度の積分
値を求め、該積分値と予め求めておいた基準値との比較
により上記植物の生育を診断することを特徴とする植物
の生育診断方法。
1. A method of irradiating a leaf of a plant with a laser beam, measuring the intensity of the generated fluorescence, obtaining an integrated value of the fluorescent intensity with respect to time, and comparing the integrated value with a predetermined reference value. A method for diagnosing the growth of a plant, comprising diagnosing the growth of the plant.
【請求項2】 前記基準値が正常活性値(NV)と生育
限界値(LB)とであり、前記積分値が該正常活性値よ
り小さければ生育状態を正常と判断し、前記積分値が該
生育限界値より大きければ生育状態不良と判断すること
を特徴とする請求項1記載の植物の生育診断方法。
2. The reference value is a normal activity value (NV) and a growth limit value (LB). If the integrated value is smaller than the normal activity value, the growth state is determined to be normal, and the integrated value is determined as the normal value. 2. The method for diagnosing the growth of a plant according to claim 1, wherein the growth state is judged to be poor if the growth is larger than the growth limit value.
JP2000116481A 2000-04-18 2000-04-18 Plant growth diagnosis method Expired - Lifetime JP3346373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116481A JP3346373B2 (en) 2000-04-18 2000-04-18 Plant growth diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116481A JP3346373B2 (en) 2000-04-18 2000-04-18 Plant growth diagnosis method

Publications (2)

Publication Number Publication Date
JP2001299090A true JP2001299090A (en) 2001-10-30
JP3346373B2 JP3346373B2 (en) 2002-11-18

Family

ID=18627940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116481A Expired - Lifetime JP3346373B2 (en) 2000-04-18 2000-04-18 Plant growth diagnosis method

Country Status (1)

Country Link
JP (1) JP3346373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166967A (en) * 2005-12-21 2007-07-05 Kyowa Engineering Consultants Co Ltd Method and apparatus for evaluating healthiness of tree
JP2009008459A (en) * 2007-06-26 2009-01-15 National Institute Of Advanced Industrial & Technology Observation method of water grass
US9377404B2 (en) 2010-11-08 2016-06-28 National University Corporation Ehime University Plant health diagnostic method and plant health diagnostic device
CN108732144A (en) * 2017-04-14 2018-11-02 希森美康株式会社 Fluorescence image analysis device, the analysis method of fluorescent image and computer program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166967A (en) * 2005-12-21 2007-07-05 Kyowa Engineering Consultants Co Ltd Method and apparatus for evaluating healthiness of tree
JP2009008459A (en) * 2007-06-26 2009-01-15 National Institute Of Advanced Industrial & Technology Observation method of water grass
US9377404B2 (en) 2010-11-08 2016-06-28 National University Corporation Ehime University Plant health diagnostic method and plant health diagnostic device
CN108732144A (en) * 2017-04-14 2018-11-02 希森美康株式会社 Fluorescence image analysis device, the analysis method of fluorescent image and computer program

Also Published As

Publication number Publication date
JP3346373B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
Liu et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen–deciduous forests
JP6485850B2 (en) Plant vitality diagnostic method, and measurement system and diagnostic system used therefor
Peper et al. Comparison of five methods for estimating leaf area index of open-grown deciduous trees
Hiatt III et al. Tall fescue endophyte detection: commercial immunoblot test kit compared with microscopic analysis
Richardson et al. Bioaerosol detection over Athens, Greece using the laser induced fluorescence technique
US20170074788A1 (en) Spectroscopy method and system
EP3693735A1 (en) Method and device for analysing plants
JP3346373B2 (en) Plant growth diagnosis method
Wang et al. A quantitative definition of light rings in black spruce (Picea mariana) at the arctic treeline in northern Québec, Canada
CN101911877B (en) Seed vitality authentication device and method based on laser light diffuse reflection image technology
CN110031442B (en) Agricultural product pesticide residue detecting system
WO2018055357A1 (en) Spectroscopy method and system
JP5263744B2 (en) Photosynthesis activity evaluation program and photosynthesis activity evaluation apparatus
CN108398429B (en) Plant stomata monitoring system and method for analyzing response of plant stomata to environment by using same
CN110806404A (en) Improved chlorophyll fluorescence detection method and device
JPH11332375A (en) Growth diagnosis of plant
Peterson Jr et al. Considerations for evaluating controlled exposure studies of tree seedlings
JP3360210B2 (en) Plant selection system based on biological information
RU2694197C1 (en) Method of selection of light-loving genotypes of spring wheat
RU2604302C2 (en) Method for assessing functional status of plants in vitro without violating sterility
MCLEAN Extravisual damage detection? Defining the standard normal tree
Pilcher et al. Primary data
US20230243750A1 (en) Raman optical biomarker for shade avoidance syndrome in plants
RU2626586C1 (en) Method of assessing selection material of pea by leaf photosynthesis rate
JP2006257009A (en) Method for evaluating sensitivity of plant to herbicide and method for evaluating herbicidal activity of compound

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R150 Certificate of patent or registration of utility model

Ref document number: 3346373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term