JP2009008459A - Observation method of water grass - Google Patents

Observation method of water grass Download PDF

Info

Publication number
JP2009008459A
JP2009008459A JP2007168272A JP2007168272A JP2009008459A JP 2009008459 A JP2009008459 A JP 2009008459A JP 2007168272 A JP2007168272 A JP 2007168272A JP 2007168272 A JP2007168272 A JP 2007168272A JP 2009008459 A JP2009008459 A JP 2009008459A
Authority
JP
Japan
Prior art keywords
chlorophyll
aquatic plants
water
laser
aquatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168272A
Other languages
Japanese (ja)
Other versions
JP5246389B2 (en
Inventor
Toshiyuki Saito
俊幸 齋藤
Terumi Tanimoto
照己 谷本
Yoshio Takasugi
由夫 高杉
Takashi Hiraga
隆 平賀
Noritaka Yamamoto
典孝 山本
Hiroshi Iitaka
弘 飯高
Yasuyuki Kashimoto
康之 樫本
Koji Nagao
浩司 長尾
Yoshihide Takahashi
嘉秀 高橋
Jun Sanada
潤 眞田
Kenichi Imon
賢一 井門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Shikoku Electric Power Co Inc
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, National Institute of Advanced Industrial Science and Technology AIST filed Critical Shikoku Electric Power Co Inc
Priority to JP2007168272A priority Critical patent/JP5246389B2/en
Publication of JP2009008459A publication Critical patent/JP2009008459A/en
Application granted granted Critical
Publication of JP5246389B2 publication Critical patent/JP5246389B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for simply and quickly observing the growing state of water grasses with accuracy, without accompanying hazards or heavy labor in diving visual observation, or the like, due to a diver. <P>SOLUTION: In measuring the growing state of water grasses growing thick in water, at least an ultrasonic measuring method which is a remote-noninvasive measuring method and a laser excited emission detection method are combined and used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、海洋、河川、湖沼等における水中での水草類の存在とその生育状況を遠隔的、非侵襲的に簡便に精度良く観測するための新しい水草類観測方法に関するものである。   The present invention relates to a new method for observing aquatic plants in the ocean, rivers, lakes, and the like in order to accurately and accurately observe the existence and growth status of aquatic plants remotely and non-invasively.

沿岸海域における工場、発電所等からの温排水による水草類の生育状況への影響を簡便に、かつ的確に観測評価することや、河川、あるいは湖沼における水質変化の影響評価を行うことが、環境アセスメント、あるいは漁業、食品工業、そして産業・社会での利水や防災の観点から大変に重要になっている。   It is necessary to observe and evaluate the effects of warm wastewater from factories and power plants in coastal waters on the growth of aquatic plants simply and accurately, and to evaluate the effects of water quality changes in rivers and lakes. It is very important from the viewpoint of assessment, water use and disaster prevention in fisheries, food industry, industry and society.

従来、これらの観測評価においては水深がある程度以上の場合にはダイバーによる潜水目視や坪狩り調査が主として行われてきている。   Conventionally, in these observation evaluations, when the water depth is more than a certain level, diving visual observation and tsubo hunting survey by divers have been mainly performed.

しかしながら、これらの方法には、危険度が高く、かつ過大な労力を伴うこと、そして客観的に広域での比較を可能とする精度が得られるにくいという問題点がある。   However, these methods are problematic in that they are highly dangerous and involve excessive labor, and it is difficult to obtain an accuracy that enables objective comparison in a wide area.

そこで、本発明は、以上のとおりの背景から、従来の問題点を解消し、ダイバーによる潜水目視等の危険性や大きな労力を伴うことなく、しかもより精度良く水草類の生育状況を簡便に観測することのできる新しい方法を提供することを課題としている。   Therefore, the present invention solves the conventional problems from the background as described above, and easily observes the growth status of aquatic plants more accurately and without the danger and great labor of diving by divers. The challenge is to provide new ways to do this.

本発明水草類観測方法は、上記の課題を解決するものとして、以下のことを特徴としている。   The aquatic plant observation method of the present invention is characterized by the following in order to solve the above problems.

第1:水中に繁茂する水草類の生育状況を計測するに際し、少くとも遠隔的・非侵襲的計測法である超音波計測法とレーザー励起発光検出法を組合せて用いることにより、水草類の生育状況を計測可能とする。   First, when measuring the growth of aquatic plants growing in water, the growth of aquatic plants by using a combination of ultrasonic measurement and laser-excited emission detection, which is at least a remote and non-invasive measurement method The situation can be measured.

第2:上記方法において、超音波計測法により水底の地形、砂地・岩場などの水底の地勢、藻の生育の可能性などを把握した上で、レーザー励起発光検出法により水草類の生育を観測する。   Second: In the above method, the growth of aquatic plants was observed by the laser-excited luminescence detection method after grasping the topography of the bottom of the water, the topography of the bottom of sand and rocks, and the possibility of algae growth by ultrasonic measurement. To do.

第3:超音波計測法により水底の地形、砂地・岩場などの水底の地勢、藻の生育の可能性などを観測する際に、超音波の一次および二次反射の成分解析から水底での水草の有無の状態を解析する。   Third: When observing the topography of the bottom of the water, the topography of the bottom of sandy and rocky areas, the possibility of algae growth, etc., by ultrasonic measurement, the analysis of the primary and secondary reflections of the ultrasonic wave will produce aquatic plants at the bottom of the water. Analyzes the presence or absence of.

第4:水草類に含まれるクロロフィルを励起可能な波長のレーザー光を照射して、クロロフィルからの発光を検出することにより、水草類の存在を観測可能とする。   Fourth: The presence of aquatic plants can be observed by irradiating laser light having a wavelength capable of exciting chlorophyll contained in aquatic plants and detecting light emission from the chlorophyll.

第5:水草類に含まれるクロロフィルを励起可能な波長のレーザー光を照射する位置と、クロロフィルからの発光点と、クロロフィルからの発光を観測するための光検出器の位置が、三角測量の原理により定まる位置関係となっており、クロロフィルからの発光点と観測点間の距離を算出可能とする。   Fifth: The position of irradiating laser light with a wavelength that can excite chlorophyll contained in aquatic plants, the emission point from chlorophyll, and the position of the photodetector for observing the emission from chlorophyll are the principles of triangulation Therefore, the distance between the emission point from the chlorophyll and the observation point can be calculated.

第6:クロロフィルを励起するためのレーザー光を2次元走査して水中に照射し、クロロフィルからの発光をカメラにより観測することにより面内分布を観測可能とする。   Sixth: Laser light for exciting chlorophyll is scanned two-dimensionally and irradiated into water, and the in-plane distribution can be observed by observing light emission from the chlorophyll with a camera.

第7:水中プランクトンや気泡、その他の浮遊物により散乱されて観測用のカメラに反射されてくる励起用のレーザー光の影響を低減するために、励起光を遮断し発光を透過可能な光学フィルタを用いる。   Seventh: An optical filter that blocks the excitation light and allows the emission to pass through in order to reduce the influence of the excitation laser light scattered by the underwater plankton, bubbles, and other suspended matter and reflected by the observation camera Is used.

第8:水中に繁茂する水草類の種類を弁別するための手段として、異なる種類のクロロフィルを有する水草類に対して、クロロフィルを光励起するために最適な波長を選択するために、クロロフィルを励起するための光源として異なる発振波長を有する複数のレーザーを用い、水草類により異なる発光波長を検出する。   Eighth: Exciting chlorophyll to select the optimal wavelength for photoexcitation of chlorophyll for aquatic plants with different types of chlorophyll as a means to discriminate the types of aquatic plants that grow in water For this purpose, a plurality of lasers having different oscillation wavelengths are used as light sources, and different emission wavelengths are detected by aquatic plants.

第9:水中に繁茂する水草類の生育状況を計測する手段として、発振波長470nm以上、540nm未満の発振波長、100mW以上の光出力を有するレーザー、水草類からの発光を効率良く集光してカメラに導くためのレンズ光学系、結像された発光像を光電変換するためのカメラ、カメラからの電気信号を画像化してデータ処理を行うためのコンピューター、操作のための周辺機器、およびこれらの機器を格納して水上もしくは水中に設置するための筐体を備えた観測装置を用いる。   Ninth: As means for measuring the growth status of aquatic plants growing in water, the laser having an oscillation wavelength of 470 nm or more, less than 540 nm, a laser having an optical output of 100 mW or more, and light emitted from the aquatic plants are efficiently collected. Lens optical system for guiding to the camera, camera for photoelectric conversion of the formed emission image, computer for image processing of electrical signals from the camera and data processing, peripheral devices for operation, and these Use an observation device with a housing to store the equipment and install it on or in the water.

第10:超音波計測法とレーザー励起発光検出法を組合せて用いる際に、データ処理を容易に行うことを可能とするために、データ形式を共通化する。   Tenth: When the ultrasonic measurement method and the laser excitation light emission detection method are used in combination, the data format is made common to enable easy data processing.

本発明においては、上記のとおり、少くとも、遠隔的・非侵襲的計測法である超音波計測法とレーザー励起発光検出法とを組合わせることを最も大きな特徴としている。   As described above, the present invention is characterized in that at least the ultrasonic measurement method, which is a remote / non-invasive measurement method, and the laser excitation emission detection method are combined at least.

超音波計測法やレーザー励起発光検出法は各々知られているものであるが、水中の水草類の観測に組み合わせることについては、その顕著な効果をともにこれまでに考えられてこなかったことである。   Ultrasonic measurement methods and laser-excited luminescence detection methods are each known, but when combined with the observation of underwater aquatic plants, the remarkable effect has never been considered so far. .

本発明の方法によれば、超音波法の、
水中地形情報が正確に得られること、
測定距離のダイナミックレンジが広いこと、
泡、浮遊物などの影響を受けにくいこと、
多重反射情報から、水底の状態が得られること
という効果が得られ、またレーザー励起発光検出法によって、
水草以外の対象物からの疑似信号が無いこと、
水草の深さ方向の分布を計測可能であること、
泡、浮遊物などの影響を受け易いこと
という効果が実現される。そして、これら方法の各々での、弱点、すなわち、超音波法での、傾斜水底での誤信号が出やすく不確定要素が残るということや、レーザー法での、近距離のダイナミックレンジが狭いことや地形情報が得られない等の弱点が相対的にカバーされて、相乗的に顕著な効果が実現されることになる。このため、本発明によれば、従来の問題点を解消し、ダイバーによる潜水目視等の危険性や大きな労力を伴うことなく、しかもより精度良く水草類の生育状況を簡便に観測することができる。
According to the method of the present invention, of the ultrasonic method,
Underwater terrain information can be obtained accurately,
Wide dynamic range of measurement distance,
Being less susceptible to bubbles and suspended matter
The effect that the state of the bottom of the water is obtained from the multiple reflection information is obtained, and by the laser excitation emission detection method,
No false signals from objects other than aquatic plants,
It is possible to measure the distribution of aquatic plants in the depth direction,
The effect of being easily affected by bubbles and suspended matter is realized. And each of these methods has weak points, that is, the fact that there is an indeterminate element that is likely to cause an erroneous signal at the bottom of an inclined surface in the ultrasonic method, and the short-range dynamic range in the laser method is narrow. And weak points such as inability to obtain terrain information are relatively covered, and a synergistic remarkable effect is realized. For this reason, according to the present invention, it is possible to eliminate the conventional problems, and easily observe the growth status of aquatic plants more accurately without accompanying danger and great labor such as diving by divers. .

本発明の実施の形態について以下に説明する。もちろん以下の例示説明によって発明が限定されることはない。   Embodiments of the present invention will be described below. Of course, the invention is not limited by the following explanation.

超音波底質解析装置(Stenmar Micro Systems社製、型式名:RoxAnn)の構成を図1に示す。主にトランスジューサを含めた超音波送受波部(魚群探知機、周波数:200kHz)、データ変換部、位置を計測するDGPS(Differential Global Positioning System)およびデータ解析部(パソコン)から成る。   FIG. 1 shows the configuration of an ultrasonic bottom sediment analyzer (manufactured by Stenmar Micro Systems, model name: RoxAnn). It consists mainly of an ultrasonic transmission / reception unit (fish detector, frequency: 200 kHz) including a transducer, a data conversion unit, a DGPS (Differential Global Positioning System) for measuring position, and a data analysis unit (personal computer).

図2に示すように、トランスジューサから送波された超音波が海底で反射して受波される一次反射信号と、それが海面で反射されてもう一度海底で反射し受波される二次反射信号から、おおまかではあるが海底の質を推定できる。   As shown in FIG. 2, a primary reflected signal in which the ultrasonic wave transmitted from the transducer is reflected and received by the seabed, and a secondary reflected signal that is reflected by the sea surface and reflected and received by the seabed again. From the above, it is possible to estimate the quality of the seabed roughly.

本装置では、一次反射信号から海底を構成する物質の“粗さ”(粒径の大きさ等)、二次反射信号を構成物の質の違いや含水率の違いに伴う“硬さ”に関わる情報として取り込み、図3に示す一次と二次反射信号強度の相関的な区分分けにより、海底堆積物の粒径分類や海藻の有無を自動的に解析するようにシステム化されている。本装置を搭載した観測船で航行しながら海底をスキャンし、同時にDGPSにより位置データを取り込むことにより、海底状況の解析結果をパソコンモニターの地図上にリアルタイムで表示する。しかしながら、図I−3に示した区分分けパターンは標準値として提供されたものであり、海底状況が異なる海域ごとに出力値の関係は違ってくる。そのため、本装置による計測では、あらかじめ使用する海域における超音波の一次、二次反射強度と海底状況の関係を明らかにし、該当海域における区分分けパターンを作成しておく。   In this device, the “roughness” (particle size, etc.) of the material that constitutes the seabed from the primary reflection signal, and the secondary reflection signal to the “hardness” that accompanies differences in the quality and moisture content of the components. The system is configured to automatically analyze the particle size classification of the seabed sediment and the presence or absence of seaweed by taking in the relevant information and correlating the primary and secondary reflected signal intensities shown in FIG. The ocean bottom is scanned while navigating with an observation ship equipped with this device, and simultaneously the position data is captured by DGPS, and the analysis result of the ocean floor condition is displayed in real time on the map of the personal computer monitor. However, the division pattern shown in FIG. I-3 is provided as a standard value, and the relationship between the output values differs for each sea area with different seabed conditions. Therefore, in the measurement by this device, the relationship between the primary and secondary reflection intensities of the ultrasonic waves in the sea area to be used and the seabed situation is clarified in advance, and a classification pattern in the corresponding sea area is created.

また、GPS魚探(Plus Gain社製、型式名:Fish Strike 1000C)も使用した。このものは、超音波送受波部と液晶モニター部から成り、音波(周波数:200kHz)を送波して海底からの反射パターンの画像と水深をモニターに表示する。本装置では、反射パターンの画像データと水深データおよびGPSによる位置データを記憶媒体に連続的に収録できることが特徴である(64MBメモリカードで連続約78時間)。したがって、反射パターンの画像を現場で確認できることに加えて、後日、画像データをパソコンに取り込んだ後、音波の反射強度に応じた色彩調整や感度調整、画像ノイズ除去などの操作が可能で、海底近傍について種々の解析画像を再度表示できる。また、反射パターンの画像と共に水深や位置情報も表示されるため、計測場所の確定も容易である。なお、本装置による計測では数値データとしては出力できないため、視覚による観察のみで、数値を基にした解析や図面化は困難である。
<現地実験>
音波による海藻類の判定と分布計測について検討するため所定の海域において超音波底質解析装置、GPS魚探および水中カメラを用いた現地実験を行った。現地実験は停船観測と航行観測から成り、停船観測では岸から沖合100mまで約10m毎で船を固定し、水中カメラで海底状況(海藻類の有無と種)を目視観測、録画しながら、超音波底質解析装置による超音波の一次、二次反射強度の計測とGPS魚探の音波反射画像を記録した。航行観測では、約5ノットの船速で有寿来マウンドを中心にメッシュ航行し、超音波底質解析装置とGPS魚探による音探計測を格子ライン状で実施した。なお、超音波底質解析装置の音探データは1秒毎で取り込んだ。
Further, a GPS fish finder (manufactured by Plus Gain, model name: Fish Strike 1000C) was also used. This consists of an ultrasonic transmission / reception unit and a liquid crystal monitor unit, and transmits a sound wave (frequency: 200 kHz) to display an image of a reflection pattern from the seabed and water depth on a monitor. The feature of this apparatus is that image data of reflection patterns, water depth data, and GPS position data can be continuously recorded on a storage medium (about 78 hours on a 64 MB memory card). Therefore, in addition to being able to check the image of the reflection pattern at the site, you can perform operations such as color adjustment and sensitivity adjustment according to the reflection intensity of sound waves, image noise removal, etc. Various analysis images can be displayed again for the vicinity. In addition, since the water depth and position information are displayed together with the image of the reflection pattern, the measurement location can be easily determined. In addition, since it cannot output as numerical data in the measurement by this apparatus, it is difficult to perform analysis and drawing based on numerical values only by visual observation.
<Field experiment>
In order to examine the determination and distribution measurement of seaweeds by acoustic waves, field experiments using an ultrasonic bottom sediment analyzer, GPS fish finder and underwater camera were conducted in a predetermined sea area. The field experiment consists of stop observation and navigation observation. In the stop observation, the ship is fixed every 10m from the shore to the offshore 100m, and the underwater camera (presence / absence of seaweeds and species) is visually observed and recorded. Measurement of primary and secondary reflection intensity of ultrasonic waves by a sonic bottom sediment analyzer and a sound wave reflection image of a GPS fish finder were recorded. In the navigational observation, the mesh navigation was carried out around the Yusugi mound at a boat speed of about 5 knots, and the sound probe measurement using an ultrasonic bottom sediment analyzer and GPS fish finder was carried out in the form of a grid line. Note that the sound search data of the ultrasonic bottom sediment analyzer was taken every second.

各停船場所における超音波底質解析装置の一次と二次反射強度の関係を、まとめて図4に示した。本装置のトランスジューサの指向角は約15°であることから、例えば水深5mの場所における結果は、トランスジューサの下、直径が約1.3mの範囲における平均的な海底状況を示すことになる。   FIG. 4 shows the relationship between the primary and secondary reflection intensities of the ultrasonic bottom sediment analyzer at each stop. Since the directivity angle of the transducer of this apparatus is about 15 °, for example, the result at a depth of 5 m shows an average seabed condition in the range of about 1.3 m in diameter under the transducer.

一次反射強度は大きい葉を持つクロメや大石のある海底では強く、粒径の小さい砂や泥場で弱くなる傾向を示し、二次反射強度は硬い石が海底面に露出している小石と短藻のような場所で強く、石がクロメの葉で覆われていたり、含水率の高い泥域になるにつれて弱くなる傾向を示すことが明らかとなった。このような傾向は、本装置による音波の一次と二次反射特性から海底状況を解析する手法をよく反映させた結果であるといえる。   The primary reflection intensity is strong on the seabed with chrome or large stones with large leaves, and tends to be weak in sand or mud with small particle size, and the secondary reflection intensity is short with pebbles with hard stones exposed on the sea floor. It became clear that it was strong in a place like algae, and that the stones were covered with chrome leaves or tended to become weaker as the mud area had a high water content. Such a tendency can be said to be a result of well reflecting the method of analyzing the seabed condition from the primary and secondary reflection characteristics of the sound wave by this apparatus.

超音波底質解析装置の海底状況区分パターンを作成した(図5)。本装置のデータ解析部のソフトに図5に示すパターンを登録することにより、海底状況がこの区分パターンに基づき自動的に解析される。   The seabed condition classification pattern of the ultrasonic sediment analyzer was created (Fig. 5). By registering the pattern shown in FIG. 5 in the software of the data analysis unit of the present apparatus, the seabed situation is automatically analyzed based on this division pattern.

本海底状況区分パターンに基づき、計測ライン下の海底状況を色分けして示したのが図6である。本装置のデータ解析部(パソコン)の画面をハードコピーしたもので、あらかじめ該当海域の区分分けが登録されていれば、図に示した解析結果がパソコン画面の地図上にリアルタイムで表示され、海底状況をその場で確認しながら計測航行ができる。また、データ解析部には図面化ソフトが組み込まれており、本装置の数値データをそのまま取り込んで各種の図化処理が可能である。図6に示した計測ライン間を空間グリッド補完して画的な分布に図化処理した結果を図7に示す。ここで示した面的に図化された分布は、あくまでも計測ライン上を1秒間隔で取得した結果を、さらにライン間で数値的に補完した結果である。したがって、計測のメッシュ間隔を狭くすることと船速を遅くすることにより、より精度の高い分布を得ることができる。図6、図7に示した結果に水深データを取り入れてそれぞれ三次元処理した結果を図8(a)と(b)に示した。マウンドの高まり状況と、マウンド上と岸寄りにクロメが繁茂し、マウンド周辺は小石と短藻および砂域で囲われている様子がわかる。   FIG. 6 shows the seabed situation under the measurement line in different colors based on this seabed situation classification pattern. This is a hard copy of the screen of the data analysis unit (PC) of this device. If the classification of the corresponding sea area is registered in advance, the analysis result shown in the figure is displayed in real time on the map of the PC screen, and the seabed Measurement navigation is possible while checking the situation on the spot. In addition, drawing software is incorporated in the data analysis unit, and various drawing processes can be performed by taking in the numerical data of the apparatus as it is. FIG. 7 shows the result of plotting the measured lines shown in FIG. The distribution illustrated in the plane shown here is a result obtained by numerically supplementing the result obtained on the measurement line at intervals of 1 second. Accordingly, a more accurate distribution can be obtained by narrowing the measurement mesh interval and slowing the ship speed. FIGS. 8A and 8B show the results obtained by incorporating the water depth data into the results shown in FIGS. It can be seen that the mound is growing and chrome is growing on and near the mound, and the area around the mound is surrounded by pebbles, short algae and sand.

3ヶ月後の結果を同様に解析処理した結果を図9と図10に示す。マウンド周辺を若干広めに航行したため、広域的な分布状況となっているが、同様に、マウンドの高まり状況やマウンド上と岸寄りのクロメ域およびマウンド周辺が小石と短藻、砂域で囲われている様子が認められた。   The results of analyzing the results after 3 months in the same manner are shown in FIGS. Although the area around the mound was slightly widened, it was distributed over a wide area.Similarly, the rise of the mound, the chrome area on the mound and near the shore, and the mound area were surrounded by pebbles, short algae and sand areas It was recognized that

一方、本発明者らは、植物プランクトン(クロロフィルa)の濃度分布を計測するための小型のレーザレーダを開発してきた(図11)が、これはCWレーザ(波長532nm)を利用したバイスタティックレーザレーダという特殊な構成をとることにより、従来のパルスレーザを用いたシステムと比較して極めて小型軽量、低消費電力のシステムを構築することが可能となった。   On the other hand, the present inventors have developed a small laser radar for measuring the concentration distribution of phytoplankton (chlorophyll a) (FIG. 11), which is a bistatic laser using a CW laser (wavelength 532 nm). By adopting a special configuration called radar, it has become possible to construct a system that is extremely small, light, and consumes less power than a system that uses a conventional pulse laser.

そこで、バイスタティックレーザレーダの構成を用いて、海底に生息する藻の分布を計測する装置の開発を行った。基本的な構成は同じであるが、想定する測定距離を10m程度とし、藻の蛍光散乱が十分強いことから、通常のCCDカメラ(これまでは冷却CCDを使用)を用いることにより、さらなる小型軽量化を進め、さらにレーザ走査等により藻の2次元分布の測定を可能とした。また、海域実験では藻場観測用ボートにレーザ及び計測装置を搭載し、実環境における海底の藻の計測を行う。   Therefore, we developed a device that measures the distribution of algae inhabiting the sea floor using a bistatic laser radar configuration. Although the basic configuration is the same, the assumed measurement distance is about 10 m and the fluorescence scattering of the algae is sufficiently strong. By using a normal CCD camera (previously using a cooled CCD), it is even smaller and lighter The two-dimensional distribution of algae can be measured by laser scanning or the like. In the sea area experiment, a laser and a measuring device are mounted on the seaweed observatory boat to measure seabed algae in the actual environment.

プールでの予備実験で、図12のように、海底の藻を模擬した試料(金魚藻)を用いた蛍光の検出実験を行った結果、10m程度の距離までは十分な観測感度を有することが確認できた。   As a result of conducting a fluorescence detection experiment using a sample (goldfish algae) simulating a seabed algae in a preliminary experiment in a pool as shown in FIG. 12, it has sufficient observation sensitivity up to a distance of about 10 m. It could be confirmed.

予備実験では金魚藻(Cabomba caroliniana)を透明容器(5×5×20cm)に入れ、ターゲットとしてプールに設置した。金魚藻の持つchlorophyll aの蛍光(波長685nmにピーク)と水のラマン散乱光及びレーザの散乱光との分離にはレンズに取り付けた光学フィルタR64(長波長側を透過、50%透過する波長が640nm)及びR66を使用した。   In a preliminary experiment, goldfish algae (Cabomba caroliniana) was placed in a transparent container (5 × 5 × 20 cm) and placed in a pool as a target. To separate the fluorescence of chlorophyll a possessed by goldfish algae (peak at a wavelength of 685 nm) from the Raman scattered light of water and the scattered light of the laser, an optical filter R64 attached to the lens (wavelength transmitting through the long wavelength side and transmitting through 50%) 640 nm) and R66 were used.

本計測手法ではターゲットまでの距離はレーザビームとCCDカメラ間の距離(基線長)と計測画像の座標から求められるターゲットの角度とから三角測量によって求められる。予備実験では基線長を25cm、レンズの光軸とレーザビームのなす角度は3.6度に設定することにより、CCDカメラの視野の中心はカメラからほぼ4mの地点を捉えており、CCDカメラはほぼ2m〜15mの範囲を撮像している。図13にR64フィルタを使用してCCDカメラが撮像した蛍光像を示す。レーザ光路上の光点は藻からの蛍光、ライン状の像は水のラマン散乱光(波長532nmで励起した場合は655nm付近に現れる。R67でも分離しきれない)である。   In this measurement method, the distance to the target is obtained by triangulation from the distance between the laser beam and the CCD camera (base line length) and the target angle obtained from the coordinates of the measurement image. In the preliminary experiment, the base line length is set to 25 cm, and the angle between the optical axis of the lens and the laser beam is set to 3.6 degrees, so that the center of the field of view of the CCD camera is captured at a point approximately 4 m from the camera. A range of approximately 2 to 15 m is imaged. FIG. 13 shows a fluorescent image captured by a CCD camera using an R64 filter. The light spot on the laser beam path is fluorescence from algae, and the line-shaped image is water Raman scattered light (appears in the vicinity of 655 nm when excited at a wavelength of 532 nm. It cannot be separated even by R67).

プールでの予備実験では、外光の影響は少なく、計測条件としては理想的ではあるが、距離13m地点の藻の蛍光が捉えられており、藻の分布を計測することが可能である。   In the preliminary experiment in the pool, the influence of external light is small and the measurement condition is ideal, but the fluorescence of the algae at a distance of 13 m is captured, and the distribution of the algae can be measured.

計測された典型的な強度分布は図14のようになり、距離とともに水のラマン散乱光が指数的に減衰し、ターゲット位置で藻の蛍光を捉える。それより遠距離ではほぼ0となる。海域実験ではレーザビーム上の植物プランクトンからの蛍光が重畳されるが、この強度変化の特徴を利用することにより映像から藻と植物プランクトンとの分別、分布位置の確定などのデータ処理が簡素化できる。   A typical measured intensity distribution is as shown in FIG. 14, and Raman scattered light of water exponentially attenuates with distance, and captures the fluorescence of algae at the target position. It becomes almost 0 at a far distance. In the sea area experiment, fluorescence from phytoplankton on the laser beam is superimposed. By using this feature of intensity change, data processing such as separation of algae from phytoplankton and determination of distribution position can be simplified from the image. .

次に藻の1次元分布の測定するため、レーザビームを光学スキャナーで一次元走査して、藻からの蛍光を測定する実験を行った。実験装置としてはほぼ上記と同じであるが、図15に示すように、(1)光学スキャナーによりレーザビームを任意の周波数、振幅で一次元走査できる機構を付け加えたこと、(2)レーザビームとCCDカメラ間の距離(基線長)を50cmとしたこと、(3)撮像レンズとして光軸をティルト可能なPC Micro Nikon 85mm F2. 8Dを用いたことの3点が異なる。(3)については、従来の光学系ではレーザビームを斜めから撮像するため、ある距離でのみ焦点があうことになるが、ティルト機構付のレンズを用いることでより広い範囲に焦点を合わすことが可能となり、焦点ぼけによる実効的な感度低下を防ぐことができる。なお、前記の予備実験とはCCDカメラの縦横位置が異なり、レーザビームの方向(水深方向に相当)がCCDの短辺方向、レーザビームの走査方向がCCDの長辺方向となっている。   Next, in order to measure the one-dimensional distribution of algae, an experiment was conducted in which the laser beam was scanned one-dimensionally with an optical scanner to measure the fluorescence from the algae. The experimental apparatus is almost the same as described above, but as shown in FIG. 15, (1) a mechanism capable of one-dimensional scanning of the laser beam with an arbitrary frequency and amplitude is added by an optical scanner, and (2) the laser beam The difference is that the distance (baseline length) between the CCD cameras is 50 cm, and (3) PC Micro Nikon 85mm F2.8D that can tilt the optical axis is used as the imaging lens. With regard to (3), since the conventional optical system images the laser beam from an oblique direction, the focal point is focused only at a certain distance, but it is possible to focus on a wider range by using a lens with a tilt mechanism. This makes it possible to prevent an effective decrease in sensitivity due to defocusing. Note that the vertical and horizontal positions of the CCD camera are different from those in the preliminary experiment, in which the laser beam direction (corresponding to the water depth direction) is the short side direction of the CCD, and the scanning direction of the laser beam is the long side direction of the CCD.

プールでの予備実験では、透明容器(5×5×20cm)に入れ、透明容器の長軸をレーザビームの走査方向に向けて8mの地点に設置した。葉が小さいものと大きなもので蛍光の捉え方の違いをみるため、図16に示す2種類の藻類(金魚藻(Cabomba caroliniana)及びミクロソリウム(Microsorium pteropus))を用いた。   In the preliminary experiment in the pool, the container was placed in a transparent container (5 × 5 × 20 cm), and the long axis of the transparent container was set at a point of 8 m in the laser beam scanning direction. Two types of algae (gold bomb algae (Cabomba caroliniana) and microsorium (Microsorium pteropus)) shown in FIG. 16 were used to see the difference in how to capture fluorescence between small and large leaves.

レーザビームは光学スキャナを三角波で駆動し、その走査幅は8mの地点で約40cmである。レーザ走査により単位時間単位面積当りのレーザの照射時間が短くなるため実効的な感度が低下する。そのため、レーザビームの走査方法を低速走査及び高速走査の両方について検討した。レーザビームがCCDの長辺一杯に走査している場合、低速走査はCCD1画素分の移動時間が1/60秒以上、(1走査周期17秒以上))、高速走査は1走査周期が60ms以内、(走査周波数60Hz、その倍数が望ましい)となる。但し、これはCCDカメラのフレーム蓄積を使用しない場合であって、蓄積を行う場合は走査時間に蓄積回数nを掛けることになる。   The laser beam drives the optical scanner with a triangular wave, and its scanning width is about 40 cm at a point of 8 m. Since the laser irradiation time per unit time per unit area is shortened by laser scanning, the effective sensitivity is lowered. Therefore, the laser beam scanning method was studied for both low speed scanning and high speed scanning. When the laser beam is scanned over the long side of the CCD, the low-speed scan has a moving time of 1 pixel of CCD for 1/60 seconds or more (1 scan cycle 17 seconds or more), and the high-speed scan has a scan cycle of 60 ms or less. (Scanning frequency 60 Hz, multiple thereof is desirable). However, this is a case where the frame accumulation of the CCD camera is not used, and when accumulation is performed, the scanning time is multiplied by the accumulation count n.

低速でレーザビームを走査した場合の実験結果を写真図17に示す。レーザビームの走査の一部(1フレーム)を表示してある。走査周期は10秒であるが、CCDカメラ長辺全体を走査していないので、CCD1画素分の移動時間がほぼ1/60秒となっている。測定範囲全体で焦点があっていること、また、ティルト機構付のレンズを用いたことで焦点ぼけを防ぐことができたことがわかる。   FIG. 17 shows the experimental results when the laser beam is scanned at a low speed. A part (one frame) of the scanning of the laser beam is displayed. Although the scanning cycle is 10 seconds, since the entire long side of the CCD camera is not scanned, the moving time for one CCD pixel is approximately 1/60 seconds. It can be seen that the entire measurement range is in focus, and that the use of a lens with a tilt mechanism has prevented defocusing.

高速でレーザビームを走査した場合の実験結果を図18に示す。走査周波数を120Hzとすることで、撮像したビデオ映像中にレーザビームはN回(写真左:8回、写真右:16回)通過することにより、その回数分の蛍光が加算される。試料位置8mにおいても、蛍光の強度分布が捉えられており、8mの距離までは測定可能であったことがわかる。さらに装置を曳航することによって、藻の2次元分布を得ることが可能である。また、葉の大きさが異なる2種類の藻の試料はレーザビームの径に対して十分密生していたため、ほぼ同様な蛍光の計測結果が得られた。   FIG. 18 shows the experimental results when the laser beam is scanned at high speed. By setting the scanning frequency to 120 Hz, the laser beam passes through the captured video image N times (photo left: 8 times, photo right: 16 times), and the fluorescence corresponding to that number is added. Even at the sample position of 8 m, the fluorescence intensity distribution is captured, and it can be seen that measurement was possible up to a distance of 8 m. Furthermore, it is possible to obtain a two-dimensional distribution of algae by towing the device. Moreover, since the two types of algae samples having different leaf sizes were sufficiently dense with respect to the diameter of the laser beam, almost the same fluorescence measurement results were obtained.

装置を曳航した場合、低速走査と高速走査とで蛍光強度(藻)分布の捉えられ方が異なる。低速走査では図19のように海底面をレーザビームで走査した線状の蛍光強度プロファイルが得られ、太線で示した線分の領域にある海底面の藻類の有無がわかる。高速走査では図20のように短冊状の領域の蛍光強度の平均値が得られ、その領域の海底面の藻類の有無がわかる。低速走査及び高速走査のどちらの場合においても、領域の形状は異なるが、レーザビーム走査方向の分解能力ΔDと曳航方向の分解能ΔVは以下の式で表される。Δdをある深度におけるCCD1画素に相当するレーザ走査方向の長さとすると、以下のようになる。   When the device is towed, how the fluorescence intensity (algae) distribution is captured differs between low-speed scanning and high-speed scanning. In the low-speed scanning, a linear fluorescence intensity profile obtained by scanning the bottom of the sea with a laser beam as shown in FIG. 19 is obtained, and the presence or absence of algae on the bottom of the sea in the area indicated by the thick line is known. In the high-speed scanning, as shown in FIG. 20, the average value of the fluorescence intensity in the strip-shaped region is obtained, and the presence or absence of algae on the sea bottom in the region is known. In both cases of low speed scanning and high speed scanning, the shape of the region is different, but the resolution ability ΔD in the laser beam scanning direction and the resolution ΔV in the towing direction are expressed by the following equations. When Δd is the length in the laser scanning direction corresponding to one CCD pixel at a certain depth, the following is obtained.

ΔD=Δd
ΔV=曳航速度V(m/s)×0.033(s)×フレーム蓄積回数n(回)
そこで、実海域での使用を考慮した計測システム及び計測システムを搭載して曳航できる曳航体の製作を行った(図21)。
ΔD = Δd
ΔV = towing speed V (m / s) × 0.033 (s) × frame accumulation count n (times)
Therefore, a towed body that can be towed with a measurement system and a measurement system for use in actual sea areas was manufactured (Fig. 21).

この海域での実験において以下のことが確認された。   The following was confirmed in the experiment in this sea area.

すなわち、図22に示したように、水深1.5mから6m、さらにはそれ以上の深さの場所での藻の分布を捉えることが可能であった。   That is, as shown in FIG. 22, it was possible to capture the distribution of algae at a depth of 1.5 to 6 m or even deeper.

そこで、以上の結果から、超音波計測装置とレーザー励起発光検出装置とを観測船に搭載して水中の藻の存在と生育について、図1〜図10までの所定の海域において行うことで、両者による測定で藻の生育状況がより実際的なものとして簡便に把握することができた。   Therefore, from the above results, the ultrasonic measurement device and the laser-excited luminescence detection device are mounted on the observation ship, and the presence and growth of algae in the water are performed in the predetermined sea area from FIG. 1 to FIG. As a result of measurement, it was possible to easily grasp the algae growth status as more practical.

超音波解析装置の概要図。1 is a schematic diagram of an ultrasonic analyzer. 超音波の一次と二次反射の概要図。The schematic diagram of the primary and secondary reflection of an ultrasonic wave. 超音波解析にるよる海底状況の区分(標準値)図。A classification (standard value) chart of the seafloor condition by ultrasonic analysis. 超音波一次と二次反射強度と測定点の海底状況図。Ultrasonic primary and secondary reflection intensity and seafloor situation diagram of measurement points. 植物の区分図。Plant division diagram. 超音波解析結果(ライン)図。Ultrasonic analysis result (line) diagram. 超音波解析結果(面的解析)図。Ultrasonic analysis result (surface analysis) diagram. 結果の三次元図化処理(a:ライン、b:面的解析)図。The resulting three-dimensional plotting process (a: line, b: area analysis). 3ヶ月後の解析結果(a:ライン、b:面的解析)図。Analysis results (a: line, b: area analysis) after 3 months. 3ヶ月後の三次元図化処理(a:ライン、b:面的解析)図。3D plotting process (a: line, b: area analysis) after 3 months. 海中BISレーザレーダ概念図。The underwater BIS laser radar conceptual diagram. 予備実験(藻の分布計測)装置構成図。Preliminary experiment (algae distribution measurement) device configuration diagram. ターゲットを移動させた場合の蛍光撮像図。The fluorescence imaging figure at the time of moving a target. 計測された典型的な強度分布図。Typical intensity distribution chart measured. レーザレーダ構成概要図。FIG. 実験対象の水中植物写真図。The underwater plant photograph figure of experiment object. 低速走査の場合の蛍光撮像図。The fluorescence imaging figure in the case of a slow scan. 高速走査の場合の蛍光撮像図。The fluorescence imaging figure in the case of high-speed scanning. 低速走査の場合の概要図。Schematic diagram in the case of low-speed scanning. 高速走査の場合の概要図。Schematic diagram for high-speed scanning. 海域実験用ボート概要図。Outline drawing of boat for sea area experiment. 海域実験結果の概要図。Schematic diagram of sea area test results.

Claims (10)

水中に繁茂する水草類の生育状況を計測するに際し、少くとも遠隔的・非侵襲的計測法である超音波計測法とレーザー励起発光検出法を組合せて用いることにより、水草類の生育状況を計測可能とすることを特徴とする水草類観測方法。   When measuring the growth status of aquatic plants growing in water, the growth status of aquatic plants is measured by using at least a combination of ultrasonic measurement method and laser excitation emission detection method, which are remote and non-invasive measurement methods. A method for observing aquatic plants, characterized in that it is possible. 超音波計測法により水底の地形、砂地・岩場などの水底の地勢、藻の生育の可能性などを把握した上で、レーザー励起発光検出法により水草類の生育を観測することを特徴とする請求項1に記載の水草類観測方法。   It is characterized by observing the growth of aquatic plants by laser-excited luminescence detection method after grasping the topography of the bottom of the water, the topography of the bottom of sand and rocks, and the possibility of algae growth by ultrasonic measurement. Item 4. The aquatic plant observation method according to Item 1. 超音波計測法により水底の地形、砂地・岩場などの水底の地勢、藻の生育の可能性などを観測する際に、超音波一次および二次反射の成分解析から、水底での水草の有無の状態を解析することを特徴とする請求項1に記載の水草類観測方法。   When observing the topography of the bottom of the water, the topography of the bottom of sandy or rocky areas, the possibility of algae growth, etc. by ultrasonic measurement, the analysis of the components of the ultrasonic primary and secondary reflections shows the presence or absence of aquatic plants at the bottom of the water. The method for observing aquatic plants according to claim 1, wherein the state is analyzed. 水草類に含まれるクロロフィルを励起可能な波長のレーザー光を照射して、クロロフィルからの発光を検出することにより、水草類の存在を観測可能とすることを特徴とする請求項1に記載の水草類観測方法。   The aquatic plant according to claim 1, wherein the presence of the aquatic plant can be observed by irradiating a laser beam having a wavelength capable of exciting the chlorophyll contained in the aquatic plant and detecting light emission from the chlorophyll. Similar observation method. 水草類に含まれるクロロフィルを励起可能な波長のレーザー光を照射する位置と、クロロフィルからの発光点と、クロロフィルからの発光を観測するための光検出器の位置が、三角測量の原理により定まる位置関係となっており、クロロフィルからの発光点と観測点間の距離を算出可能とすることを特徴とする請求項1に記載の水草類観測方法。   A position where the position of the laser beam with a wavelength that can excite chlorophyll contained in aquatic plants, the emission point from the chlorophyll, and the position of the photodetector for observing the emission from the chlorophyll are determined by the principle of triangulation The aquatic plant observation method according to claim 1, wherein the distance between the emission point from the chlorophyll and the observation point can be calculated. クロロフィルを励起するためのレーザー光を2次元走査して水中に照射し、クロロフィルからの発光をカメラにより観測することにより面内分布を観測可能とすることを特徴とする請求項1に記載の水草類観測方法。   The aquatic plant according to claim 1, wherein the in-plane distribution can be observed by two-dimensionally scanning laser light for exciting chlorophyll, irradiating it in water, and observing light emission from the chlorophyll with a camera. Similar observation method. 水中プランクトンや気泡、その他の浮遊物により散乱されて観測用のカメラに反射されてくる励起用のレーザー光の影響を低減するために、励起光を遮断し発光を透過可能な光学フィルタを用いることを特徴とする請求項1に記載の水草類観測方法。   In order to reduce the influence of excitation laser light scattered by underwater plankton, bubbles, and other suspended substances and reflected by the observation camera, use an optical filter that can block the excitation light and transmit light. The aquatic plant observation method according to claim 1. 水中に繁茂する水草類の種類を弁別するための手段として、異なる種類のクロロフィルを有する水草類に対して、クロロフィルを光励起するために最適な波長を選択するために、クロロフィルを励起するための光源として異なる発振波長を有する複数のレーザーを用い、水草類により異なる発光波長を検出することを特徴とする請求項1に記載の水草類観測方法。   Light source to excite chlorophyll to select the optimal wavelength for photoexcitation of chlorophyll for aquatic plants with different types of chlorophyll as a means to discriminate the types of aquatic plants that grow in water The method for observing aquatic plants according to claim 1, wherein a plurality of lasers having different oscillation wavelengths are used to detect different emission wavelengths depending on the aquatic plants. 水中に繁茂する水草類の生育状況を計測する手段として、発振波長470nm以上、540nm未満の発振波長、100mW以上の光出力を有するレーザー、水草類からの発光を効率良く集光してカメラに導くためのレンズ光学系、結像された発光像を光電変換するためのカメラ、カメラからの電気信号を画像化してデータ処理を行うためのコンピューター、操作のための周辺機器、およびこれらの機器を格納して水上もしくは水中に設置するための筐体を備えた観測装置を用いることを特徴とする請求項1に記載の水草類観測方法。   As a means of measuring the growth of aquatic plants growing in water, a laser having an oscillation wavelength of 470 nm or more and less than 540 nm, a laser having an optical output of 100 mW or more, and the light emitted from the aquatic plants is efficiently collected and guided to the camera. A lens optical system, a camera for photoelectrically converting the imaged emission image, a computer for image processing of electrical signals from the camera and data processing, peripheral devices for operation, and storage of these devices The aquatic plant observation method according to claim 1, wherein an observation apparatus including a housing for installation on or in water is used. 超音波計測法とレーザー励起発光検出法を組合せて用いる際に、データ処理を容易に行うことを可能とするために、データ形式を共通化することを特徴とする請求項1に記載の水草類観測方法。   The aquatic plant according to claim 1, wherein the data format is made common in order to facilitate data processing when the ultrasonic measurement method and the laser excitation luminescence detection method are used in combination. Observation method.
JP2007168272A 2007-06-26 2007-06-26 Aquatic plant observation method Expired - Fee Related JP5246389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168272A JP5246389B2 (en) 2007-06-26 2007-06-26 Aquatic plant observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168272A JP5246389B2 (en) 2007-06-26 2007-06-26 Aquatic plant observation method

Publications (2)

Publication Number Publication Date
JP2009008459A true JP2009008459A (en) 2009-01-15
JP5246389B2 JP5246389B2 (en) 2013-07-24

Family

ID=40323693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168272A Expired - Fee Related JP5246389B2 (en) 2007-06-26 2007-06-26 Aquatic plant observation method

Country Status (1)

Country Link
JP (1) JP5246389B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216904A (en) * 2009-03-16 2010-09-30 National Maritime Research Institute Object detection method and lidar device, and environment measuring method
CN102954782A (en) * 2012-10-25 2013-03-06 水利部交通运输部国家能源局南京水利科学研究院 Non-contact measuring system and non-contact measuring method for shallow water terrain in model test
JP2014139576A (en) * 2014-03-06 2014-07-31 National Maritime Research Institute Object detection method, lidar device, and environment measuring method
CN108732142A (en) * 2018-02-09 2018-11-02 秦皇岛红燕光电科技有限公司 Phytoplankton & Suspension red tide based on three-dimensional fluorescence spectrum and detection method of toxicity
CN113237817A (en) * 2021-05-07 2021-08-10 山东大学 Depolymerization observation method and application of benthic cyanobacteria algae pad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344979A (en) * 1993-06-04 1994-12-20 Kyushu Univ Towing type robot for observing matter dissolved in sea
JPH08271629A (en) * 1995-03-30 1996-10-18 Kaiyo Seibutsu Kankyo Kenkyusho Ultrasonic algae measuring apparatus
JP2001299090A (en) * 2000-04-18 2001-10-30 Shinryo Corp Method for diagnosing growth of plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344979A (en) * 1993-06-04 1994-12-20 Kyushu Univ Towing type robot for observing matter dissolved in sea
JPH08271629A (en) * 1995-03-30 1996-10-18 Kaiyo Seibutsu Kankyo Kenkyusho Ultrasonic algae measuring apparatus
JP2001299090A (en) * 2000-04-18 2001-10-30 Shinryo Corp Method for diagnosing growth of plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216904A (en) * 2009-03-16 2010-09-30 National Maritime Research Institute Object detection method and lidar device, and environment measuring method
CN102954782A (en) * 2012-10-25 2013-03-06 水利部交通运输部国家能源局南京水利科学研究院 Non-contact measuring system and non-contact measuring method for shallow water terrain in model test
JP2014139576A (en) * 2014-03-06 2014-07-31 National Maritime Research Institute Object detection method, lidar device, and environment measuring method
CN108732142A (en) * 2018-02-09 2018-11-02 秦皇岛红燕光电科技有限公司 Phytoplankton & Suspension red tide based on three-dimensional fluorescence spectrum and detection method of toxicity
CN108732142B (en) * 2018-02-09 2021-03-02 秦皇岛红燕光电科技有限公司 Three-dimensional fluorescence spectrum-based seawater algae red tide and toxicity detection method
CN113237817A (en) * 2021-05-07 2021-08-10 山东大学 Depolymerization observation method and application of benthic cyanobacteria algae pad

Also Published As

Publication number Publication date
JP5246389B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
Colbo et al. A review of oceanographic applications of water column data from multibeam echosounders
AU2012234920B2 (en) Method and system for surveying or monitoring underwater features
JP5246389B2 (en) Aquatic plant observation method
Ødegård et al. A new method for underwater archaeological surveying using sensors and unmanned platforms
Jaffe et al. OASIS in the sea: measurement of the acoustic reflectivity of zooplankton with concurrent optical imaging
Pfennigbauer et al. High-resolution hydrographic airborne laser scanner for surveying inland waters and shallow coastal zones
Harsdorf et al. Contrast-enhanced optical imaging of submersible targets
Kuus Bottom tracking issues and recognition thereof using SHOAL-300 green laser beam in dense fields of Zostera Marina and Laminaria Sp.
Pandian et al. Seabed habitat mapping techniques: an overview of the performance of various systems
Harsdorf et al. Submarine lidar for seafloor inspection
Shortis et al. A towed body stereo-video system for deep water benthic habitat surveys
WO2023082374A1 (en) Gaze-type fast hyperspectral pulse laser radar system
Kagesten et al. Geological seafloor mapping with backscatter data from a multibeam echo sounder
Walker et al. Assessing the use of a camera system within an autonomous underwater vehicle for monitoring the distribution and density of sea scallops (Placopecten magellanicus) in the Mid-Atlantic Bight
Steinbacher et al. AirborneHydroMapping–Area wide surveying of shallow water areas
KR20210099817A (en) Shellfish Resource Estimation Using Side Scan Sonar.
Long et al. Preliminary evaluation of an acoustic technique for mapping tropical seagrass habitats
Harsdorf et al. Design of an ROV-based lidar for seafloor monitoring
Siccardi et al. Seabed vegetation analysis by a 2 MHz sonar
Briseño-Avena Fine-scale spatial and temporal plankton distributions in the Southern California Bight: lessons from in situ microscopes and broadband echosounders
Hansen Research efforts for detection and recovery of submerged oil
Feldens et al. Can black coral forests be detected using multibeam echosounder “multi-detect” data?
Pan et al. Shallow water seagrass observed by high resolution full waveform bathymetric LiDAR
Browne Underwater acoustic imaging devices for portable scour monitoring
McFall et al. Investigation into laboratory bathymetric measurement techniques

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5246389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees